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ABSTRACT. Object-based image analysis (OBIA) has emerged as a popular method for
land use and land cover (LULC) classification from satellite imagery. Integrating ontol-
ogy with OBIA has shown promise in improving the accuracy and efficiency of LULC
classification. This approach involves developing domain knowledge with input from ex-
perts, generating classification rules using Semantic Web Rule Language (SWRL), and
using ontology for LULC classification reasoning. In this study, we present the poten-
tial of OBIA with ontology for LULC classification. We demonstrate that the approach
achieves an overall accuracy of over 80% with improved efficiency compared to conven-
tional OBIA methods. The ontological model for image object properties uses OBIA with
an ontological structure for further extension, feature extraction, rule generation, and
ontology-based classification. The results of this study suggest that OBIA with ontology
can be a useful approach for accurate and efficient LULC classification. Further research
could explore its application to different regions and compare its performance with other
classification techniques.

Keywords: Object-based image analysis, Ontology, Land use and land cover, Satellite
image

1. Introduction. Remote sensing technology is commonly employed for land use and
land cover (LULC) classification, which involves the analysis of satellite image data. Two
primary methods for analyzing image data are pixel based image analysis (PBIA) and ob-
ject based image analysis (OBTA) [1,2]. The PBIA assigns the individual pixels to different
geographic classes solely based on their reflectance values obtained from various spectral
bands. This method does not make use of other spatial, geometrical, or contextual char-
acteristics that could be valuable [3]. PBIA operates at the pixel level, which creates the
issue of mixed pixels where a single pixel represents multiple types of image objects. As
satellite image resolutions improve, the utilization of PBIA reduces because of concerns
like the “salt and pepper” effect. In this effect, single pixels are incorrectly classified with-
in a cluster of pixels that represent a specific class [4-6]. The change has occurred over a
few years. Most classification method of LULC has been moved from PBIA to OBIA [7].
OBIA is a method used for analyzing satellite imagery that focuses on identifying and
classifying image objects based on their spectral, spatial, and contextual features, rather
than individual pixels. OBIA allows for more accurate and efficient analysis of satellite
imagery, as it can account for mixed pixels and incorporate additional features beyond
just spectral reflectance [8]. OBIA uses the feature values of image objects to establish
rule sets that can categorize them into diverse classifications. This technique varies from
PBIA approaches in that it considers several characteristics, such as spatial, textural,
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and contextual, in addition to spectral features to classify image objects. Object-based
methods can be applied at multiple scales, making them more versatile than PBIA meth-
ods. One limitation of OBIA is the requirement for manual parameter tuning, which is not
only subjective but also time-consuming. OBIA relies on a set of parameters, including
scale, shape, and compactness, to determine the segmentation process. However, these
parameters can vary depending on the image resolution, study area, and desired level
of detail. Thus, users must manually adjust the parameters to achieve the optimal seg-
mentation outcome, which can be a time-consuming and subjective process. To enhance
the efficiency of classification, knowledge representation methods were employed to aid in
the process, including forest classification, farmland classification, and ocean classification
[9-11].

An ontology is a language for presenting knowledge that offers a particular lexicon for a
given subject or field. It is a precise and unambiguous explanation of a shared understand-
ing of a field that is established by specialists and intended to encourage interoperation,
reuse, and distribution of domain expertise [12]. The Web Ontology Language (OWL) is
a machine-readable language that is utilized for expressing and distributing ontologies. It
allows ontologies to be exchanged and repurposed across various applications and systems.
Description logic, a formal logic employed for knowledge representation, is the foundation
for OWL. It offers an extensive array of constructs to establish classes, properties, and
connections between them [13]. Reasoning engines can examine and uphold the logical
coherence of an ontology by identifying and reporting any discrepancies, paradoxes, or
other inaccuracies in the ontology. Commonly used reasoning engines for ontologies in-
clude Pellet, HermiT, and FaCT++ [14]. The Semantic Web Rule Language (SWRL)
enables the development of conditional rules to supplement the reasoning abilities of se-
mantic web reasoners [15]. These regulations are executed via a semantic reasoner, which
uncovers new implications and integrates them into an established ontology.

This study integrates OBIA with ontology for LULC classification. The methodology
involves constructing a domain ontology using OWL, writing SWRL rules, and using a
semantic reasoner for object classification. Section 2 reviews related work, while Section
3 presents a case study of LULC in Phitsanulok, explaining the integration of OBIA with
ontology. Section 4 discusses the results, and Section 5 concludes the paper, summarizing
the study’s implications. This study demonstrates the benefits of integrating OBIA with
ontology, including enhanced accuracy, semantic understanding, flexibility, interoperabil-
ity, and decision support for LULC classification.

