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Abstract. In Japan, where sediment disasters such as debris flow, landslides, and slope
failures frequently occur, for disaster prevention purposes, the government publishes ar-
eas at risk of sediment disasters as Sediment Disaster Prone Areas. Since this requires
time and effort for experts to conduct field surveys, attempts are being made to estimate
the collapse hazard areas from elevation maps using deep learning. However, the conven-
tional method of estimating collapse hazard areas pixel by pixel has the problem that it is
difficult to identify the area clearly. To solve these problems, we propose using instance
segmentation and object detection in computer vision techniques. This study investigates
effective methods for estimating areas at risk of sediment disasters using a Mask R-CNN
model that simultaneously processes segmentation and object detection. Specifically, we
develop 1) a method for generating mask images, 2) a learning method combining Red
Relief Image Map images, aerial photographs, standard maps, and land use maps as input
images, and 3) a method for overlapping prediction. Numerical experiments conducted
under multiple conditions evaluate the accuracy and the predicted images and demon-
strate the effectiveness of the developed methods.
Keywords: Sediment disaster prone area, Mask R-CNN, Red Relief Image Map, Object
detection, Instance segmentation

1. Introduction. In Japan, where 70% of the land is mountainous, sediment disasters
such as landslides are frequent due to typhoons, earthquakes, and heavy rainfall. For
disaster prevention, the government publishes areas where steep slopes are in danger of
collapsing as Sediment Disaster Prone (SDP) Areas [1]. However, these surveys are con-
ducted manually by experts and others and require time and labor. In contrast, attempts
have been made to estimate risk topography from land elevation maps using deep learn-
ing [2, 3]. In [2], an attempt has been made to estimate the location of collapse hazard
areas on steep slopes from RRIM (Red Relief Image Map) [4] images and aerial pho-
tographs using a CNN (Convolutional Neural Network). In [3], methods using Pix2pix,
a deep learning model capable of image transformation, have been investigated. It has
been shown that 1) the estimation accuracy was better when the SDP Areas was used
as the correct location rather than the Steep Slope Areas in Danger of Failure and 2)
although Pix2pix can eliminate missed collapse hazard areas on steep slopes, the accu-
racy needs to be improved. All the methods proposed in these studies determine hazard
areas pixel-by-pixel. However, such an approach has the problem that it is difficult to
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identify areas clearly. A possible solution to this problem is to use semantic segmenta-
tion, Instance Segmentation (IS) or Object Detection (OD) methods to target hazardous
areas for segmentation and detection. In [5], although semantic segmentation is applied
for RRIM, it uses an improved version of U-Net [6] and is used to detect roads and rivers
instead of hazardous areas. In [7, 8, 9], IS and OD methods using Mask R-CNN (Mask
Region-based CNN) have successfully applied to post-disaster landslide detection from
aerial photographs. However, the methods do not estimate the area where landslides
are likely to occur. In [10], landslide detection is performed from high-definition 1m res-
olution DEM data before collapse using a CNN. The generated landslide susceptibility
map is consistent with the actual distribution trends. However, it is difficult to apply this
method to the entire Japan because the needed high-definition DEM data is not always
available everywhere. Although the effectiveness of landslide detection using IS and OD
has been shown, no method has been proposed for pre-disaster detection such as SDP
Areas detection that can be applied to arbitrarily large areas.
In this study, we investigate effective methods using Mask R-CNN [11] for estimat-

ing collapse hazard areas on steep slopes. Unlike U-Net, Mask R-CNN provides IS in
addition to OD and class identification. It is highly versatile and has a variety of us-
es, such as detecting people and buildings from photographs. This paper proposes 1) a
method for generating mask images, 2) a learning method combining RRIM images, aeri-
al photographs, standard maps, and land use maps as input images, and 3) a method
for overlapping prediction. Numerical experiments conducted under multiple conditions
evaluate the accuracy and the predicted images and demonstrate the effectiveness of the
developed methods.

2. Mask R-CNN. Mask R-CNN extends Faster R-CNN (Faster Region-based CNN) [12]
to provide IS in addition to OD and class identification. It is possible to detect regions in
the image that are considered to be objects and the class that these regions represent, and
to identify classes at the pixel level within the resulting regions. The network structure of
the Mask R-CNN is shown in Figure 1(a). Mask R-CNN consists of three major layers:
Backbone, RPN (Region Proposal Network), and Head. Backbone extracts features from
the input image, RPN proposes RoIs (Region of Interests) where objects to be detected
are located, and Head performs object classification, bounding-box regression and mask
prediction.

