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Abstract. Supercavitation technology can greatly improve the speed of underwater ve-
hicles by reducing resistance. However, the time-delay characteristics of supercavitating
vehicle make the control extremely difficult. In this paper, the linear parameter variation
(LPV) time-delay model of supercavitating vehicle is established by analyzing the time-
delay characteristics of planing force. In addition, considering that the external irregular
disturbance will cause the perturbation of time-varying parameters in the model, a super-
cavitating LPV delay model depicted as a polytope is established. Based on this model,
a Quasi-Min-Max robust model predictive controller based on time-delay characteristics
is designed. The algorithm decomposes the “worst case” in infinite time domain into
current performance index and terminal state penalty term, calculates the upper bound
of the new maximum problem, and deduces the sufficient condition for the closed-loop
asymptotic stability of the system. The current control input can be obtained by solving
the convex optimization of linear matrix inequality (LMI) online. Finally, the simulation
results show that the algorithm has good stability and robustness.
Keywords: Supercavitating vehicle, Planing force, LPV time-delay model, Quasi-Min-
Max predictive controller, LMI, Robustness

1. Introduction. The supercavitation technology can greatly reduce the water resis-
tance by forming a cavitation layer on the water and the surface of the vehicle, so as
to realize the speed leap of the underwater vehicle. However, the inclusion of cavitation
makes the dynamic characteristics of the vehicle become more complex while reducing the
resistance. The tail beat phenomenon caused by unpredictable disturbances in motion will
lead to nonlinear planing force [1]. On the basis of fully understanding the mechanism of
cavitation formation, scholars all over the world have carried out research on supercavi-
tating vehicle motion model [2,3] and control [4,5], among which planing force has become
one of the main difficulties in supercavitating vehicle modeling and stability control due
to its strong nonlinear and time-delay characteristics.

[6] proposed a nonlinear robust integrated control method to provide strong perfor-
mance against large planing force and parameter uncertainty. The performance index can
suppress external interference through disturbance. [7] studied the nonlinear dynamic be-
havior of a supercavitating vehicle with time-delay and varying system parameters, and
analyzed its local and global stability from the perspective of different parameter val-
ues and initial conditions. A new fractional order model of supercavitating vehicle with
memory property is proposed in [8], which considers the effect of advection delay while
maintaining the nonlinearity of mathematical equations. In [9], a robust predictive con-
troller is designed based on supercavitating LPV time-delay model described by polytope.
Different Lyapunov functions and free control variables are introduced to solve the LMI
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to find the optimal solution at a given time. In [10], an adaptive sliding mode control
strategy based on radial basis function (RBF) neural network was proposed for the model
uncertainty of supercavitating vehicle and considering external interference.
In this paper, considering the memory effect of the supercavitating vehicle, combined

with the advantages of strong robustness, good stability, excellent dynamic performance
of predictive control [12], the time-delay LPV model of the supercavitating vehicle is
established. Based on this model, a Quasi-Min-Max robust predictive controller based
on time-delay characteristics is designed. Compared with other controllers, the controller
designed in this paper obtains the optimal control law online, which can improve the
dynamic performance of the system. At the same time, the controller also reduces the
burden of online calculation by obtaining the upper bound of the new maximum problem,
and effectively solves the problems of time delay, cavitation disturbance and controller
constraints of supercavitating vehicles.