2. Related Work.

2.1. Image interpretation for LULC. Image interpretation involves the analyzing
of satellite or aerial images to identify and classify different types of LULC [16,17]. It
can be for monitoring the changes of land use patterns [18] in particular area. In this
interpretation, there are several steps including preprocessing the image to correct for
distortions or atmospheric effects, segmenting the image into individual objects, extracting
features from the objects, and classifying the objects into different land cover or land use
categories using machine learning or rule-based approaches. Accuracy depends on various
factors such as the spatial resolution, and the effectiveness of the classification algorithm.
LULC classification can be applied and deployed as a tool for planning in the geographic
area or sector such as environmental monitoring, urban planning, and natural resource
management.

2.2. OBIA with ontology. OBIA is a technique commonly utilized for analyzing re-
mote sensing imagery [16,19,20], which involves breaking down images into meaningful
objects, such as buildings, roads, and fields [21-23]. To improve the accuracy and efficien-
cy of image analysis, ontology has been integrated with OBIA [24]. An example of using
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the domain-specific ontologies is to verify the result of an image interpretation [25,26]. A
domain ontology is created to capture the semantic relationships among the objects in
the image. Then this semantic relation also provides an easiness to segment and classify
the image. The inclusion of ontology enhances the precision of object classification and
minimizes the computational burden associated with image analysis. Another example of
OBIA with ontology is the use of ontologies to select features for object classification in
remote sensing images [27]. In this approach, ontologies define a set of relevant features
likely to be present in the image objects of interest, and these features are used to train
machine learning algorithms for object classification. The use of ontology in this tech-
nique reduces the dimensionality of the feature space, which can improve the efficiency of
machine learning algorithms for object classification. Overall, integrating ontology into
OBIA has great potential for improving the accuracy and efficiency of image analysis in
remote sensing applications. As technology advances, the use of ontology in OBIA is ex-
pected to become more widespread, leading to more precise and informed decision-making
in various fields.

3. Integrating OBIA for LULC Classification: A Case Study of LULC in Phit-
sanulok. This section introduces the concept of using OBIA with ontology for LULC
classification in satellite images. The workflow will be presented, and case studies con-
ducted for this research will be described. Figure 1 illustrates the methodology for OBIA
with ontology, which comprises the following steps.

Step 1: The initial step in the methodology involves preprocessing the image data,
which includes tasks like atmospheric correction, noise removal, and georeferencing of
satellite imagery. In this study, multi-temporal satellite data from the USGS Earth Ex-
plorer platform was utilized, which was captured on December 10, 2020, covering Path
130/Row 48, utilizing the Landsat 8 OLI. The data contained six spectral bands: Band 2
(blue, 0.450-0.51 um), Band 3 (green, 0.53-0.59 um), Band 4 (red, 0.64-0.67 um), Band
5 (near-infrared, 0.85-0.88 um), Band 6 (short-wave infrared 1, 1.57-1.65 pm), and Band
7 (short-wave infrared 2, 2.11-2.29 um).

Step 2: Image Segmentation — The next step is to segment the image into meaningful
objects using a segmentation algorithm. The multi-resolution segmentation algorithm is
often utilized for this purpose and is configured with appropriate parameters [28] such
as scale, shape, color, compactness, and smoothness to produce precise outcomes. The
research focuses on the Muang District of Phitsanulok Province, Thailand, encompassing
an area of 750.8 square kilometers. The district is located primarily in the lower and
northern parts of the upper central region of Thailand, with the Nan River flowing through
the city’s center. The area is known for its diverse LULC, as displayed in Figure 2. The
segmentation techniques applied in this study utilized the multi-resolution method and
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FI1GURE 2. The geographical position of study area

were executed using eCognition Developer Version 9 software. Multispectral data (Bands
2-7) was used to perform a multi-resolution segmentation process to extract image objects.
The scale parameter was set to 100, while the shape, color, compactness, and smoothness
parameters were set to 0.1, 0.9, 0.5, and 0.5, respectively.

Step 3: Feature Extraction — After segmenting the image into objects, the next step is
to extract relevant features from each object. The features that can be extracted from the
segmented objects include mean wavelength, brightness, standard deviation, maximum
difference, reflection values of specific spectral bands (Bands 2-7), as well as vegetation
indices such as NDVI, NDWI, and NDBI (Figure 3). As an instance of feature extraction,
areas that exhibit NDVI values of 0.3 or higher are potentially indicative of vegetation,
while NDWT values greater than 0 may indicate water areas. Similarly, NDBI values
greater than a certain threshold may indicate built-up areas, and so on.

