
ICIC Express Letters
Part B: Applications ICIC International c⃝2024 ISSN 2185-2766
Volume 15, Number 4, April 2024 pp. 373–380

FAST PASSAGE RETRIEVAL IN WEIGHTED HAMMING SPACE
FOR OPEN-DOMAIN QUESTION ANSWERING

Richeng Xuan1,3, Junho Shim2,∗ and Sang-goo Lee3

1Beijing Academy of Artificial Intelligence (BAAI)
Beijing 100080, P. R. China

rcxuan@baai.ac.cn

2Department of Computer Science
Sookmyung Women’s University

Cheongpa-ro 47-gil 100 (Cheongpa-dong 2ga), Yongsan-gu, Seoul 04310, Korea
∗Corresponding author: jshim@sookmyung.ac.kr

3Department of Computer Science and Engineering
Seoul National University

1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
sglee@europa.snu.ac.kr

Received July 2023; accepted September 2023

Abstract. The latest research has shown that hashing can decrease memory usage and
computing time in many applications without significantly reducing efficiency. Recently,
hashing approaches have been used in open-domain question answering tasks, where only
the most basic hashing layer is employed. We propose a weighted Hamming distance-
based semantic hashing method that learns optimal dimension weights to obtain effective
passage retrieval results. We compared the performance of our method to those of state-
of-the-art semantic hashing baselines in a passage retrieval task on open-domain question
answering. The results show that our method can outperform the baselines and achieve
accuracy similar to that attainable with dense vector-based retrieval.
Keywords: Natural language processing, Passage retrieval, Semantic hashing, Ham-
ming distance, Weighted Hamming, Open-domain question answering

1. Introduction. Open-domain question answering (QA) [1] is a task in which factual
questions are answered using a large collection of documents (e.g., Wikipedia). Recent
QA systems often use a simplified two-stage approach [2]. Firstly, a retriever is utilized to
retrieve a small number of documents from a large collection and a reader is used to select
the correct answer from a small number of retrieved documents. We also refer to this
method as the retriever-reader approach. Although the accuracy of the reader obtaining
the answers from the candidate is sufficiently high, it is impossible to use the reader to
calculate all the data in a very large collection. Therefore, using a less computationally
complex retrieval to generate, small candidates for readers become realistic and feasible.

Owing to the breakthrough regarding the pre-trained language model [3], most natu-
ral language processing (NLP) tasks represent documents as continuous values. Recent
retriever approaches [4,5] also encode questions and passages using pre-trained encoders
to obtain continuous vectors. In these methods, the relevant passages are retrieved by
performing a similarity search on the index containing all of the large collection passage
embeddings with a question embedding as a query. Retrieval using pre-trained embedding
often outperforms classical methods, but as the pre-trained language model is developed
further, the document structure embedding becomes more complex. This situation direct-
ly causes the embedding of a large collection to be very large. For example, the continuous
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embedding of common knowledge sources (e.g., Wikipedia) requires 65 GB of memory to
store [6].
Semantic hashing [7,8] methods enable very efficient searching by learning to represent

documents as compact binary vectors called hash codes. By using a compact binary hash
code, memory usage and computational cost can be reduced. The binary passage retriever
(BPR) [6] integrates hashing into a state-of-the-art dense passage retriever (DPR) [4] to
learn binary hash code from original continuous vectors, which significantly reduces the
size of the passage index of a large collection. However, the BPR performs worse than
DPR in some cases. BPR reduces the memory cost with loss of accuracy on k < 20.
The previous hashing approaches have often used the Hamming distance of the binary

code as the similarity index, but the similarity that can be obtained by simply counting the
Hamming distance of different dimensions is at most equal to the number of dimensions.
This situation also leads to a large amount of similarity in large-scale texts. Usually, the
number of passages is more than several million. If only a few hundred bits of hash code
are used, the similarity of the query is at least the same as that of thousands of passages.
Weighted hashing is one solution to this problem [9], and the weight of each dimension
will make the similarity less discrete. In the latest hashing research [10,11], scholars began
to use the weight of each dimension to improve the accuracy of hash code extraction and
accelerate partial retrieval.
This paper proposes a weighted semantic hashing method for passage retrieval by using

