ICIC Ezxpress Letters
Part B: Azl)\?lications ICIC International (©)2024 ISSN 2185-2766
Volume 15, Number 1, January 2024 pp. 8389

EVALUATING SELF-SUPERVISED PRE-TRAINED VISION
TRANSFORMER ON IMBALANCED DATA FOR LUNG
DISEASE CLASSIFICATION

ELVAN SELVANO!*, AEDENTRISA YASMANDA PAULINDINO!
GREGORIUS NATANAEL ELWIREHARDJA?3 AND BENS PARDAMEAN!?

LComputer Science Department, BINUS Graduate Program — Master of Computer Science
?Bioinformatics and Data Science Research Center
3Computer Science Department, School of Computer Science
Bina Nusantara University
JI. K. H. Syahdan No. 9, Kemanggisan, Palmerah, Jakarta 11480, Indonesia
aedentrisa.paulindino@binus.ac.id; { gregorius.e; bpardamean }@binus.edu
*Corresponding author: elvan.selvano@binus.ac.id

Received February 2023; accepted May 2023

ABSTRACT. Lung disease has been known as one of the most prevalent medical disor-
ders globally and a leading cause of death and disability. Pneumonia, one of the most
common lung diseases, accounts for over 2.4 million deaths annually, and COVID-19
has further increased deaths from pneumonia globally. Chest X-Ray (CXR) has been
proven as the most prominent screening method, and deep learning techniques have been
widely used for computer-aided diagnosis (CAD). This paper aims to evaluate the per-
formance of Vision Transformer (ViT), self-supervised learning (SSL) techniques, and
pre-trained convolutional neural network (CNN) models in classifying four lung condi-
tions from publicly available dataset containing more than 20,000 CXR images. The
results showed that DINO ViT-S16 performs the best with precision/recall/F1-score of
95.61%/95.75%/95.67% for the imbalanced dataset, 94.16%/94.56%/94.35% for the aug-
mented dataset, and 93.99%/94.05%/953.86% for the undersampled dataset. The lung
regions from the CXR image were correctly highlighted by the model which contributed
towards the correct classification. The proposed model also offered higher performance
than other previously reported approaches and provides the opportunity for an efficient
evaluation with an accuracy acceptable in the medical area.
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1. Introduction. The National Institute of Environmental Health Sciences (NIEHS)
states that “lung disease” refers to various illnesses or conditions that impair the ability
of the lungs from functioning properly. These diseases can affect the performance of the
lungs, pulmonary functions, respiratory function, or one’s breathing capacity [1]. Among
all causes of death in 2015, lung disease ranks fourth globally, and according to statistics,
the mortality rate for lung disease globally reaches 20%-40% [2].

The use of machine learning and Al in medicine is becoming more prevalent, specifically
in the form of computer-aided diagnosis (CAD) in medical imaging [3]. This approach uses
image analysis to detect disease patterns and can be beneficial for patients in remote areas
[4,5]. This helps physicians to identify diseases early on and assist the pharmaceutical
business in making the best medical decisions quicker. Although many machine learning
solutions have been deployed for CAD, these approaches have some limitations: they may
not be able to interpret complex disease patterns, cannot learn from limited data, and
need enormous resources.
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Due to its robustness in handling data imbalance, SSL is often utilized for transfer learn-
ing (TL). SwWAV-TL on CNN managed to help the model achieve higher performance than
its supervised counterpart [6]. This study aims to verify whether the same phenomenon
occurs in ViT, which was pre-trained with an SSL algorithm. This study compared the
performance of DINO ViT, SwAV ResNet, and their supervised versions, to determine
whether SSL pre-training can improve their accuracy in medical image analysis.

The rest of the paper is structured as follows: Section 2 reviews previous studies and
highlights gaps in the literature, Section 3 describes the proposed approach, Section 4
presents the experimental results of the proposed approach, and finally, Section 5 sum-
marizes the main contributions, discusses limitations, and suggests future research direc-
tions.