2.1. Backbone. The backbone of the Mask R-CNN implementation [13] used in this
study is ResNet50 (Residual Network 50) with the addition of FPN (Feature Pyramid
Network). Backbone extracts features from the input image, starting with low-level fea-
tures such as edges and corners specified in the initial layer and successively detecting
higher-level features in later layers. ResNet50 is a deep CNN proposed in [14], and pro-
cessing images in the convolution layer of this model results in a pyramid of feature maps
with high semantic value, although the spatial resolution decreases as the number of
convolution stages increases. FPN proposed in [15] further processes the output layer of
ResNet50 in a top-down path, as shown in Figure 1(b), to build higher resolution layers
from semantically valuable layers. This allows access to low-level and high-level features
at each stage, improving the representation of objects at multiple scales.

2.2. RPN. The network structure of the RPN is shown in Figure 1(c). For the feature
map extracted by Backbone, a bounding box of region candidates and a score representing
the object-like nature of the region are output. The loss used for training is as follows:
LCLS + LBOX = 1

Ncls

∑
i(Lcls(pi, p

∗

i )) + λ 1

Nreg

∑
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∗

iLreg(ti, t
∗

i )), where i is the index of the

anchor in the mini-batch, pi is the predicted probability that anchor i is an object, and p∗i
indicates actually whether it is an object or not. ti is a vector representing the coordinates
of the predicted bounding box and t∗i is a vector representing the coordinates of the correct
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(a) Network structures (b) FPN [15]

(c) RPN [12] (d) RoIAlign [11]

Figure 1. Details of the network structure of Mask R-CNN

rectangular region. Lcls is the log loss for the two classes (object/non-object) and Lreg is
the regression loss, expressed as Lreg(ti, t

∗

i ) = R(ti − t∗i ) using the robust function R. Ncls

is the size of the mini-batch, and Nreg is the number of anchors, weighted by the balance
parameter λ.

2.3. Head. The network structure of Head consists of a RoIAlign layer, a segmentation
layer, a class identification layer, and a region extraction layer. RoIAlign is a method
to improve pixel misalignment, which was a problem with RoIPooling in Faster R-CNN.
Figure 1(d) shows RoIAlign. RoIAlign does not just thin out the feature map but cre-
ates a fixed-size vector by interpolation to account for sub-pixel-level information. The
branch estimating the mask from the RoI feature vector consists of a small FCN (Fully
Convolutional Network), which estimates an m × m object region mask by convolution
layer. Assuming that there are K types of classification objects, binary classification is
performed for each of the K classes, resulting in a K ×m×m output for the mask esti-
mation. In this case, the threshold value θout determines whether the object is regarded
as an object or not. The loss used for training is as follows: L = LCLS + LBOX + LMASK .
Apply a per-pixel sigmoid and define LMASK as the averaged binary cross-entropy loss.

3. Estimation of Sediment Disaster Prone Areas Using Mask R-CNN.

3.1. Sediment disaster prone areas. In Japan, landslide hazard warning areas includ-
ing SDP Areas are lands that are recognized as having the potential to endanger the lives
or bodies of residents, etc., in the event of a steep slope collapse, etc. The area is desig-
nated based on the “Law Concerning Promotion of Sediment Disaster Countermeasures
in Sediment Disaster Precaution Areas, etc.”, which came into effect on April 1, 2001 in
Japan.
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3.2. Proposed methods. In the past studies, Pix2pix and traditional CNN have been
applied. All the models perform pixel-by-pixel detection. On the other hand, our proposed
model is capable of OD as well as pixel-by-pixel detection through IS. Since the detection
area is displayed as a large object, it is easy to grasp the detection area.

3.2.1. Mask image generation. The mask image for estimating SDP Areas represents the
alert areas. The data of SDP Areas are provided in shapefile format at the digital national
land information download site [16]. Normally, in OD, the mask information is extracted
by manually creating a json file with a tool. In the implementation used in this study,
the mask information is extracted from the binarized mask image. The binary raster
images are generated by converting the vector format image obtained from the shapefile
formatted file. Mask images can be easily generated from shapefile format files without
manual processing. During training, all polygons drawn with a Boolean value of 1 are
extracted from the mask image. Let N be the number of polygons extracted and pn be
the nth polygon (1 ≤ n ≤ N) extracted. For each n ∈ {1, 2, . . . , N}, a mask image
is generated from polygons pn and a list consisting of N class IDs is simultaneously
generated.