2. Supercavitating Vehicle Models. In this study, the analysis of the delay charac-
teristics of the system is added on the basis of the model in [1]. Assuming that the speed
of the vehicle remains constant and the vehicle is completely enveloped by cavitation, ac-
cording to the dynamic analysis of the pitch plane of supercavitating vehicle, the following
model can be established:
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where [z, w, θ, q] are respectively the longitudinal depth, vertical velocity, pitch angle
and pitch angular velocity of the vehicle relative to the launch point; t is the time, V
is the forward velocity, δc and δf are respectively the deflection angle of the axis of the
cavitator relative to the centerline of the vehicle and the deflection angle of the tail rudder
relative to the centerline of the vehicle.
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where m is the ratio of vehicle to fluid density; L is the length of the vehicle; Rn is the
cavitator radius, R is the vehicle radius, n represents the effectiveness coefficient of the
fins rudder, σ is the cavitation number and Cx0 is the lift coefficient.
In [11], it is verified that when the vehicle’s time-delay model and non time-delay model

are both stable, there is a big difference between the response speed and the tail beat
frequency. Therefore, the nonlinear planing force should be decomposed to build a time-
delay model for analysis. The submergence depth of the vehicle tail h′

p and planing angle
αp are defined by the following formula

h′
p =


[z(t) + θ(t)L− z(t− τ) +R−Rc]/R, bottom contact
0, inside cavity
[R−Rc − z(t)− θ(t)L+ z(t− τ)]/R, top contact

(3)
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αp =


θ(t)− θ(t− τ) +

[
w(t− τ)− Ṙc

]/
V, bottom contact

0, inside cavity

θ(t)− θ(t− τ) +
[
w(t− τ) + Ṙc

]/
V, top contact

(4)

where Rc denotes the cavitation radius; Ṙc is the contraction rate of the cavitation at the
planing location; τ = L/V is approximately the time delay.

The conditions for the existence of planing force are as follows:{
R−Rc < z(t) + θ(t)L− z(t− z), bottom contact

Rc −R > z(t) + θ(t)L− z(t− z), top contact
(5)

The planing force acting on the vehicle in the vertical direction can be expressed as

Fp = πρR2
cV
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Define the following transformation:
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γ2 =


−Ṙc/V, bottom contact

0, inside cavity

Ṙc/V, top contact

γ3 = z(t) + θ(t)L− z(t− τ)

π1 = V 2γ1/(mL); π2 = γ2/γ3; π3 = π1π2 (7)

When the supercavitating vehicle has planing force, the planing force can be decom-
posed as follows:

F̂p = − V 2
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αp

= −π1[θ(t)− θ(t− τ) + w(t− τ)/V + γ2]

= −π1[θ(t)− θ(t− τ) + w(t− τ)/V ]− π3[z(t) + θ(t)L− z(t− τ)] (8)

The LPV time-delay model of supercavitating vehicle is obtained

ẋ(t) = A(π1, π3)x(t) + Ad(π1, π3) · x(t− τ) + Bu(t)

y(t) = Cx(t) (9)

where ẋ(t) = Ax(t) = [z(t), w(t), θ(t), q(t)]T is the system state matrix, x(t−τ) is the delay
part of the system, and represents the state variable with the delay as τ ; A(π1, π3) and
Ad(π1, π3) are time-varying matrices, which change with the two time-varying parameters
of π1 and π3, B and C are constant matrix.

If π1 and π3 are assumed to be independent, the supercavitating vehicle model in (9)
is a time-delay LPV system with affine dependence on scheduling parameters π1 and π3.

3. Design of Predictive Controller. When the vehicle satisfies the conditions of con-
tacting the cavitation wall, the depth and angle of penetration of the vehicle will change,
the time-varying parameters π1 and π3 will no longer be zero, and the system will have
planing force, which makes the control more difficult. According to [9], the time-delay
system of the supercavitating vehicle with (9) can be described by the following discrete
linear time-varying model:

x(k + 1) = A(k)x(k) + Ad(k)x(k − d) +Bu(k)
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y = Cx(k)

[A(k) Ad(k)] ∈ Ω; Ω = Co{[A1 Ad1], [A2 Ad2], . . . , [Ai Adi]} (10)

In the equation, Co is the convex hull symbol. No matter how the parameters change,
they will eventually fall in the region of convex polyhedron with [A1 Ad1], . . . , [Ai Adi] as
the vertex. The time-varying parameters A(k) and Ad(k) can be expressed as