2. Related Works. Abbas et al. [7] modified decompose, transfer, and compose (De-
TraC), a CNN architecture that uses a class decomposition strategy to classify COVID-19
using CXR images. DeTraC demonstrated efficient methods for classifying COVID-19 in-
stances with an accuracy of 98.23%.

Rahman et al. [8] proposed a method for identifying tuberculosis from CXR images
using CNN. Out of 9 models that they evaluated, the CheXNet model performed better
than other models without lung segmentation, but the DenseNet201 model outperforms on
the segmented lungs. Without segmentation, the proposed method achieved an accuracy
of 96.47%, precision of 96.62%, and recall of 96.47%. When using lung segmentation, the
accuracy, precision, and recall increased to 98.60%, 98.57%, and 98.56%, respectively.

Chowdhury et al. [9] used CXR images from the COVID-19 Radiography Database
to identify COVID-19 and evaluated the performance of DenseNet201 and CheXNet, in
which the former outperformed the latter with 99.7% precision and 99.7% sensitivity.
Muljo et al. [10] trained DenseNet121 to classify 4 lung diseases using the same dataset,
and achieved 82.16% average AUC, with Viral Pneumonia having the highest AUC at
99.99%.

Pham et al. [11] suggested that the identification of COVID-19-related lesions in the
lungs, based on characteristics such as location, size, and distribution, is more valuable for
medical professionals to evaluate the severity of the disease, track treatment progress, and
monitor patient recovery. The model accurately learned disease-related characteristics by
focusing on the annotation data of lung lesion in medical images. The results showed that
the method of annotating COVID-19 images improved the model’s accuracy by up to 1.68
times and is comparable to commercially available options.

Following the review of the papers using the TL/SWAV /SSL method, it was discovered
that most of the datasets contain limited images, making it possible that the model might
not generalize well. Additionally, some datasets may be biased because they were only
collected from one hospital. Some papers claimed the “COVID-19 Radiography Database”
is too small, and the performance will be improved if utilizing a larger dataset. Because
the dataset has several versions updated by the publisher, the current argues that the
papers were created using the dataset with version < 4. However, the dataset has since
been updated to version 4 with more images, and four classes may be classified compared
to the 2-3 classes used by most papers.

3. Methodology.

3.1. Dataset discussion. “COVID-19 Radiography Database” [12] was used in training
and evaluating the models. This dataset includes CXR images from Italian Society of
Medical Radiology (SIRM) [13], Novel Corona Virus 2019 Dataset developed by Joseph
Paul Cohen, Paul Morrison, Lan Dao in GitHub [14], BIMCV-COVID19 [15], and CXR
Images (pneumonia) database [16].
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The dataset comprises 21,165 CXR images, which have been classified into four cat-
egories, as shown in Figure 1. These categories comprise 3,616 COVID-19, 6,012 Lung
Opacity, 10,192 Normal, and 1,345 Viral Pneumonia images. Based on the number of im-
ages, the dataset can be categorized as imbalanced, and earlier approaches to this dataset
were tested using the limited data without additional configurations.

() (d)

FI1GURE 1. Sample CXR images for each class: (a) Lung Opacity; (b)
COVID-19; (c) Viral Pneumonia; (d) Normal

3.2. Data preprocessing. The experiment aimed to test whether SSL can reduce bias
and improve performance when imbalanced data is used. To thoroughly examine the diff-
erences between SSL models with supervised learning models and their performances on
the same dataset with different inter-class data distributions, three datasets were gen-
erated, which are imbalanced, augmented, and undersampled. Each dataset was divided
into three parts: training, validation, and testing, with the respective proportions of 70%,
10%, and 20%. The specific numbers of images for each dataset are presented in Table 1.