the dimension weight to achieve accuracy similar to that attainable by dense vector-based
retrieval for the first time. Further, it presents experiments conducted on the benchmark
dataset from a previous study and a demonstration that the proposed weighted semantic
hashing outperforms the existing hashing approaches. In addition, it describes the opti-
mization of the learning method based on the dimension weight and presents a learning
technique to improve the training effect.
The remainder of this paper is organized as follows. Section 2 reviews the related work.

Section 3 introduces the proposed model. Section 4 presents the experimental results and
corresponding discussions. Finally, Section 5 concludes the paper.

2. Related Work. Related passage retrieval is an important component of open-domain
QA [1,12]. It is difficult to obtain answers efficiently using the answer extraction compo-
nent, and passage retrieval significantly reduces the search space for answer extraction.
From the beginning, the sparse vector model using bag-of-words (BOW) has been widely
employed as a passage retriever. TF-IDF [13] and BM25 [14] improve the retrieval accura-
cy and make the sparse vector model a standard method applied to many QA tasks [2,15].
The limitation of BOW is that this method can only be based on keyword matching and
lacks a search based on semantics.
To reduce this limitation, recent researchers [16] have begun to use external information

to reduce this limitation further. Compared with research on the sparse model, studies
using dense vectors started very early, and latent semantic analysis [17,18] was the first
dense vector model to be applied. Owing to the development of neural networks, the DPR
[4] using the pre-trained model [3] has gradually emerged, relying on the innate advantages
of the pre-training model in terms of general language semantics, which is also used in the
state-of-the-art QA method [19]. Because the DPR model uses a high-dimensional dense
vector, when dual with more than 10 million passage vectors, it requires a considerable
amount of memory, which is not affordable for ordinary computers. To reduce the memory
cost, BPR [6] employs the learning-to-hash method to use binary code to store the passage
vector.
The original text data can be represented using compact binary codes through hashing.

The objective of hashing is to reduce the memory and search time cost of the nearest
neighbor search by representing data points using compact binary codes. In recent years,
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with the development of semantic hashing, the solution of binary code is no longer a
last resort, entailing considerable loss of precision to achieve efficiency. Variational deep
semantic hashing [20] began to prove that semantic hashing can improve the efficiency of
solving some problems without losing accuracy. Subsequently, various hashing methods
[21-23] based on deep learning have been developed to improve the usability of semantic
hashing.

Simply using the Hamming distance of the binary hash code to calculate the similarity
of large texts one by one will cause the same similarity problem. Because a Hamming
distance of hundreds of bits can represent only a few hundred similarities, there will be
tens of thousands or even hundreds of thousands of similar similarities in tens of millions
of data, which will cause many problems. It is a good solution for attaching a common
real value weight to each dimension of the hash code [9]. In this solution, only a small
amount of weight data needs to be attached to solve the problem of the same similarity,
and when the hash table is used, the number of distance calculations and overall time
consumed can be reduced [11].

3. Models. Given a large collection of Q text passages such as Wikipedia, the top k
passages relevant to input query are retrieved for the reader component. The reader
component further extracts answers from the top k passages. The reason that the retrieval
component is needed is that |Q| is much larger than k. For example, in our Wikipedia
experiment, |Q| was 21 million, and k was often 20-1000. If the reader directly extracts
the answer from a passage in a large collection, the amount of time required will be
unacceptable. Our retriever is extended by BPR [6], which is retrieval based on binarized
DPR [4]. We firstly introduce BPR and then explain the proposed model.