Object features Customized
NDBI -0.1091
NDVI 0.3058
NDWI -0.2943
Leyer Values Mean
Brightness 10636.66
Band2 7909.12
Band3 8719.83
Band4 8502.60
Band5 15993.03
Band6 12846.32
Band7 9848.99

Ficure 3. Examples of objects that can be classified as vegetation

Step 4: Create a domain-specific ontology for capturing LULC class knowledge in the
methodology. This ontology is constructed with inputs from experts and research papers
and provides a structured and consistent framework for organizing and representing knowl-
edge. The process of ontology analysis involves the identification of concepts and rela-
tionships that exist within a particular domain of knowledge. In this study, the domain
knowledge was derived from various sources related to LULC classification, such as docu-
ments, images, and expert information. The ontology was developed using Protégé 5.6.1,
an open-source tool by Stanford University [29]. The ontology model is created by ana-
lyzing the structure of the domain using expert knowledge from various sources. In some
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FiGURE 4. Ontology model for LULC

cases, satellite image data may be used, but it requires selecting or defining concepts and
properties to include in the model. These properties, relationships, axioms, and associat-
ed instances are transformed into a machine-readable format using OWL and presented
in Figure 4.

Step 5: Using OBIA with ontology for classification involves generating classification
rules using an SWRL editor, which defines the relationships between features and LULC
classes. The SWRL specification is used to create these rules, and a reasoner is utilized
to execute them using reasoning tools. An example SWRL rule is presented below:

highNDVI (? x) " dark (? z) " rough (? x) " irreqular (? x) — vegetation (? x)

In this context, a vegetation can be identified as an image object exhibiting highNDVI,
dark, rough, and irregular. Here, C(7x) represents a class, where x is an individual belong-
ing to that class. Taking vegetation as an example, the presence of dark, rough, irregular,
and highNDVT characteristics indicates that the object should be classified as vegetation.
SWRL can express an instance of the NDVI type as shown below:

NDVI (? z? y), greaterThanOrEqual (? vy, 0.83) — highNDVI (? )
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The formula means that when NDVI is greater than or equal to 0.3, the object is high-
NDVI.

Step 6: Accuracy assessment: Finally, the reasoner is used to classify the objects based
on the rules generated in the previous step. Additionally, we need to convert the OWL
format file and SHP format file to obtain image objects in SHP format. The classification
results are validated using ground truth data from Google Earth. To evaluate the accuracy
of a classification result, a comparison is made between the result and data obtained
from Google Earth, and Random Sampling is used. The standard error matrix is used
to calculate various metrics, such as the overall accuracy (OA), producer accuracy (PA),
user accuracy (UA), and Kappa statistics (K) (Equations (1)-(4)) [30,31].

04 — The count of pixels that are correctly classified

Total number of pixels
PA — Number of correctly identified pizels of a given class in the reference data @)

Number actually in that reference class
Number of correctly identified in a given map class

UA = 3
The number of correctly classified pizels in the reference data for a given class (3)

P,— P,
K== = 4
1-P, (4)

where P, = The proportion of units for which there is agreement, OA; P. = Proportion
of units expected to agree by chance.

4. Results and Discussion.

4.1. The result. The study area’s feature classification using OBIA and OBIA with
ontology is demonstrated in the results, as shown in Figure 5 and Figure 6.

Figure 5 illustrates the LULC classification result of the study area employing OBIA.
The most extensive area of the study area is covered by vegetation, represented by the
green color. The second most dominant category is bare soil, identified by the yellow color.
The built-up area is displayed in red, while the water area has the smallest coverage,
represented by the blue color. And Table 1 presents the range of user accuracy (UA) and
producer accuracy (PA), where UA ranges from 69.57% to 100% and PA ranges from
65.51% to 92.30%. The UA values for specific categories indicate the reliability of the
classification for users, with a higher UA indicating a more accurate classification. In
particular, the water surface category had a UA of 100%, while the built-up area had a

Bare soil

Built-up
Vegetation
Water

OBIA

FIGURE 5. (color online) The result of OBIA classification
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TABLE 1. Error matrix of LULC classification by OBIA

Reference data from field
Vegetation | Water | Built-up | Bare soil | Total | PA (%) | UA (%)
Classified Vegetation 36 2 2 4 44 92.3 81.82
image Water 0 7 0 0 7 70.00 100
Built-up 1 0 16 6 23 | 72.72 | 69.57
Bare soil 2 1 4 19 26 65.51 73.07
Total 39 10 22 29 100
OA (%) 78.00
Kappa (%) 77.55

Note that PA refers to producer accuracy, UA refers to user accuracy, OA refers to overall accuracy,
and Kappa refers to kappa coefficient.