[A(k) Ad(k) B] =
4∑

i=1

ηi[Ai Adi B];
4∑

i=1

ηi = 1, ηi ≥ 0 (11)

According to [6], the value of π1 is π1 ∈ [0, 865.625], considering that the perturba-
tion of cavitation radius is ±20%, π3 ∈ [0, 1416.35] a convex set with [0, 0], [0, 1416.35],
[865.625, 0], [865.625, 1416.35] as the vertex can be constructed, and in Equation (11) can
be expressed as

β1 = π1/865.625; β2 = π3/1416.35; η1 = (1− β1)(1− β2)

η2 = (1− β1)β2; η3 = β1(1− β2); η4 = β1β2 (12)

The performance index of infinite time domain is decomposed into current performance
index and terminal penalty term, which can be expressed as the following Min-Max opti-
mal solution problem:

J0
∞(k) =

∞∑
i=0

x(k + i|k)TQ1x(k + i|k) + u(k + i|k)TRu(k + i|k)

=
∞∑
i=1

(x(k + i|k)TQ1x(k + i|k) + u(k + i|k)TRu(k + i|k))

+x(k|k)TQ1(k|k) + u(k|k)TRu(k|k)
= J∞

1 (k) + x(k|k)TQ1(k|k) + u(k|k)TRu(k|k) (13)

Based on Lyapunov-Krasovskii function, the upper bound of infinite time domain robust
performance for time-delay systems is proposed.

J∞
1 (k) ≤ x(k + 1|k)TPx(k + 1|k) +

d∑
i=1

x(k + 1− i|k)TS

×x(k + 1− i|k); P > 0, S > 0 (14)

After transformation, the performance index from time k + 1 to infinite time can be
replaced by the upper bound of a new maximum problem, so the objective function of
the Quasi-Min-Max robust predictive control algorithm can be optimized as follows:

min
U∞
0 (k)

max
[A(k+i),Ad(k+i),B(k+i)]∈Ω

J∞
0 (k)

= min
u(k|k),U∞

1 (k),P

{
x(k|k)TQ1x(k|k) + u(k|k)TRu(k|k) + x(k + 1|k)TPx(k + 1|k)

+
d∑

i=1

x(k − i+ 1|k)TSx(k − i+ 1|k)

}
(15)

The control sequence is U∞
0 (k) = [u(k|k), U∞

1 (k)], where u(k|k) is the current com-
ponent applied to the controlled object, and other control components are based on the
linear feedback control rate: U∞

1 (k) : u(k + i|k) = F (k)x(k + i|k), i ≥ 1.

Lemma 3.1. Assume that x(k|k) is the state measurement value of Formula (11) at time
k, and the robust asymptotic stability achieved by Formula (13) can be converted into the
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optimization problem of whether variable γ > 0, Q > 0, W > 0, F = Y Q−1, Y , u(k|k)
exists and satisfies the following LMI constraints:

min
γ,u(k|k),Q,W,Y (k)

γ (16)

s.t.
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∥u(k|k)∥2 ≤ umax (20)

Proof: 1) Define a quadratic Lyapunov Krasovskii function.

V (x(k)) = x(k)TPx(k) +
d∑

i=1

x(k − i)TSx(k − i); P ≥ 0, S ≥ 0 (21)

If the J∞
1 (k) robust performance index has an upper bound, the following inequality

shall be satisfied.

V (x(k + i+ 1|k))− V (x(k + i|k))
≤ −

[
x(k + i|k)TQ1x(k + i|k) + u(k + i|k)TRu(k + i|k)

]
, i ≥ 1 (22)

When the system is asymptotically stable, then there are x(∞) = 0, V (x(∞)) = 0.
Overlay from i = 1 to i = ∞.