3.1. Preliminaries. The binary passage retriever (BPR) [6] was the first retriever to
utilize hashing for passage retrieval. By using binary code, BPR reduces the memory
cost with little loss of accuracy compared to DPR. BPR uses two independent BERT [3]
encoders to encode question q and passage p into continuous embeddings of dimension d:

x̃q = BERT q(q), x̃p = BERT p(p) (1)

where x̃q ∈ Rn and x̃p ∈ Rn. d will change with the encoder; when using the uncased
BERT-base, d is 768. The hashing layer computes its binary code from continuous em-
beddings. To obtain a smaller amount of hash code, continuous embeddings are often
reduced to smaller dimensions first. After dimensional reduction, it will eventually be-
come: xq ∈ Rn and xp ∈ Rn. The simple method of obtaining binary code is by using the
sign(•) function; however, the back-propagation cannot pass through the sign function,
because the gradient of the function is zero.

For training, the BPR uses the scaled tanh function, which approximates the sign
function. n is the bit number of the hash code and is often smaller than the embedding
dimension. β is a scaling parameter from HashNet [24]. When β increases, the function
becomes non-smooth, and the scaled tanh function converges to the sign function when
β → ∞. The BPR follows the scaling parameter increase strategy from HashNet. In the
training phase, the value of β gradually increases from 1, so the values of zq and zp are
also continuous. However, in the inferencing phase, directly replacing the tanh function
with the sign function easily yields the binary hash code.

3.2. Proposed model: WBPR. The proposed weighted binary passage retriever (WB-
PR) architecture appears in Figure 1. After passing the BERT encoder, a d-dimensional
continuous vector will be obtained, and the WBPR architecture uses a hashing layer to
convert a real-valued vector into binary code of any dimension desired. In the training
phase, the hash codes of query zq and passage zp are also continuous vectors, because they
pass the tanh function instead of the sign function. The distance between binary codes is
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Figure 1. Weighted binary passage retriever

generally calculated using the Hamming distance. If we add dimension weight W ∈ Rd to
each dimension, the weighted distance can be represented as follows:

Dist (zq, zp,W ) =
1∑n

i=1Wi

n∑
i=1

Wi

(
ziq ⊕ zip

)
(2)

where Wi is the weight of the ith dimension. In training, zq and zp are continuous vectors;
therefore, ⊕ cannot be used. Instead, the inner product is employed in the loss function
because the Hamming distance and inner product can be used interchangeably for binary
codes.
Similar to the BPR, the proposed architecture consists of candidate generation and

reranking, as shown in Figure 1. In the candidate generation stage, the proposed method
uses the hash codes of the question and passage to calculate the weighted Hamming
distance after obtaining the hash code using the hash layer. The dimension weight used at
this stage is denoted asWcand. The weighted Hamming distance of hash code is Dist(zq, zp,
Wcand). In the reranking stage, the proposed model uses the hash code of the passage and
continuous vector of the question to calculate the weighted distance. The dimension weight
used at this stage is denoted as Wrerank. The weighted Hamming distance in this stage is
Dist(zq, zp,Wrerank).

3.3. Objective function. In the candidate generation phase, the same ranking loss as
in the BPR is utilized as the objective. The difference is that the distance calculated is
changed to the weighed Hamming distance. In the training process, zq and zp are not
real binary codes, but rather approximate hash codes that are calculated by the tanh(·)
function. The loss function in the candidate generation step of the proposed model Lcand

is as follows:
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where Wcand is the weight of the candidate generation step, z+p is a positive passage that
provides answers to the question, and z−p is a negative passage that is irrelevant to the
question. In the reranking step, like in the DPR, the model is trained by minimizing the
negative log-likelihood of the positive passage from the training dataset.

Lrerank = − log
exp

(
Dist

(
xqi , z

+
pi
,Wrerank

))
exp

(
Dist

(
xqi , z

+
pi
,Wrerank

))
+
∑h

j=1 exp
(
Dist

(
xqi , z

−
pij
,Wrerank

)) (4)

where Wrerank is the weight of the reranking step. In reranking, the distance is calculated
based on the continuous vector of the question and hash code of the passage. Thus, in
this stage, the effect of Wrerank is not as great as that of Wcand.