TABLE 1. Distribution of images for each class of the dataset

Imbalanced/Augmented Undersampled
Class . -
train val test train val test
COVID 2,531 361 724 941 134 269
Lung Opacity 4,208 601 1,203 941 134 269
Normal 7,134 1,019 2,039 941 134 269
Viral Pneumonia 941 134 270 941 134 269

The imbalanced dataset was used to evaluate the robustness of SSL models when there
are large differences in the amount of data per class. The augmented dataset was used
to assess the effectiveness of SSL models to improve accuracy by adding modified images
through data augmentation. The undersampled dataset was used to investigate the ability
of SSL models to reduce bias and improve accuracy when the number of images per class
is equal. Using an undersampled dataset can be beneficial as it can decrease the amount
of data required for training while still learning meaningful features.

3.3. Experiment configuration. To improve the generalization of the models, tech-
niques to enhance the amount and variety of images in the dataset were used in the
training process [17]. These techniques, known as data augmentation, include applying
random 45-degree rotations and flipping the images horizontally or vertically. All the im-
ages were rescaled to 224 x 224 to align with the expected input size for the pre-trained
models.

For the classification task, six different model architectures were trained for 50 epochs
using the Adam optimizer, a learning rate of le-4, and a random seed of 42. Additionally,
early stopping was enabled to prevent overfitting. Transfer learning was performed by
adding a new fully connected layer with randomized weights that has an output dimension
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TABLE 2. Parameter configuration of the models

Model Parameters Trainable Non-trainable

parameters parameters

DINO ViT-B16 85,801,732 14,180,356 71,621,376
ViT-B16 86,570,732 7,861,484 78,709,248
DINO ViT-S16 21,668,740 3,552,772 18,115,968
ViT-S16 22,053,740 3,937,772 18,115,968
ResNet50 SwAV 25,560,108 6,514,668 19,045,440
ResNetb0 25,560,108 6,514,668 19,045,440

equal to the number of classes. Several pre-trained layers from the models were also
unfrozen to fine-tune the model to get better performance. This influenced the number
of trainable parameters which is specified in Table 2.

3.4. Evaluated deep learning models. Vision Transformer (ViT) performs remark-
ably well in various vision applications. It tokenizes an input image into patches and
maps each patch to a token embedding. The final classification of the images and the
aggregation of global image data are handled by an additional class token (CLS) that is
added to the set of image tokens. A learnable vector (i.e., positional encoding) adds each
token, and it feeds it into the feed-forward network (FFN) and multi-head self-attention
(MHSA) layer of the sequentially stacked Transformer encoders [18].

DINO is a self-distillation technique; it develops a network of students and teachers and
utilizes a standard cross-entropy loss to directly forecast the output of a teacher network
created with a momentum encoder [19]. Swapping Assignments Between Views (SwAV) is
a contrastive method that operates in batches and does not require a large memory bank.
SwAV process consists of three steps. First, it computes the features of two augmented
versions of images from a batch and assigns them to “prototype vectors” in a spherical
feature space. Next, it clusters the data that requires the two cluster assignments for
an image to match. Third, it determines “the code” from the feature by resolving a
novel “swapped” prediction technique. The model concludes that similar images share
information by projecting this loss to all images and their augmentations [20].

3.5. Model evaluation. In order to assess the performance of the model, precision (P),
recall (R), and Fl-score (F) were used as metrics. These can be computed by utilizing the
number of True Positive (TP), False Positive (FP), and False Negative (FN), as shown in
Equation (1).

9P . R TP TP
P2 ghereP—=—— R—-— - 1
PR e TP+ 7P’ " TP+ FN (1)

Understanding the reasons behind the predictions is crucial in order to get a trustworthy
result. LIME (Local Interpretable Model-agnostic Explanations) [21], a technique that can
help explain individual predictions, was used to assess the model’s predictions. It modifies
a single image by tweaking the feature values and observes the resulting impact on the
output.

4. Result and Discussion. Table 3 shows that DINO ViT-S16 performed the best with
the highest Fl-score. While the models generally performed well with F1-score of 87.00%
and higher in the imbalanced dataset, ViT-S16 appeared to be underfitting in all datasets.
In contrast, all models performed poorly in the undersampled dataset due to limited data.

