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Abstract. This paper presents the intelligent approach of the Auto-Regressive Inte-
grated Moving Average with eXogenous Semantic (ARIMAXS) variables model, which
represents a well-established extension of the ARIMAX model. The ARIMAX model is
known to present challenges in interpreting exogenous covariates. The primary contribu-
tion of this study lies in leveraging semantic information encapsulated within an ontology
to address this interpretability issue and enhance the predictive accuracy for COVID-19
incidences. By extending the specific variables associated with the underlying factors con-
tributing to the COVID-19 epidemic, the intelligent approach incorporates these factors
as semantic variables within the ARIMAX model. A comparative analysis was conducted
against conventional methodologies such as ARIMA and ARIMAX, revealing that the
intelligent ARIMAXS model demonstrates superior performance by achieving the lowest
error rates. Moreover, environmental factors, including the number of tourists and air
quality, emerge as significant semantic variables for effectively predicting COVID-19 in-
cidences in this study.
Keywords: Time series, ARIMA, ARIMAX, ARIMAXS, Semantic processing, Knowl-
edge base, Ontology, Prediction, COVID-19

1. Introduction. The global population has encountered a substantial threat posed by
the Coronavirus Disease 2019 (COVID-19) epidemic. As documented by the World Health
Organization (WHO) [1], the cumulative number of COVID-19 deaths has exceeded 700
million since December 2019. In Thailand, the initial surge of COVID-19 cases exerted a
significant impact on the healthcare sector due to the inadequacy of healthcare facilities.
While the current situation remains under control, prudent preparedness for the ensuing
phase is imperative, considering the ongoing mutations of the disease. The incidence
of confirmed COVID-19 cases and associated fatalities is contingent upon a range of
factors, encompassing both public health conditions and environmental considerations.
Notably, risk factors such as heart or pulmonary disease, weakened immune systems,
obesity, and diabetes contribute to the development of severe symptoms and increased
mortality rates [2,3]. Furthermore, environmental aspects, including population density,
tourist influx, and air quality, wield notable influence on disease transmission dynamics
and the subsequent escalation of incidence rates [4].
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Time series analysis commonly utilizes the univariate ARIMA model [5], which relies on
a single input variable. The ARIMAX model, an extended version of ARIMA, is a multi-
variate model that enables the inclusion of additional exogenous variables in the observed
time series. However, in the ARIMAX model, the exogenous variables are considered co-
variates, with their coefficients assumed to affect only the exogenous data, rather than
the observed time series itself. Consequently, this limitation hinders the interpretability
and comprehension of the role and impact of these exogenous factors within the predictive
process.
To overcome this limitation, the present study introduces a novel approach called Auto-

Regressive Integrated Moving Average with eXogenous Semantic (ARIMAXS) variables.
This approach expands the inclusion of exogenous variables in a manner that directly
influences the interpretation of the observed data. Unlike traditional ARIMA and ARI-
MAX models, the ARIMAXS approach proposed in this research incorporates exogenous
semantic variables derived from the COVID-19 ontology. The primary advantage of this
approach is its enrichment of the model with contextual knowledge, enabling a more
meaningful and interpretable analysis of the relationship between the exogenous factors
and the observed time series. As a result, this enhancement holds the potential to improve
the accuracy of COVID-19 incidence prediction. The experimental results demonstrated
that the proposed ARIMAXS model is superior to the traditional approaches measured
by Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute
Error (MAE).
This paper is organized as follows. Section 2 provides a literature review that identifies

existing studies in the field. Section 3 describes the proposed methods, encompassing
the dataset and ontology, the framework and algorithm, as well as the evaluation metrics
utilized. Section 4 presents and discusses the results of this study. Section 5 offers an
in-depth discussion of the implications of the findings. Lastly, Section 6 concludes the
study by summarizing the results and presenting suggestions for future research.