In previous studies, the training dataset was fixed [6], minimizing loss but introducing
new types during passage retrieval, termed “high-ranked negative” passages. Including
these passages as z−pij in Equations (3) and (4) enhances the dynamic learning process
of the encoder. Formerly, passage encoder changes during training necessitated compre-
hensive computations of passage representations, which was time-consuming. However, a
recent optimization method [25] demonstrated improved accuracy on a continuous vector
base model, despite less effective results in BPR due to its binary code constraint.

In our method, dimension weights are independent of question and passage represen-
tations, eliminating the need for constant recalculation of all passage representations.
Consequently, both positive and negative passages can change dynamically during train-
ing, improving overall results. In practice, the top l results are extracted and reranked
to obtain the top k results. From these, the positive passage with the lowest ranking is
selected as p+i . If no positive passages are present, a positive example is sourced from his-
torical top results. Given cost constraints, negative example sampling requires strategic
extraction from all top results. As l is usually greater than k, h passages are randomly
selected from the top k results.

4. Experiment. The QA experiment performed in this study followed the retriever-
reader framework [26], where the retriever selected a small passage list from a large dataset
and the reader examined the retrieved passages to obtain the correct answer. The large
passage collection Q was the same as the Wikipedia dataset utilized in the DPR. To
obtain this dataset, pure text data were extracted from the Wikipedia dump. After pre-
processing, 21 million passages remained. The passage index was built using Faiss [27].
As the current Faiss implementation did not offer the weighted Hamming distance, we
modified the source code and added the function of the weighted Hamming distance
search. Owing to various optimization reasons, the search speed of the version compiled
with the source code was much slower than that of the official package, so the weighted
search speed that we added the function also caused a certain loss. For a fairer compassion,
we conducted experiments using the following two question and answer datasets, Natural
questions (NQ) [28] and Trivia QA (TQA) [29]. We used the same BERT-based encoder
used by the DPR and BPR and ran the experiments on servers with Intel Xeon(R) Gold
6230 CPUs and four Nvidia Titan RTX GPUs.

4.1. Main results. Table 1 presents the top k recall, index size, and query time of the
baselines and our proposed methods. Compared with the BPR, which only achieves the
recall of the DPR when k is greater than 20, the WBPR performs almost the same as
the DPR from top 1 to top 100 recall. Like the BPR, the WBPR reduces the index size
from 65 GB to 2 GB. As the dimension weights consist of up to thousands of floats, the
size increase of the index is less than 0.01 kB. WBPR-R only differs from the WBPR in
the utilization of the rerank weight. As the candidate weight is not used, this change only
adds a matrix multiplication calculation when reranking among the l results. Thus, the
time consumption is almost the same, but the recall is obviously improved.
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Table 1. Top k recall on NQ and TQA datasets

Methods
Top 1 Top 20 Top 100 Index Query

NQ TQA NQ TQA NQ TQA size time
DPR 46.0 53.5 78.4 79.4 85.4 85.0 64.6 GB 456.9 ms
BPR

(linear scan; l = 1000)
41.1 49.7 77.9 77.9 85.7 84.5 2.0 GB 85.3 ms

BPR
(hash table lookup; l = 1000)

– – – 2.2 GB 38.1 ms

WBPR
(linear scan; l = 1000)

47.5 50.7 78.4 77.6 85.9 84.0 2.0 GB 115.2 ms

WBPR
(hash table lookup; l = 1000)

– – – 2.2 GB 95.3 ms

WBPR-R
(linear scan; l = 1000)

41.5 49.0 78.3 76.3 86.0 83.1 2.0 GB 89.2 ms

WBPR-R
(hash table lookup; l = 1000)

– – – 2.2 GB 41.2 ms

4.2. Effect of number of bits. In a memory-constrained environment, the index size
must be further reduced. For this purpose, a projection layer can be added to the hash layer
from Figure 1, which can be done by reducing the hash layer number. Table 2 shows the
top k recall results for the NQ dataset with different numbers of bits. In the experiment in
which the number of hash codes was reduced, the recall improvement between the WBPR
and BPR was further increased. In the experiment with 128 bits, the recall of the WBPR
was significantly better than that of the BPR. Table 2 shows the recall difference between
the WBPR and BPR.