J∞
1 (k) ≤ V (x(k + 1|k))

= x(k + 1|k)TPx(k + 1|k) +
d∑

i=1

x(k + 1− i|k)TSx(k + 1− i|k)

x(k|k) = x(k); x(k − j|k) = x(k − j|k − j), j = 1, . . . , d (23)

Variable γ is introduced as the upper bound of robust performance, and the following
form is obtained.

J∞
0 (k) ≤ x(k|k)TQ1x(k|k) + u(k|k)TRu(k|k) + x(k + 1|k)TPx(k + 1|k)

+
d∑

i=1

x(k + 1− i|k)TSx(k + 1− i|k) ≤ γ (24)

Assume that A(k), Ad(k) and B(k) are online measurable, let Q = γP−1 > 0, W =
γS−1 > 0, and use Schur complement lemma to transform Equation (15) into LMI (17).
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2) Stability constraints. Take Equation (10) into Inequality (22) to get[
(A(k) +B(k)F )TP (A(k) +B(k)F ) + S − P (A(k) + B(k)F )TPAd(k)

AT
d (k)P (A(k) +B(k)F ) AT

d (k)PAd(k)− S

]
< 0 (25)

LMI (18) can be obtained by using Schur complement and multiplying

[
Q 0
0 I

]
before

and after the inequality.
3) Input constraint: it is divided into current component and terminal invariant set

constraint.
a) ∥u(k|k)∥2 ≤ umax.
b) The following inequality is obtained from Inequality (24).

x(k + 1|k)TPx(k + 1|k) +
d∑

i=1

x(k − i+ 1|k)TSx(k − i+ 1|k) ≤ γ (26)

According to Inequality (22), x(k + 1|k)TPx(k + 1|k) ≤ γ is an invariant elliptic set,
equivalent to Inequality (22).
Therefore, the Quasi-Min-Max robust predictive control (15) can be reduced to the

optimization problem of solving the LMI constraints of Inequalities (17)-(20). The selec-
tion of P and S is converted into the solution of Q and W . The LMI above is convex
optimization, and the online solution efficiency is high.

4. Simulation Analysis. The Quasi-Min-Max predictive controller is simulated when
the bubble radius is perturbed by ±20% to verify the control performance and robustness.
The time-delay for the simulation is τ = L/V = 0.024 s. The sampling time of the system
is set to T = 0.008 s. The initial state of the vehicle is set to [z, w, θ, q] = [0, 0, 0, 0],
u = [0, 0], the command signal of the system is [1, 0, 0, 0], the control quantity constraint
of the system is set as [−20◦, 20◦], and the matrix Q1 and matrix R of the system are unit
matrices. The optimal state feedback control quantity u(k) = u(k|k) of each sampling
period can be directly obtained according to LMI constraint optimization.
Figure 1 shows a unit-step z-input tracking response of state variable. The dashed line

is the system response curve with a downward disturbance of 20%. The long adjustment
time and large overshoot are due to the smaller internal space of cavitation caused by the
downward disturbance of the cavitation radius, and the vehicle is more likely to contact
the cavitation wall. When the cavitation radius is disturbed, the state of the vehicle
can quickly track the command signal. Therefore, the designed controller has strong
robustness.
From the control variable and planing force response curve of the vehicle in Figure 2, it

can be seen that the deflection angle of the cavitator and the rudder are obviously smaller
than the control input constraint set by the system. The planing force disappears in a
short time, and the vehicle navigates stably inside the cavitation bubble, reflecting that
the controller can effectively suppress the planing force. Therefore, the designed controller
has good control performance. The simulation results show that when the bubble radius is
perturbed by external disturbances with input constraints, the Quasi-Min-Max predictive
control ensures the progressive stability of the system state, the control input satisfying
the constraints, and the planing force gradually disappears.