2. Literature Review.

2.1. COVID-19 prediction with ARIMAX. The ARIMAX model is extensively em-
ployed across various disciplines, including education [6], engineering, and the healthcare
field [7], with a specific emphasis on disease analysis and prediction. Notably, the ARI-
MAX model has been utilized in COVID-19 analyses through both traditional methods
and hybrid models. Li et al. [8] introduced the concept of selecting relevant features for
predicting COVID-19 cases by combining stepwise regression with the ARIMAX model
to forecast short-term trends in the United States COVID-19 epidemic. Their research
showcased accurate predictions of COVID-19 case numbers within a specific study area,
accompanied by a 95% confidence interval, achieved through the implementation of step-
wise regression feature selection. Building upon this notion of feature selection, Somyanon-
thanakul et al. [9] proposed an approach that merges ARIMAX with Association Rule
Mining (ARM) to identify prognostic factors associated with short-term trends in the
COVID-19 epidemic in the United States. ARIMAX effectively employed these factors for
modeling and forecasting COVID-19 cases. The collaboration between ARM and ARI-
MAX resulted in a prediction model exhibiting lower error rates than alternative ap-
proaches. Nonetheless, it is crucial to acknowledge that this collaborative approach has
limitations attributed to the usage of the a limited number of COVID-19 cases and clinical
variables, consequently affecting the model’s reliability.
The ARIMAX model was used to predict the number of COVID-19 cases in Jakarta,

Indonesia [10]. Those authors suggested incorporating Google Trends data, specifically
targeted searches, in addition to a daily dataset obtained from Jakarta’s official COVID-
19 website as external variables. The experimental results showed that ARIMAX achieved
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a slightly lower error rate of 0.08% compared to the conventional ARIMAmodel. However,
one notable limitation of this research was the absence of the proposed modifications to
the ARIMAX model.

In a different study, Rahman and Chowdhury [11] hypothesized the significant role of
meteorological factors in COVID-19 transmission across SAARC countries. The authors
collected a daily dataset consisting of the number of confirmed COVID-19 cases, as well as
various meteorological attributes such as minimum and maximum temperatures, relative
humidity, surface pressure, daily precipitation, and maximum wind speed. To forecast
the confirmed COVID-19 cases, all significant attributes were included as covariates in
both the ARIMAX and XGBoost models. The findings shed light on the influence of
diverse meteorological factors on different nations within the South Asian Association for
Regional Cooperation (SAARC) region.

2.2. Machine learning and a knowledge base model. Sirichanya and Kraisak [12]
conducted a comprehensive review of prior research that employed a knowledge base to
enhance the performance of machine learning algorithms. Prominent examples include
the semantic decision tree [13] and the semantic ARIMA [14], both of which proposed
integrating a knowledge base into a conventional ARIMA model. Elsewhere, researchers
have utilized knowledge bases for various tasks, such as data warehouse design [15,16].

To the best of our knowledge, no previous study has proposed combining a knowledge
base with ARIMAX for data analysis and prediction, thus extending upon the groundwork
established in our previous work [15]. This represents the primary innovation of our current
research study, and further elucidation will be provided in subsequent sections.

3. Methodology.

3.1. Dataset and COVID-19 ontology. The dataset includes COVID-19 confirmed
cases and environmental factors such as population, tourist movements, and air quali-
ty, which have an impact on the incidence of cases. We collected daily records from 77
provinces in Thailand, covering the period from April to December 2021, resulting in a
total of 21,450 instances. The population, number of tourists, and air quality data were
integrated with the daily COVID-19 case data. These datasets were obtained from the
Open Government Data of Thailand [17], which were published by the Ministry of Public
Health, Ministry of Interior, Ministry of Tourism and Sports, and Ministry of Natural
Resources and Environment. The study region consisted of three provinces that had the
highest number of reported cases in Thailand: Bangkok, Chiang Mai, and Chon Buri. To
split the data, we allocated 70% for the training set and reserved the remaining 30% for the
testing set. The COVID-19 ontology was adapted from the existing ontology developed
by Sargsyan et al. [18] to suit the requirements of our specific task. We expanded certain
entities and their successors within the original ontology, with a specific focus on the
risk factors associated with COVID-19 transmission. Ultimately, the modified COVID-19
ontology consisted of 2,291 classes and 39,051 axioms, facilitating the semantic approach
employed in our model.

3.2. The proposed approach: ARIMAXS. The proposed approach incorporates in-
telligent semantic reinforcement and prediction into the traditional ARIMAX model. The
semantic information in the COVID-19 ontology was used as the pertinent knowledge base
for data analysis and for determining the relevant lags of prediction. The framework of
ARIMAXS is depicted in Figure 1.