Table 2. Top k recall on NQ dataset with different numbers of bits

Number of bits Methods Top 1 Top 5 Top 20 Top 50 Top 100 Index size

768 bits
BPR 41.10 66.23 77.90 82.80 85.70

2.0 GB
WBPR 47.45 66.93 78.37 83.10 85.87

512 bits
BPR 22.80 45.87 62.44 70.78 75.54

1.3 GB
WBPR 23.52 46.26 62.85 71.47 76.29

256 bits
BPR 17.37 38.42 56.07 65.84 71.63

0.67 GB
WBPR 18.25 40.00 57.76 67.29 72.27

128 bits
BPR 11.58 29.25 47.20 59.09 66.73

0.42 GB
WBPR 13.55 32.66 51.58 62.22 67.87

As the subsequent reader extracts the correct results from the retrieval results, the
slight improvement in the recall of the retriever when the recall is very high is completely
different from that when it is very low. When the recall is very low, reader error is often
caused by the absence of an answer to extract; thus, slight recall improvement often
directly leads to an improvement in the accuracy of the final answer. However, when the
recall is already high, the reader error is often not due to the absence of an answer in the
candidate. Therefore, recall improvement is often not critical in this situation. The index
size is limited in the WBPR, making it very meaningful to improve the recall.

4.3. Effect of candidate number. Table 3 shows the recall for different candidate
numbers. Several observations were made based on these results. First, the top 1 and top
20 recalls of the BPR do not change from l = 200 to l = 2000; the same is true of the
WBPR. This finding also shows that no matter how many candidates are extracted, the
positive passage of some questions can be ranked first as long as they pass the appropriate
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Table 3. Top 1, top 20 and top 100 recall with different numbers of candidates

Top 1 Top 20 Top 100
BPR WBPR BPR WBPR BPR WBPR

l = 200 41.10 47.52 77.90 78.34
85.40 85.87
(−0.3)

l = 500 41.10 47.52 77.90 78.34
85.60 85.87
(−0.1)

l = 1000 41.10 47.52 77.90 78.34 85.70 85.87
l = 2000 41.10 47.52 77.90 78.34 85.70 85.87

reranking. Second, the top 100 recall of the BPR decreases when l = 500 to l = 200. Based
on reference to Table 3, this decrease is most likely caused by the same distance issue. As
the dimension weight solves this issue, the recall does not change when l is greater than
1000.

5. Conclusions. This paper presented a novel weighted semantic hashing method that
uses dimension weights to improve passage retrieval performance. This method can learn
the hash code in a weighted Hamming space and is more effective than previous hashing
methods. In addition, the proposed top k negative sampling technique can make training
more effective when hashing is weighed. Benefitting from the weighted hashing and train-
ing technique, the proposed approach not only outperforms the previous hashing method
in terms of recall, but also is comparable to the dense retrieval method that has greater
memory requirements. In other words, compared with the previous hashing method that
loses part of the recall, our method reduces the memory by 30 times without losing even
a small amount of recall.

The proposed WBPR cannot surpass the BPR model in terms of query time, but
in theory, the weighted method has a faster lookup algorithm than the non-weighted
hash table lookup. However, we have not found a better implementation method for the
existing Faiss. If we could fully utilize the acceleration mechanism of Faiss, we could use
the acceleration algorithm of weighted hashing to achieve a breakthrough in query time.
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