3.2.2. Input images. Two selected from four types of images are synthesized as multi-
channel image and the synthesized image is used as an input image. The images used
for the synthesis should contain the features of steep slopes and human activity areas so
that the features of the SDP Areas can be extracted. We consider to use the four types of
images: RRIM, aerial photograph, standard maps and land-use map. All of them are color
images with 3-channel. RRIM can be considered to contain the feature of steep slopes
and the rest of three images can be considered to contain the feature of human activity
areas. RRIM developed by Asia Air Survey Co., Ltd. [4] is a 3D visualization method that
represents slope and ridge-valley by using saturation and brightness of red color. RRIM
images shall be used for features of steep slopes. Aerial photographs, standard maps, and
land-use maps shall be used for features of human activity areas, which means that the
areas may endanger the lives or bodies of residents. Aerial photographs, standard maps,
and land-use maps, in that order, are considered to better represent the characteristics of
human activity areas. The land-use map is created from the land-use subdivision mesh
data [16] of the digital national land information. The land-use subdivision mesh data
is data that shows land-use conditions expressed by 11 types of items judged from map
symbols and satellite image color tones for each 100 m (1/10 subdivision) mesh unit, of
which 6 types of land: rice fields, other agricultural land, building use, roads, railroads,
and other sites are shown as red color areas. Since only RRIM can be considered to
contain the future of steep slopes, we propose to use RRIM and one selected from the
other three types of images, that is, three combinations, “RRIM and aerial photograph”,
“RRIM and standard map”, and “RRIM and land-use map”, are considered. For any
combination, the synthesized image can be considered to contain both of features of steep
slopes and human activity areas, and the number of channels of the synthesized image is
six for any combination.

3.2.3. Integration of detected areas by logical OR. Bounding boxes for detected areas with
IoU (Intersection over Union) greater than 0.7 are excluded as duplicates. However, as
shown in Figure 2(a), the remaining bounding boxes still have some overlap. This rarely
happens with a single object with clear boundaries, such as a vehicle or a person. In
contrast, since SDP Areas generally have unclear boundaries, a single SDP Area can
be easily detected as multiple areas. This characteristic reduces the advantage of OD in
visibility. To address this problem, we propose a method to integrate multiple overlapping
detection areas by logical OR operations, as shown in Figure 2(b). The algorithm is as
follows.
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Step 1: Let M be the number of mask images detected for SDP Areas. Let Xm = (xm,i,j)
be the mth mask image (1 ≤ m ≤ M), where each pixel xm,i,j takes the logic value 1 if it
is in the SDP Area, otherwise it takes the logic value 0. Then integrate M mask images
into a single image X = (xi,j) by letting xi,j = x1,i,j + x2,i,j + · · ·+ xM,i,j.
Step 2: Extract from image X all polygons drawn with logic value 1. Let M ′ be the
number of the extracted polygons. Let pm be the mth extracted polygon (1 ≤ m ≤ M ′).
For eachm ∈ {1, 2, . . . ,M ′}, generate the mask imageX ′

m from the polygon pm, where X
′

m

represents the mask and bounding box information for the mth detected area integrated
by logical OR operations.

(a) Raw prediction (b) OR prediction

Figure 2. Integration of predictions by logical OR

4. Experimental Evaluation.

4.1. Evaluation indices. The reproducibility, fit rate, and F1-score calculated by Equa-
tion (1) are used as Evaluation Indices (E.I.) for the simulation results. TP is the number
of correctly predicted SDP Areas as SDP Areas, TN is the number of correctly predicted
backgrounds as backgrounds, FP is the number of incorrectly predicted backgrounds as
SDP Areas, and FN is the number of incorrectly predicted SDP Areas as backgrounds.
Recall is the percentage of correctly predicted SDP Areas out of those that are actually
SDP Areas. Precision is the percentage of the predicted SDP Areas that are actually SDP
Areas. The F1-score is the harmonic mean of recall and precision. TP , TN , FP and FN

are calculated in two ways. The first way counts the pixel-by-pixel matches between the
mask image and the prediction. The second way is to determine whether each SDP Area
is correctly predicted or not and to treat a detection as correct if the bounding box of
the detected area overlaps with the bounding box of true area by more than a certain
threshold θ = 0.5. The percentage of this overlapping area is calculated by Equation (2)
by obtaining the x and y coordinates of the center of each area and the width and height
of the area of T , wT and hT , respectively, with T and P as the bounding boxes of the
correct answer and prediction, respectively. xT,max and xT,min denote the maximum and
minimum values of the x-coordinate of T , respectively; the same is true for P and y.

recall =
TP

TP + FN
, precision =

TP

TP + FP
, F1-score =

2 · recall · precision

recall + precision
(1)