3.2.1. Semantic reinforcement. The process of semantic reinforcement involves three main
steps to improve the initial ARIMAX model using relevant data from a dataset, aided by
an ontology structure. The first step, known as the semantic dataset generation stage, in-
volves appending metadata from the COVID-19 ontology O, which encapsulates semantic
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Figure 1. The framework of ARIMAXS

information, to dataset D. This dataset includes the original time series T . The subse-
quent phase is where we identify and use relevant data to enhance the initial ARIMAX
model for semantic prediction. The relevance of the data is gauged by their semantic
similarity to the original time series – if the semantic correlation is high, the data is
considered relevant. The second main step, the semantic relationship measurement stage,
involves calculating the Semantic Relationship (SemR) between two sets: the exogenous
knowledge variable set E, and the COVID-19 entity set A. We determine this relationship
by evaluating the distance of their Least Common Subsumer (LCS) and the maximum
depth of the ontology. The final step, known as the time series reinforcement stage, in-
volves computing the Semantic Distance (SemD). This is derived from the combination
of the semantic relationship and Euclidean distance. The calculated semantic distance
is then translated into a Semantic Similarity score (SemS ) on a scale of 0 to 1. If the
semantic similarity score is close to 1, the data is considered relevant to the original time
series and is then used as semantic exogenous variables in the enhanced time series Ts ′.
The process of semantic reinforcement is outlined in Algorithm 1.

3.2.2. Semantic prediction. In our proposed methodology, our purpose was to refine the
ARIMAX model, a well-established strategy for forecasting time series data, through the
incorporation of a semantic (S) characteristic. The conventional ARIMAX model compris-
es the Auto-Regressive (AR), Integrated (I), Moving Average (MA), and eXogenous (X)
variables. The infusion of a semantic element in our model facilitates a more sophisticated
interpretation of the data, thereby expanding its potential analytical reach.



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.15, NO.2, 2024 211

Algorithm 1: Semantic Reinforcement Algorithm
Input: Original time series T ; Dataset D;

COVID-19 ontology O; Threshold value η;
COVID-19 entity set A; Exogenous knowledge variables set E;

Output: Enhanced time series
Semantic Dataset Generation:

1: for each item in D do
2: Add semantic metadata from O to D
3: end for
4: return Semantic dataset Ds and Semantic time series Ts

Semantic Relationship Measurement:
5: for each i in A do
6: if all elements in E are the entity of O then
7: Define the set H = {i} ∪ E

8: Compute SemRi =
1

|H|
∑
a∈H

dis(LCS(H), a)

maxdepth(O)

9: end if
10: end for
11: return Semantic relationship SemR

Time Series Reinforcement:
12: for each t in Ts do
13: for each d in Ds do

14: Compute SemD(t, d) =
∑
i∈A

SemRi · (ti − di)
2

15: Compute SemS from SemD(t, d)
16: if SemS < η then
17: enhance d to Ts ′

18: end if
19: end for
20: end for
21: return Ts ′

During the Integration (I) phase, we employed a d-order difference approach to stabilize
the time series. This crucial step is designed to ensure the stationary nature of the data
in both the original and semantically enhanced time series, a prerequisite condition for
yielding valid predictions. The AR facet of the model integrates p lags, representative of
historical data points from the original time series (Ts), alongside r semantic lags, which
denote points in time with semantic relevance from the enhanced time series (Ts ′). The
MA component of the model relies on q error lags derived from the predictive output (ε′),
encompassing a combination of both original and semantic lags. In the final eXogenous
Semantic (XS ) variables section, we infuse the stationary eXogenous (X) variables into
the model. These variables consider both the original p lags and the semantically enhanced
r lags.

The culmination of this comprehensive data analysis is the forecasting of the time series
Y . This prediction is calculated leveraging the semantic variables extracted from all the
model’s components. The semantic prediction process is detailed in Algorithm 2.

Algorithm 1 outlines the process of semantic reinforcement, which introduces the seman-
tic (S) characteristics into our proposed model. By incorporating these semantic variables,
the model expands its analytical capabilities. It goes beyond merely evaluating numer-
ical or quantitative variables and brings in contextual knowledge, resulting in a deeper
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Algorithm 2: Semantic Prediction Algorithm
Input: Original time series Ts ; Enhanced time serie Ts ′;

Exogenous variables X;
p; d; q;

Output: Predicted time series Y
Integrated (I):

1: for each t in Ts do
2: d-order difference of Tst and Ts ′r
3: end for
4: return d-order differenced Ts and Ts ′

Auto-Regressive (AR) and Moving Average (MA)
with eXogenous Semantic (XS) Variable:

5: for each t in Ts do

6: Compute Yt = c+

p∑
i=1

φi (Ts t−i + Ts ′r)+

q∑
i=1

θiε
′
t−i+

p∑
i=1

γi(Xt−i+Xr);

where c is a constant, φ is auto-regressive coefficients,
θ is moving average coefficients, and γ is exogenous coefficients

7: end for
8: return Y

understanding of the time series dynamics. This incorporation is particularly useful in
understanding scenarios such as the COVID-19 ontology.
Furthermore, the semantic prediction, as detailed in Algorithm 2, merges the semantic

variables from all model components. This comprehensive integration bolsters the model’s
predictive performance which is achieved by considering not just the historical informa-
tion from the original time series, but also the contextual knowledge extracted from the
enhanced data. As a result of this all-encompassing analysis, the model’s predictions are
not only more accurate but also highly informative.

3.3. Evaluation metrics. We evaluated the forecasting performance of the ARIMAXS
using standard metrics, including the Mean Squared Error (MSE), Root Mean Squared
Error (RMSE), and Mean Absolute Error (MAE). These metrics are represented in Equa-
tions (1), (2), and (3), respectively.

MSE =
1

N
×

N∑
i=1

(y − ŷ)2 (1)

RMSE =

√√√√ 1

N
×

N∑
i=1

(y − ŷ)2 (2)

MAE =
1

N
×

N∑
i=1

|y − ŷ| (3)

where y is the actual value, ŷ is the predicted value, and N is the number of data points.

4. Experimental Results. We conducted a comparison of our proposed ARIMAXS
model with traditional ARIMA and ARIMAX models. For COVID-19 incidence forecast-
ing, we integrated exogenous semantic variables into the models, which included factors
such as population density, number of tourists, and air quality.

4.1. Parameter estimation. Every model we employed included specific parameters:
p for the Auto-Regressive (AR) process, d for the Integrated (I) process, and q for the
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Moving Average (MA) process. For the I process, we leveraged the Augmented Dickey-
Fuller (ADF) unit root test [19] to confirm the stationary nature of the time series data.
We utilized the d parameter in the d-order difference method to convert non-stationary
series to stationary series. For the AR and MA processes, we identified the p and q
parameters through the correlogram patterns of the Auto Correlation Function (ACF)
and the Partial Auto Correlation Function (PACF) [20]. A comprehensive overview of
the estimated parameters for all models can be found in Table 1.

Table 1. The parameter estimation of ARIMA, ARIMAX and ARIMAXS

Provinces Parameter ARIMA ARIMAX ARIMAXS1 ARIMAXS2 ARIMAXS3 ARIMAXSa

Bangkok

p [0, 3] [0, 3] [0, 4] [0, 3] [0, 5] [0, 6]

d 1 1 1 1 1 1

q [0, 8] [0, 8] [0, 5] [0, 5] [0, 6] [0, 6]

Chiang Mai

p [0, 2] [0, 2] [0, 3] [0, 2] [0, 2] [0, 2]

d 0 0 0 0 0 0

q [0, 7] [0, 7] [0, 7] [0, 7] [0, 7] [0, 7]

Chon Buri

p [0, 9] [0, 9] [0, 10] [0, 11] [0, 10] [0, 10]

d 1 1 1 1 1 1

q [0, 6] [0, 6] [0, 11] [0, 11] [0, 11] [0, 11]

In the case of the three provinces, we observed that both ARIMA and ARIMAX models
– incorporating all exogenous variables (X1, X2, X3 and Xa) – employ identical parameters
as these models are based on the original time series. However, the ARIMAXS model,
with its distinctive incorporation of each exogenous semantic variable, employs a range
of parameters due to the differentiated enhanced time series that the model produces.

4.2. Prediction performance. The parameters specified in the previous section were
used to determine the most appropriate parameters for the best-fitted model. Both the
ARIMAXS and the original ARIMAX were constructed using individual exogenous vari-
ables such as population (X1), tourists (X2), and air quality (X3), as well as multiple
exogenous variables (Xa) that encompass all variables (X1, X2, X3). We utilized ARI-
MA as the benchmark model for comparison purposes. The prediction performances of
ARIMA, ARIMAX, and ARIMAXS are documented in Table 2.