5. Conclusions. Aiming at the strong nonlinear problem of planing force, the LPV
time-delay model of supercavitating vehicle is obtained by decomposing and transforming
them. Considering the model uncertainty caused by time-varying parameters, the predic-
tive model is equivalent to a linear time-varying uncertain system described by polytope.
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Figure 1. Z-step input tracking response curve of state variable

Figure 2. Z-step input tracking response curve of control variable and
planing force
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Based on this model, a Quasi-Min-Max robust predictive controller is designed. The simu-
lation results show that the algorithm has good robustness to solve the problems of system
parameter uncertainty, nonlinear planing force, time-delay and actuator saturation.
In the future, we plan to design a predictive controller with better control performance

considering the anti-interference ability and input delay of supercavitating vehicle. More-
over, we will design the corresponding off-line algorithm to reduce the online workload of
predictive control.

Acknowledgment. This work is partially supported by Hainan Provincial Natural Sci-
ence Foundation of China (622MS163). The authors also gratefully acknowledge the help-
ful comments and suggestions of the reviewers, which have improved the presentation.

REFERENCES

[1] J. Dzielski and A. Kurdila, A benchmark control problem for supercavitating vehicles and an initial
investigation of solutions, Journal of Vibration and Control, vol.9, no.7, pp.791-804, 2003.

[2] S. Kim and N. Kim, Control method for ventilated supercavitating vehicle considering planing avoid-
ance and stability, Proc. of the Institution of Mechanical Engineers, Part M: Journal of Engineering
for the Maritime Environment, vol.233, no.3, pp.957-968, DOI: 10.1177/14750902187984, 2018.

[3] G. Sabaliauskaite, S. L. Liew and J. Cui, Integrating autonomous vehicle safety and security analysis
using STPA method and the six-step model, International Journal on Advances in Security, vol.11,
no.1, pp.160-169, 2018.

[4] B. Vanek, G. J. Balas and R. Arndt, Linear, parameter-varying control of a supercavitating vehicle,
Control Eng. Pract., vol.18, no.9, pp.1003-1012, 2010.

[5] X. Mao and W. Qian, Delay-dependent control design for a time-delay supercavitating vehicle model,
Journal of Vibration and Control, vol.17, no.3, pp.431-448, 2011.

[6] B. D. H. Phuc, S.-D. Lee, S.-S. You and N. S. Rathore, Nonlinear robust control of high-speed
supercavitating vehicle in the vertical plane, Proc. of the Institution of Mechanical Engineers, Part
M: Journal of Engineering for the Maritime Environment, vol.234, no.2, pp.510-519, 2019.

[7] X. Bai, Q. Li and M. Xu, Nonlinear dynamics and control of time-delay supercavitating vehicle, Int.
J. Bifurcat. Chaos, vol.32, no.2, 2022.

[8] P. T. Doan, P. Bui, T. V. Mai et al., Stability analysis of a fractional-order high-speed supercavitating
vehicle model with delay, Machines, vol.9, no.7, 129, 2021.

[9] Y. Han, Z. Xu and L. Guan, Predictive control of a supercavitating vehicle based on time-delay
characteristics, IEEE Access, vol.9, pp.13499-13512, DOI: 10.1109/ACCESS.2020.3046517, 2021.

[10] J. Wang, Y. Liu, G. Cao et al., Design of RBF adaptive sliding mode controller for a supercavitating
vehicle, IEEE Access, vol.9, pp.39873-39883, DOI: 10.1109/ACCESS.2021.3063192, 2021.

[11] Y. Zhou, M. Sun, J. Zhang, L. Liu and Z. Chen, Practical cascade control for supercavitating vehicle,
2021 IEEE 10th Data Driven Control and Learning Systems Conference (DDCLS), Suzhou, China,
pp.508-512, DOI: 10.1109/DDCLS52934.2021.9455482, 2021.

[12] Z. Hao, Y. Chen, T. Pan, W. Yang and X. Zhou, Model predictive control method for warship DC
micro-grid based on finite control set, International Journal of Innovative Computing, Information
and Control, vol.18, no.2, pp.537-550, 2022.


