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Abstract. The development of object detection algorithms keeps on moving at a faster
speed every year. This occurence is unique because a robust object detection method will
undoubtedly play a significant role in various implementations such as mobile robots
and humanoid robots, especially for indoor objects, as the robot has more narrow and
limited space to move. In addition to that, the poses of the camera and entities contin-
ue to change following the robot’s motion so that the detection becomes less accurate.
Therefore, the prerequisite for creating such robots is detecting the correct object at the
right place. Thus, robust object detection is required. This research compared some of the
newest object detection algorithms, specifically YOLOv8, Nanodet-Plus, and Detection
Transformer (DETR). All methods are trained under the same number of epochs, which
is 20. Moreover, each method also used pre-trained models, namely YOLOv8x, NanoDet-
Plus-m-1.5x-416, and detr resnet50 in the same number of datasets, namely 2213 images
of objects in a room divided into eight classes. The experiment results show that YOLOv8
has a slight advantage with achieving mAP50 or a mean Average Precision calculated at
Intersection over Union (IoU) 0.5 of 99.1% compared to Nanodet-Plus with 92.9% and
Detection Transformer with 93.2%.
Keywords: Object detection, Indoor object, YOLOv8, Nanodet-Plus, Detection Trans-
former

1. Introduction. Due to its diverse application, object detection has continuously be-
come a potential research topic recently [1]. Object detection is one of the techniques in
computer vision to detect the semantic objects of a category in images or videos. Object
detection aims to create a prediction for each object of interest and label it corresponding
to its class [2]. To gain a better image understanding, we need to precisely estimate the
concepts and locations of the objects within the image. Thus, object detection is required
[3]. One of the object detection implementations is to detect objects inside a room which
can be applied to indoor robot assistants. The detection of objects inside a room often
experiences problems when implemented on the robot since robots must be able to move
and interact with the real-world environment [5]. Therefore, the poses of the camera and
objects will continuously change following the robot’s motion, resulting in less accurate
detection. Furthermore, indoor places are usually narrower and have limited space for
robots to move. Hence, an accurate indoor object detection algorithm is needed.

Amongst some newest methods in the last three years, we compared three methods in
this research. They are YOLOv8, Nanodet-Plus, and Detection Transformer. YOLO, or
You Only Look Once, is an excellent approach to detecting objects in multiple bounding
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boxes and class probabilities for those boxes [6]. It passes the image through the CNN
algorithm, which will express and extract features of the input data mathematically [7].
YOLOv8 [12], developed by Ultralytics, is the newest state-of-the-art YOLO model that
can be used for object detection, image classification, and instance segmentation tasks.
Next, we used Nanodet-Plus, a development from Nanodet [11], an FCOS-style [8] one-
stage anchor-free object detection model that uses generalized focal loss as classification
and regression loss. FCOS utilizes spatial and scale constraints to select samples [9] and
solves the problem of overlaps within the ground-truth labels. The last method we com-
pared is DETR or Detection Transformer, which predicts all objects at once and is trained
end-to-end with a set loss function that performs bipartite matching between predicted
and ground-truth objects [2]. By dropping multiple components that encode prior knowl-
edge, DETR simplifies the detection pipeline [2].
This research uses the same indoor object datasets to detect indoor objects with YO-

LOv8, Nanodet-Plus, and Detection Transformer. In addition, this study will also focus
on the steps to determine which of the chosen methods has the most optimal performance.
The bounding box loss curve and the Average Precision (AP) score, formulated from the
precision and recall value, will be used as an evaluation metric in this experiment. Based
on the experiment on the three methods, the result shows that the methods are proven
valid for indoor object detection with more than 90% mAP50 achieved. The rest of the
paper is organized as follows. Section 2 describes the architecture details of each model
and training procedure. Section 3 describes and analyzes the results of the experiment.
Finally, Section 4 presents the conclusion of this paper.

2. Research Methodology. In this section, we will present the architecture of each
model, the dataset used, dataset annotation, and the training procedure to produce the
necessary model for every proposed system.

2.1. YOLOv8. The YOLOv8 flowchart is shown in Figure 1. The YOLOv8 model used
in this experiment is the largest one, which is YOLOv8x. Therefore, this model has the
most network size compared to the other YOLOv8 model and will perform better at the
cost of longer training processing times. The detailed architecture of YOLOv8x used in
this experiment can be seen in Figure 2. YOLOv8 can be trained using a Command Line
Interface, making training the model more intuitive. In addition to that, this CLI is an
addition to the Python package that provides a more seamless coding experience than the
previous model.