Table 2. The prediction performances of ARIMA, ARIMAX and ARIMAXS

Provinces ARIMA
X1 = population X2 = tourist X3 = air quality Xa = X1,2,3

ARIMAX1 ARIMAXS1 ARIMAX2 ARIMAXS2 ARIMAX3 ARIMAXS3 ARIMAXa ARIMAXSa

Bangkok (1, 1, 8) (1, 1, 3) (4, 1, 5) (1, 1, 3) (2, 1, 3) (1, 1, 8) (5, 1, 2) (1, 1, 3) (1, 1, 3)

MSE 175,524.79 175,436.87 155,386.74 178,731.92 161,753.93 175,682.47 150,131.11 173,902.51 148,577.71

RMSE 418.95 418.85 394.19 422.77 402.19 419.15 387.47 417.02 385.46

MAE 241.63 241.22 224.16 247.61 232.99 241.91 220.03 240.81 218.26

Chiang Mai (1, 0, 1) (1, 0, 1) (1, 0, 1) (1, 0, 1) (1, 0, 1) (1, 0, 1) (1, 0, 1) (1, 0, 1) (1, 0, 1)

MSE 62,669.31 62,114.55 60,695.37 61,981.98 60,305.01 62,264.35 60,572.02 63,178.448 60,470.88

RMSE 250.33 249.23 246.36 248.96 245.57 249.53 246.11 251.3532 245.91

MAE 80.59 78.3 75.99 74.44 73.53 76.21 74.64 78.1649 73.55

Chon Buri (7, 1, 3) (7, 1, 3) (4, 1, 4) (7, 1, 3) (4, 1, 8) (7, 1, 3) (4, 1, 8) (7, 1, 3) (4, 1, 8)

MSE 9,633.32 10,579.69 8,881.49 9,485.76 8,821.69 9,654.49 7,834.41 10,453.07 7,880.19

RMSE 98.15 102.86 94.24 97.39 93.92 98.26 88.51 102.24 88.77

MAE 59.40 60.33 56.47 58.84 56.72 59.52 51.64 61.53 52.11

Our findings showed that the ARIMAXS model, with both individual and multiple
exogenous variables, produced fewer errors compared to ARIMA and ARIMAX for the
corresponding variables. For the Bangkok dataset, all exogenous variables used in ARI-
MAX only slightly reduced the prediction errors compared to the baseline models. Inter-
estingly, the Mean Squared Error (MSE) of the ARIMA model was 175,524.79, whereas
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the ARIMAX model with X1, X2, X3, and Xa produced MSEs of 175,436.87, 178,731.92,
175,682.47, and 173,902.51, respectively.
In contrast, when employing all exogenous semantic variables in the ARIMAXS model,

we observed a significant reduction in prediction errors. The ARIMAXS model reduced
the MSE with X1 to 155,386.74, X2 to 161,753.93, X3 to 150,131.11, and Xa to 148,577.71.
In the Chiang Mai and Chon Buri datasets, the tourist numbers (an exogenous variable)
led to a notable reduction in errors. The MSE of the ARIMA models for Chiang Mai was
62,669.31 and 9,633.32 for Chon Buri. The ARIMAX model with the X2 variable could
decrease the MSE to 61,981.98 and 9,485.76, whereas other variables resulted in a higher
MSE.
However, the ARIMAXS model with all exogenous semantic variables had a significant

impact in reducing prediction errors in both Chiang Mai and Chon Buri. In Chiang
Mai, the MSE of the ARIMAXS model with X1 decreased to 60,695.37, X2 decreased to
60,305.01, and X3 decreased to 60,572.02, while Xa decreased to 60,470.88. In Chon Buri,
the corresponding MSE values decreased to 8,881.49, 8,821.69, 7,834.41, and 7,880.19,
respectively. This successful reduction is attributed to the ability of our proposed model
to semantically extend these variables, identify relevant data within the dataset, and use
this information to enhance the prediction of incidences in the time series.

4.3. Computational assessment. To compare the computational performance of our
proposed model with that of the baseline models, we estimated and compared the compu-
tational complexity costs of the ARIMA, ARIMAX, and ARIMAXS models. The results
of this comparison are detailed in Table 3.