DR =
T ∩ P

T
=

dxdy

wThT

(2)

dx = min(xT,max, xP,max)−max(xT,min, xP,min) (3)

dy = min(yT,max, yP,max)−max(yT,min, yP,min) (4)
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4.2. Simulation conditions. The data used in the experiment consist of 9022 pairs of
RRIM images, aerial photographs, standard map images, land-use maps, and binarized
mask images with a zoom level of 16 and a size of 128×128 patch images. These patch im-
ages are created by sampling from northern Fukuoka Prefecture in Japan, where latitudes
range from 33.3333 to 33.9999 degrees and longitudes range from 130.0000 to 131.0000
degrees. RRIM images are from Red Relief Image Map RRIM R©5+ created by Asia Air
Survey Corporation, aerial photographs and standard maps are from Geographical Sur-
vey Institute tiles, and land-use maps and SDP Areas are from land-use subdivision mesh
data and landslide hazard warning area data from the digital national land information
data of the National Land Policy Bureau, Ministry of Land, Infrastructure and Transport.
Figure 3 shows an example of a training image with mask information notated. These
9022 pairs of images are divided into training, validation, and testing, with 7222, 900,
and 900 images, respectively. The learning rate is set to 0.001, the number of epochs is
10, the batch size is 2, and the number of steps per epoch is 3500. The threshold θout for
the probability of being an alert area in the output is set to 0.5.

(a) RRIM (b) Aerial photographs (c) Standard maps (d) Land-use maps

Figure 3. Example of training image

In the training of Mask R-CNN, we use transfer learning in order to balance accuracy
and processing time. The base model for transfer learning is the model provided in [13]
and trained on the COCO dataset [17]. The COCO dataset consists of 80 class labels,
which are composed of categories such as people, bicycles, elephants, glass, sky, and road.

4.3. Simulation 1. To examine the effectiveness of the transfer learning, a comparison
was made between the cases with and without transfer learning. The used data is an RRIM
images. For each case, the Mask R-CNN model is trained with the number of epochs of
15, and the accuracy of the trained model is evaluated on test data of 900 images. The
accuracy is calculated as the pixel-level accuracy obtained from the mask information.
In the case without transfer learning, recall is 77.64% and precision is 26.72%. With

transfer learning, the recall is 72.72% and precision is 33.85%. The results suggest that the
use of transfer learning results in a higher percentage of precision than without transfer
learning. F1-score is 39.76% without transfer learning and 46.20% with transfer learning,
thus indicating more accurate collapse hazard areas on steep slopes of the test image when
transfer learning is used. Therefore, we use transfer learning in all remaining simulations.

4.4. Simulation 2. To investigate effective input image combinations, the following four
input image combinations described in Section 3.2.2 are compared: 1© Only RRIM images,
2© Combination of RRIM images and aerial photographs, 3© Combination of RRIM images
and standard maps, and 4© Combination of RRIM images and land-use maps. For each of
the four combinations, the mask R-CNN model is trained, and the accuracy of the trained
model is evaluated on the test data of 900 images. Two types of accuracy, pixel-level
accuracy obtained from mask information and OD accuracy obtained from bounding box
overlap, are calculated as the average of three trials. Furthermore, the prediction results



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.15, NO.6, 2024 581

are shown for two sample images, one with and one without steep slopes, and the accuracy
is shown for the sample image with steep slopes.

Table 1 shows the evaluation result on test data of 900 test images, Table 1(a) shows
the accuracy for the pixel level obtained from the mask information, and Table 1(b) shows
the accuracy of OD obtained from bounding boxes overlap. Table 1(a) shows that the
highest recall is 78.51% for 3©. For precision and F1-score, the highest percentages of
31.20% and 43.49% are obtained respectively when 1© is used. Table 1(b) also shows that
the highest recall is 88.86% for 3©. For precision and F1-score, 3© is also the highest, at
53.50% and 66.57%, respectively.

Table 1. Evaluation results on test data of 900 images

(a) For mask information (b) For bounding boxes
P
P
P
P
P
P
P
P

E.I.
Comb.

1© 2© 3© 4©

Recall (%) 72.55 70.75 78.51 75.78
Precision (%) 31.20 28.06 27.49 28.06
F1-score (%) 43.49 40.64 40.18 40.94

P
P
P
P
P
P
P
P

E.I.
Comb.