Figure 1. YOLOv8 flowchart

The YOLOv8 model which we used is the YOLOv8x model, so the depth multiple (d) is
1.00, the width multiple (w) is 1.25, and the ratio (r) is 1.00 according to the details of the
architecture [12]. Since YOLOv8 is the improvement of YOLOv5, the core concept of how
the method works still shares a similar mechanism. This algorithm divides the image into
regions and computes bounding boxes and probabilities for each area used for bounding
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Figure 2. YOLOv8 architecture

box weighting. The prediction module used a combination of Generalized Intersection
over Union (GIoU) as the loss function of the bounding box frame [4] and weighted Non-
Maximum Suppression (NMS) to make the network achieve better convergence [13].

The architecture changes from YOLOv8 compared to YOLOv5 start from the C2f
module. Previously on YOLOv5, it was the C3 module. In C3, only the output of the last
Bottleneck was used, but in C2f, all the outputs from the bottleneck are concatenated.
Then, in the backbone, YOLOv5 used a 6×6 conv, while YOLOv8 changed the first 6×6
conv to a 3×3 conv. Furthermore, two convs in YOLOv5 Config get deleted in YOLOv8.
In bottleneck, YOLOv8 also replaces YOLOv5’s first 1×1 conv with a 3×3 conv. Lastly,
YOLOv8 deletes the objectness branch in YOLOv5 and uses decoupled head. There are
two other new updates in YOLOv8. It removes the usage of mosaic augmentation and
directly predicts an object’s center instead of using the offset from anchor boxes.

2.2. Nanodet-Plus. The flowchart and architecture visualization of Nanodet-Plus, whi-
ch we used in this experiment, is shown in Figure 3. Unlike the previous Nanodet version,
Nanodet-Plus designed a lighter and simpler training auxiliary module named Assign
Guidance Module (AGM). It also worked with the dynamic soft label assignment strategy
Dynamic Smooth Label Assignment (DSLA) to solve the optimal label matching problem
in lightweight models.

The AGM or Assistant Guidance Module consists of only four 3×3 convolutions that use
Group Normalization (GN) as the Normalize Layer and share parameters among feature
maps of different scales. The matching cost will be calculated from the classification
probability and detection frame predicted by AGM and sent to the Dynamic Smooth
Label Assignment (DSLA) module.
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Figure 3. Nanodet-Plus architecture and flowchart

In terms of the architecture improvement from the previous Nanodet version, Nanodet-
Plus has several new inventions. Before Nanodet-Plus, non-convolutional PAFPN [15]
was used as the neck, and the classification and regression branches were merged on the
detection head. In addition to that, only two sets of depth-separable convolutions were
used. In Nanodet-plus, we used Ghost-Pan, a light feature pyramid for processing feature
fusion between multiple layers. The structure of this pyramid consists of a set of 1 × 1
convolutions and 3× 3 depthwise convolutions. The entire Ghost-Pan has a total of 190k
parameters. In the detection head, Nanodet-Plus changed the convolution kernel size of
the depthwise convolution of the detection from 3× 3 to 5× 5 conv.

2.3. Detection Transformer. The overall DETR flowchart and architecture visualiza-
tion is shown in Figure 4. It consists of three main components, a CNN backbone, an
Transformer encoder-decoder, and a simple Feed-Forward Network or FFN [2]. DETR
consists of a set-based global loss, which forces unique predictions via bipartite matching,
and a Transformer encoder-decoder architecture.

Figure 4. (color online) DETR architecture and flowchart

Firstly, a CNN [14] backbone will generate a lower-resolution activation map and a set
of image features from the input image we provide. Then in the Transformer encoder-
decoder, 1× 1 convolution will reduce the channel dimension from the activation map to
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a smaller dimension, thus creating a new feature map. A standard architecture for every
encoder layer consists of a multi-head self-attention module and a feed-forward network
[2]. The decoder continues the process by taking a small fixed number of object queries
as input and attending the encoder output. The decoder output will be passed to the
feed-forward network to predict a detection. Lastly, the final prediction is produced by
a 3-layer perceptron with a ReLU activation function, hidden dimension, and a linear
projection layer [2].