Table 3. The computational complexity cost of ARIMA, ARIMAX and ARIMAXS

ARIMA ARIMAX ARIMAXS
Semantic reinforcement − − O(k) + O(a) + O(nk)

Prediction/
Semantic prediction

O(n) O(n) O(n+ r)

The complexity of the prediction element in both the ARIMA and ARIMAX models
is denoted as O(n), where n stands for the number of instances in the original time se-
ries. This is because these models predict precisely n points in time. In contrast, the
complexity of the semantic prediction element in the ARIMAXS model, as calculated via
Algorithm 2, extends to include r related points of time from the enhanced time series,
making its complexity O(n+r). Here, r signifies the number of relevant instances extend-
ed in the enhanced time series. The complexity of the semantic reinforcement element,
as per Algorithm 1, is given by O(k) + O(a) + O(nk). This represents the complexi-
ties of semantic dataset generation, semantic relationship measurement, and time series
reinforcement processes, where k is the number of instances in the dataset and a is the
number of entities in the COVID-19 ontology.
The findings suggest that the time series reinforcement process exhibits the highest

complexity cost in this implementation version. Therefore, our future work will focus on
conducting algorithmic optimization to achieve a more acceptable computational com-
plexity cost for the overall process.

5. Discussion. This section further explores the results obtained through the use of ex-
ogenous variables in each model. Table 2 indicates that the original ARIMAX model,
when applied with only the ‘tourist’ variable, succeeded in significantly reducing predic-
tion error for Chiang Mai and Chon Buri. In contrast, the ARIMAXS model, employing
all variables, managed to diminish prediction error across all three provinces. Our find-
ings also showed that, in both Bangkok and Chon Buri, the ‘air quality’ attribute held
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more significance than the ‘tourist’ attribute in terms of COVID-19 incidence. This is
likely due to government-imposed travel restrictions, which resulted in consistently low
tourist numbers in Bangkok and a constant number in Chon Buri. The ‘tourist’ attribute’s
impact varies between environments. In Chiang Mai, known for its natural beauty and
northern culture, the ‘tourist’ attribute has a greater influence than the ‘air quality’ at-
tribute, as compared to the built-up urban environment of Bangkok. Additionally, the
‘population’ attribute shows a marginal effect in provinces with high population density,
such as Bangkok. Given these exogenous variables’ significant impact, we can confidently
state that our proposed method not only enhances prediction accuracy but also aids in
determining the relative influence of these factors on COVID-19 incidence.

6. Conclusions. In this study, we compared three models (ARIMAXS, ARIMA, and
ARIMAX) to forecast COVID-19 incidence. The ARIMAXS model, with reinforcement
of exogenous semantic variables, outperformed the ARIMAX and ARIMA models. This
improvement is due to the ontology-based knowledge that interprets exogenous covariates
based on their semantic relationship. Utilizing exogenous semantic variables in the ARI-
MAXS model proved effective for predicting COVID-19 incidence. However, it is impor-
tant to acknowledge a limitation of our approach. The reinforcement process introduces
a high complexity cost due to the additional time required for evaluating data related to
exogenous semantic factors. To address this limitation, future research endeavors may
explore the implementation of adaptive techniques and optimization strategies for the
reinforcement process. The objective of these efforts will be to enhance prediction perfor-
mance while reducing computational complexity, thereby further improving the practical
applicability of the ARIMAXS model.

Acknowledgement. This research was supported by Science Faculty, Naresuan Univer-
sity (NU), Grant No. R2565E060, and Thailand National Science, Research and Inno-
vation (Fundamental Fund-NU: Grant No. R2566B035). The funder had no role in the
study design, data collection, analysis, publication decision, or manuscript preparation.
The authors also gratefully acknowledge the helpful comments and suggestions of the re-
viewers, which have improved the presentation. Also, thanks to Mr Roy I. Morien of the
Naresuan University Graduate School for his editing of the grammar, syntax and general
English expression in this manuscript.

REFERENCES

[1] World Health Organization, WHO Coronavirus (COVID-19) Dashboard, https://covid19.who.int,
Accessed on Mar. 04, 2023.

[2] Z. G. Dessie and T. Zewotir, Mortality-related risk factors of COVID-19: A systematic review and
meta-analysis of 42 studies and 423,117 patients, BMC Infectious Diseases, vol.21, no.1, 855, DOI:
10.1186/s12879-021-06536-3, 2021.

[3] C. Kaeuffer et al., Clinical characteristics and risk factors associated with severe COVID-19: Prospec-
tive analysis of 1,045 hospitalised cases in North-Eastern France, March 2020, Euro Surveill, vol.25,
no.48, 2000895, DOI: 10.2807/1560-7917.ES.2020.25.48.2000895, 2020.