1© 2© 3© 4©

Recall (%) 80.33 84.64 88.86 88.65
Precision (%) 41.89 45.62 53.50 46.39
F1-score (%) 54.51 59.26 66.57 60.86

For the four combinations, prediction results on the test sample image with steep slopes
are shown in Figure 4, and prediction results on the test sample image without steep
slopes are shown in Figure 5. Table 2(a) shows the pixel level accuracy obtained from
the prediction results in Figure 4, and Table 2(b) shows the OD accuracy obtained from
the prediction results in Figure 5. As can be seen from Figure 4, Table 2(a), and Table
2(b), the combination 3© achieves the highest F1-scores 63.11% and 66.67% for the pixel
level and the OD accuracy, respectively. Figure 5 shows that except for 2©, false detection
rarely occurs for a test sample image with no steep slopes. This suggests that combinations
other than 2© are effective. The cause of the false detection in combination 2© can be
considered to be due to the features obtained from the aerial photographs. Therefore, the
use of aerial photography is not considered suitable for the proposed method.

Table 2. Evaluation results on a test sample image shown in Figure 4

(a) For mask information (b) For bounding boxes
P
P
P
P
P
P
P
P

E.I.
Comb.

1© 2© 3© 4©

Recall (%) 90.08 84.75 89.63 93.19
Precision (%) 47.64 45.58 48.70 41.33
F1-score (%) 62.32 59.28 63.11 57.26

P
P
P
P
P
P
P
P

E.I.
Comb.

1© 2© 3© 4©

Recall (%) 50.0 100.0 100.0 100.0
Precision (%) 100.0 50.00 50.00 40.00
F1-score (%) 66.67 66.67 66.67 57.14

4.5. Simulation 3. For the combination 3©, which obtained the best results in Simu-
lation 2, we experimentally investigate the effective threshold θout at which an area is
determined to be an alert area. The threshold θout is examined for 0.5, 0.6, 0.7, 0.8, and
0.9.

Table 3 shows the evaluation results of the pixel level accuracy for 3©, and Table 4
shows the evaluation results of the OD accuracy for 3©. Tables 3 and 4 show that, as the
threshold increases, recall decreases and precision increases. In Table 4, with a threshold
θout = 0.5, recall is already close to 90% and precision is close to 50%, which means that
almost no SDP Areas are missed and almost as many new alert areas are detected as
existing SDP Areas. Therefore, the threshold θout of 0.5 for the simulation condition is
the best among the tested candidates.
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( 1©-1) Raw ( 1©-2) OR ( 1©-3) Actual

( 2©-1) Raw ( 2©-2) OR ( 2©-3) Actual

( 3©-1) Raw ( 3©-2) OR ( 3©-3) Actual

( 4©-1) Raw ( 4©-2) OR ( 4©-3) Actual

Figure 4. Results on a test sample image where steep slopes exist
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( 1©-1) Predict ( 1©-2) Actual ( 2©-1) Predict ( 2©-2) Actual

( 3©-1) Predict ( 3©-2) Actual ( 4©-1) Predict ( 4©-2) Actual

Figure 5. Results on test sample image where steep slopes do not exist

Table 3. Evaluation results of 3© with different thresholds for mask information

X
X
X
X
X
X
X
X
X
X
XX

E.I.
Threshold

0.5 0.6 0.7 0.8 0.9

Recall (%) 81.92 79.29 76.76 73.19 66.53
Precision (%) 28.73 30.90 33.37 36.37 41.36
F1-score (%) 42.16 44.47 46.52 48.59 51.01

Table 4. Evaluation results of 3© with different threshold for bounding boxes

X
X
X
X
X
X
X
X
X
X
XX

E.I.
Threshold

0.5 0.6 0.7 0.8 0.9

Recall (%) 91.49 87.52 82.76 75.89 61.16
Precision (%) 46.34 49.85 54.41 60.03 67.98
F1-score (%) 61.52 63.52 65.66 67.03 64.39

5. Conclusion. In this study, we examined an effective method for estimating SDP Areas
from map images such as RRIM images using Mask R-CNN. We studied four different
combinations of RRIM images, aerial photographs, standard maps, and land-use maps,
and examined which combination was best, as well as a method of integrating predicts for
visual clarity. Simulations confirm that looking at bounding boxes improves the fit rate
to nearly 30% at the pixel level and nearly 50% at the bounding box, while maintaining
the repeatability rate near 90%. In the pixel-by-pixel results, 3© had the highest recall ,
78.51%, with precision at 27.49% and F1-score at 40.18%. In [3], the method based on
Pix2pix has been proposed, and its best F1-score, recall , and precision were 17.01%,
49.67%, and 10.27%, respectively. Our proposed Mask R-CNN model outperforms the
Pix2pix model. From the predicted images, it was observed that the combination of RRIM
images and aerial photographs resulted in the predicted for areas where no steep slopes
exist, while the other three methods almost never resulted in the predicted for areas where
no steep slopes exist, indicating the effectiveness of the combination of these methods.
From a practical standpoint, future issues include confirming whether the same accuracy
can be obtained for wide-area images at lower zoom levels.
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