2.4. Dataset and annotation. The datasets used in this study are from an indoor office
room which we obtained from an open-source datasets repository named Roboflow [10].
The dataset consists of 2213 images, including eight classes: chair, clock, empty, exit,
fire extinguisher, printer, screen, and trashbin. The annotation is already done within the
Roboflow repository using a different color of bounding boxes for each class. Each class has
a different color of the bounding box, denoted in Table 1. An empty class is not annotated
as it is just for indicating if there is no detected class in the predicted image, however, the
number of empty class annotation in the generated dataset is zero. The annotation format
we used depends on each method’s requirements. In this research, all three methods we
examined use the same annotation in COCO format; hence the annotation is written in
a JSON file. The 2213 total images are divided into 1771 training images, 221 validation
images, and 221 testing images.

Table 1. Detailed distribution of the dataset

Class
Number of
instances in

training images

Number of
instances in

validation images

Number of
instances in

testing images

Bounding
box color

Chair 682 93 76 Yellow
Clock 231 22 24 Pink
Exit 403 50 51 Purple

Fire extinguisher 647 82 89 Red
Printer 67 6 8 Green
Screen 73 6 16 Orange
Trashbin 137 19 15 Blue

3. Discussion. Determining the best object detection method is a challenging problem
as it is necessary to accurately predict and draw a bounding box for each detected ob-
ject in the frame. Therefore, using the appropriate metrics is important to evaluate an
object detector’s performance accurately. We need to ensure the parameters used as the
evaluation metrics exist in the results of all the methods since different methods will also
generate different training evaluation metrics. In the case of YOLOv8, Nanodet-Plus, and
Detection Transformer, the evaluation metrics in all of the method’s results are Average
Precision and the bounding box loss. Hence, those two parameters are used and compared
in Table 2.

The mean Average Precision (mAP) is calculated mainly from two metrics, Precision
and Recall. The formulas for calculating Precision, Recall, and mAP are shown by the
equations below:

P =
TP

TP + FP

R =
TP

TP + FN
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mAP =
1

n

k=n∑
k=1

APk

• Precision (P) measures the proportion of true positives (i.e., correct positive predic-
tions) among all positive predictions made by the model.

• Recall (R) measures the proportion of true positives among all actual positive cases
in the dataset.

• True Positive (TP) is when the model’s prediction exists in the right position and is
a correct prediction.

• False Positive (FP) is when the model successfully predicts an object but is labeled
as an incorrect class.

• False Negative (FN) is when the model did not predict an object even though the
object exists in the image.

Table 2. Performance of the three different methods

Method mAP@0.5 Box loss curve Prediction on video

YOLOv8 0.991

Detection

Transformer
0.932

Nanodet-Plus 0.929
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Besides those four metrics, Intersection over Union (IoU) is usually used to compare
with a given threshold to produce a correct or incorrect classification. Intersection over
Union (IoU) itself quantifies the closeness of two bounding boxes, the ground truth box and
the prediction box. Since a different Average Precision (AP) metric can be produced from
each value of the IoU threshold, it is necessary to specify this value. In this experiment,
we used 0.5 as the IoU threshold. After calculating the Average Precision on a certain
IoU threshold, we can measure the mean Average Precision (mAP) value by taking the
average Average Precision (AP) across all classes (n) under a certain IoU threshold. In
the equation above, the n symbol represents the number of classes. From Table 2, we can
infer that YOLOv8 has the highest mAP@0.5 number with 0.991, followed by Detection
Transformer (DETR) with 0.932, and lastly Nanodet-Plus with 0.929.

Since object detection involves localization and classification, the next metric we use is
bounding box loss, as localizing multiple objects in an image is mainly done by bounding
boxes. The bounding box is predicted using a loss function which will give the error
between the ground truth and the predicted bounding box. Lastly, we also tested each of
the trained model’s inferences on video, and consistent with the mAP, YOLOv8 got the
highest confidence level percentage on the trash bin prediction with 97% accuracy. One
of the conceptual reasons why YOLOv8 has a slightly better outcome is that in YOLOv8,
the method stops the usage of mosaic augmentation. This type of augmentation has been
experimentally found to degrade the performance when performed throughout the whole
training routine.

4. Conclusions and Future Work. In this research, we have compared and evaluat-
ed the performance of YOLOv8, Nanodet-Plus, and Detection Transformer in detecting
indoor objects. With the same treatment, overall, YOLOv8, which was newly developed
in 2023, slightly outperforms the other methods regarding the bounding box loss and
the mean Average Precision (mAP) on 0.5 IoU threshold. This work only achieves object
detection in a local computer. Hence in future work, the developer can be more focused
on training and implementing the most effective method directly to the robot. Moreover,
future work can also evaluate whether implementing YOLOv8 in the robot directly can
perform as optimally as running it on a local computer.
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