[4] J. D. Kong, E. W. Tekwa and S. A. Gignoux-Wolfsohn, Social, economic, and environmental factors
influencing the basic reproduction number of COVID-19 across countries, PLoS ONE, vol.16, no.6,
e0252373, DOI: 10.1371/journal.pone.0252373, 2021.

[5] H. Alabdulrazzaq, M. N. Alenezi, Y. Rawajfih, B. A. Alghannam, A. A. Al-Hassan and F. S. Al-
Anzi, On the accuracy of ARIMA based prediction of COVID-19 spread, Results in Physics, vol.27,
104509, DOI: 10.1016/j.rinp.2021.104509, 2021.

[6] W.-C. Chou, K. L. Lai and D.-F. Chang, Detecting multivariate series data with transfer function
ARIMAX for teacher demand, ICIC Express Letters, Part B: Applications, vol.11, no.2, pp.129-136,
DOI: 10.24507/icicelb.11.02.129, 2020.

[7] D.-F. Chang, C.-C. Chen and A. Chang, Forecasting with ARIMAX models for participating STEM
programs, ICIC Express Letters, Part B: Applications, vol.11, no.2, pp.121-128, DOI: 10.24507/icic
elb.11.02.121, 2020.



216 W. JURAPHANTHONG AND K. KESORN

[8] Y. Li et al., Rapid prediction and evaluation of COVID-19 epidemic in the United States based on
feature selection and improved ARIMAX model, 2021 2nd International Conference on Artificial
Intelligence and Information Systems, NY, USA, pp.1-8, DOI: 10.1145/3469213.3471327, 2021.

[9] R. Somyanonthanakul et al., Forecasting COVID-19 cases using time series modeling and association
rule mining, BMC Medical Research Methodology, vol.22, no.1, 281, DOI: 10.1186/s12874-022-01755-
x, 2022.

[10] B. S. Aji, Indwiarti and A. A. Rohmawati, Forecasting number of COVID-19 cases in Indonesia
with ARIMA and ARIMAX models, The 9th International Conference on Information and Com-
munication Technology, Yogyakarta, Indonesia, pp.71-75, DOI: 10.1109/ICoICT52021.2021.9527453,
2021.

[11] M. S. Rahman and A. H. Chowdhury, A data-driven extreme gradient boosting machine learning
model to predict COVID-19 transmission with meteorological drivers, PLoS ONE, vol.17, no.9,
e0273319, DOI: 10.1371/journal.pone.0273319, 2022.

[12] C. Sirichanya and K. Kraisak, Semantic data mining in the information age: A systematic review,
International Journal of Intelligent Systems, vol.36, no.8, pp.3880-3916, DOI: 10.1002/int.22443,
2021.

[13] S. Chanmee and K. Kesorn, Exploiting a knowledge base for intelligent decision tree construction to
enhance classification power, Engineering and Applied Science Research, vol.49, no.4, 2022.

[14] W. Juraphanthong and K. Kesorn, Time series data enrichment using semantic information for
dengue incidence forecasting, Science, Engineering and Health Studies, 21050013, DOI: 10.14456/
sehs.2021.50, 2021.

[15] N. Sanprasit, T. Titijaroonroj and K. Kesorn, A semantic approach to automated design and con-
struction of star schemas, Engineering and Applied Science Research, vol.48, no.5, 2021.

[16] N. Sanprasit, K. Jampachaisri, T. Titijaroonroj and K. Kesorn, Intelligent approach to automated
star-schema construction using a knowledge base, Expert Systems with Applications, vol.182, 115226,
DOI: 10.1016/j.eswa.2021.115226, 2021.

[17] Digital Government Development Agency, Open Government Data of Thailand, https://data.go.th/,
Accessed on Mar. 27, 2022.

[18] A. Sargsyan et al., The COVID-19 ontology, Bioinformatics, vol.36, no.24, pp.5703-5705, DOI:
10.1093/bioinformatics/btaa1057, 2021.

[19] D. A. Dickey and W. A. Fuller, Distribution of the estimators for autoregressive time series with a
unit root, Journal of the American Statistical Association, vol.74, no.366a, pp.427-431, DOI: 10.1080/
01621459.1979.10482531, 1979.

[20] G. E. P. Box, G. M. Jenkins, G. C. Reinsel and G. M. Ljung, Time Series Analysis: Forecasting and
Control, 5th Edition, Wiley, Hoboken, New Jersey, 2015.