UA of 69.57%. On the other hand, PA reflects pixels that are classified in a category but
do not belong to that category.

Figure 6 depicts the results of LULC classification in the study area using OBIA with
ontology. The dominant land cover type is vegetation, which is represented by the green
color. Bare soil, represented by the yellow color, is the second most dominant category.
The built-up area is displayed in red, while the water area has the smallest coverage,
represented by the blue color. It should be noted that the number of yellow areas repre-
senting bare soil has decreased, while the number of red areas representing built-up areas
has increased. Table 2 presents the overall accuracy between the OBIA method and the
integration of OBIA with ontology. The findings indicate a significant enhancement in
classification accuracy through the integration of ontology with OBIA. Specifically, the
overall accuracy value for the generated category improved from 78% to 81%. The UA
and PA for the generated classification demonstrated notable performance, reaching as
high as 73.91% and 77.27% respectively. Moreover, the classification of bare soil, veg-
etation, and water areas also exhibited improved accuracy compared to the traditional
OBIA method. It is important to note that although misclassifications may occur due
to incomplete knowledge of OBIA with ontology, the classification results obtained using
this integrated approach are slightly superior to those achieved with the traditional OBIA
method, and the difference is not significant.

|  Bare soil
Built-up
Vegetation
Water

EEE

OBIA with Ontology

FIGURE 6. (color online) The result of OBIA with ontology classification
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TABLE 2. Error matrix of LULC classification by OBIA with ontology

Reference data from field
Vegetation | Water | Built-up | Bare soil | Total | PA (%) | UA (%)
Classificd Vegetation 36 2 2 4 44 92.3 81.82
image Water 0 7 0 0 7 77.78 100
Built-up 1 0 18 5 24 | 7727 | 73.91
Bare soil 2 0 3 20 25 | 70.00 | 80.77
Total 39 9 23 29 100
OA (%) 81.00
Kappa (%) 80.61

Note that PA refers to producer accuracy, UA refers to user accuracy, OA refers to overall accuracy,
and Kappa refers to kappa coefficient.

4.2. Discussion. Three issues have arisen, with the first one being related to the mar-
ginal improvement in classification accuracy that can be achieved by using ontology with
OBIA. Nevertheless, it is essential for human operators and software agents to compre-
hend the intricate structures involved. Ontological frameworks enable in-depth knowledge
analysis and explicit ontologies, which promote the reuse of common ontology frameworks
and expand the knowledge domain in other areas. The LULC ontology model caters to
the specific requirements of different problem domains based on geographic models and
enhances the semantic comprehension of land cover types. Expert image interpretation
in geographic domains necessitates parameter fine-tuning based on the problem domain
[32]. Ontology-classified OBIAs proficiently identify regional disparities in changing land
use and land cover. Integrating building map data into the knowledge domain resulted
in improved building-related classification accuracy and overall accuracy exceeding 80%,
Table 2 presents the improvements in classification results achieved by using OBIA with
ontology for the study area.

The second issue concerns the potential impact of random sampling on the accuracy
of LULC classification. Both large and small sampling approaches can be effective, de-
pending on the research question and study objectives. Large sampling provides a broad
overview of the study area, while small sampling offers a more detailed and accurate
assessment of specific areas or features of interest [33]. The choice of sampling method
should consider the research question, study objectives, and data availability and quality.

The last issue concerns the possible future directions for utilizing OBIA with ontology
for LULC classification. These include integrating additional data sources, examining al-
ternative ontological frameworks, refining OBIA algorithms, comparing the approach to
alternative classification techniques, and extending the methodology to other geographic
regions. Exploring these opportunities for further research may enhance our comprehen-
sion and capability to accurately classify LULC.

5. Conclusion. The objective of this study was to use OBIA and ontological techniques
for classifying LULC using Landsat 8 satellite imagery. The OBIA analysis involved using
multi-resolution segmentation with specific configuration parameters, allowing for fea-
ture extraction based on wavelength reflection properties and establishing a hierarchical
structure for data classification. The features were determined using properties such as
mean wavelength, brightness, and reflection values of specific bands, along with vegeta-
tion difference indices like NDVI, NDWI, and NDBI. Four LULC types were classified:
vegetation, water, bare soil, and built-up areas. Domain knowledge and ontology con-
cepts were developed using input from experts and relevant information such as building
information. Classification rules were established using SWRL language, leading to im-
proved classification demonstrated in Table 2. The integration of OBIA with ontological
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analysis resulted in successful LULC classification with over 80% overall accuracy in the
study area. The ontology approach proved to be more efficient in LULC classification than
traditional OBIA methods, as indicated by the high kappa coefficient of 80.61, signifying
good agreement between the classification results and ground truth data from Google
Earth.
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