All models using SWAV or DINO also performed better than their supervised coun-
terparts which means the methods used were effective in tackling the imbalance issue.
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TABLE 3. Evaluation results on the test set (%)

Model Imbalanced Augmented Undersampled
Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1
DINO ViT-B16 93.94 95.50 94.66 95.13 93.39 94.20 93.71 93.37 93.38
ViT-B16 94.58 92.61 93.54 93.76 91.57 92.55 90.49 90.21 90.24
DINO ViT-S16 95.61 95.75 95.67 94.16 94.56 94.35 93.99 94.05 93.86
ViT-S16 84.76 83.23 83.87 81.86 81.65 81.69 77.21 76.06 76.36
ResNet50 SwWAV  90.98 90.30 90.62 89.89 89.78 89.81 89.44 8R8.82 §89.08
ResNet50 89.90 90.39 90.07 88.08 86.33 87.10 89.11 88.23 88.28

Although DINO ViT-B16 has almost 4 times the number of parameters compared to DI-
NO ViT-S16, it seemed that the model has overfitted and performed a bit worse than its
smaller variant.

4.1. Model evaluation plot. Figure 2 shows the confusion matrix and the area under
the receiver operating characteristic (ROC) curve for DINO ViT-S16 for the imbalanced
test data. Figure 2(a) shows that the model can predict COVID, Viral Pneumonia, and
Normal with less than 5% error, 714 out of 724 images for COVID, 261 out of 270
images for Viral Pneumonia, and 1,958 out of 2,039 images for Normal. This indicates the
model’s robustness in handling imbalanced data. Despite the similarity in characteristics
between Lung Opacity and Normal, leading to mixed-up predictions, the model’s overall
performance appeared promising, as reflected in its F1-score.

Confusion Matrix DINO ViT-S16 ROC curve DINO ViT-516
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FIGURE 2. (color online) Confusion matrix (a) and ROC AUC curve (b)
for each class

Figure 2(b) shows the area under the ROC curve for the one-vs-rest approach. The
model achieved a perfect score of 1.00 for classifying COVID and Viral Pneumonia and a
near-perfect score of 0.99 for Lung Opacity and Normal. However, these scores might be
too optimistic, considering the imbalanced data.

4.2. LIME visualization. Visualization is generated where the green area (indicated
by the letter “G”) is the area that contributes towards the correct classification while
the red area (indicated by the letter “R”) indicates the opposite. The color intensity is
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proportional to the absolute value of the contribution. Therefore, a perfect model should
highlight the parts of the lungs as dark green areas as much as possible with no red areas.

Figure 3 shows that DINO ViT-S16 performed well with a lot of green-shaded areas
with the least amount of red-shaded areas, while for some models like VIT-S16 supervised,
it has a lot of red areas in the lungs, which makes the predictions unreliable because the
lung areas should contribute the most.

DINO ViT- B16

Ficure 3. LIME visualizations for each class: (a) Lung Opacity; (b)
COVID-19; (c) Viral Pneumonia; (d) Normal

5. Conclusions. This paper proposed a pre-trained ViT model using DINO to identify
lung diseases from CXR images. The performance of the model was compared to ResNet50
models that were pre-trained with SwAV. The DINO ViT-S16 model demonstrated ex-
cellent results even with imbalanced data. The proposed model was found to be superior
to other previously published methods and has the potential to provide an adequate level
of accuracy suitable for the medical field. LIME was employed to demonstrate that the
model trained with SSL primarily focuses on the lung region, requiring it to use relevant
information only, leading to improved performance compared to its supervised counter-
parts. This demonstrates that SSL can handle imbalanced data and can be applied to
other medical image classification tasks.

A limitation of this study is the unbalanced nature of the dataset, which may not
be reliable in serving as the baseline for comparison with the state-of-the-art models.
Furthermore, the study focused on using CXR images to achieve the highest classification
rate for lung disease, among other types of images. To overcome this limitation, future
studies should implement techniques such as data augmentation and oversampling to
expand the amount of training data and explore alternative methods for evaluating the
model’s predictions.
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