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Abstract. This paper investigated the formation control issue for multi-agent systems
(MASs) with switching topology and heterogeneous leader. In order to lessen the impact
of differences between leader and follower agents, heterogeneous information for leader in
the system models is considered. Then, by developing a leader-follower formation control
approach with switching topology, we can completely relax the fixed topology restriction
which has the common assumption. Finally, the proposed formation control protocol en-
sures that all signals of considered system are semi-globally uniformly ultimately bounded
(SGUUB).
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1. Introduction. Formation control has attracted more attention in the field of MASs
cooperative control, and has been widely used in many practical systems, such as multi-
spacecraft, multi-ground robot, and multi-underwater vehicle. Therefore, formation con-
trol of MASs has become an important research topic in recent years, see [1-4]. For a class
of stochastic MASs, [1] investigated the formation control issue with obstacle avoidance,
and [2] studied an adaptive optimized formation control issue. Under a directed intercon-
nection topology, [3] addressed the formation control obstacle avoidance issue of MASs.
Furthermore, for heterogeneous MASs, [4] proposed an event-triggered time-varying for-
mation control strategy.

Much research work has been focused on homogeneous MASs, without considering the
differences between the leader and follower agents. For the heterogeneous longitudinal
formations system, [5] designed an adaptive distributed decoupling controller that guar-
antees stability and string stability of the longitudinal platooning system. [6] investigated
the flocking control of MASs with heterogeneous virtual leader. The authors in [6] not
only considered the uncertain nonlinearity in the virtual leader information, but also as-
sumed the weaker constraint on the velocity information measurements. However, it is
worth mentioning that all the mentioned results in [1-6], did not consider the formation
control issue with switching topology.

As is known to all, switching topology issue is important in consensus or formation
control theory. Communication channels among agents are often disrupted by various fac-
tors, which can cause the communication structure to change with time. For second-order
MASs with switching directed topology, [7] proposed the distributed consensus protocol.
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And the authors in [7] only considered position information and local velocity informa-
tion. Furthermore, for second-order MASs with nonlinear dynamics, [8] considered the
time-varying asymptotic velocity consensus issue, and [9] developed an adaptive leader-
following state delays consensus issue. The above studies about switching topology issue
are aimed at MASs consensus issue, and there is no formation control research for MASs
with heterogeneous leader.
Although some progress has been made towards the consensus control with switching

topology issue of nonlinear MASs. However, by far, there are no available results about the
formation control with switching topology issue for second-order heterogeneous nonlinear
MASs, which limits the validity of formation control for MASs. Based on the above
discussion, we are inspired to study the formation control issue of nonlinear MASs with
switching topology and heterogeneous leader.
The main features and contributions of this paper are summarized as follows: i) This

paper is the first result on formation control for nonlinear MASs with switching topology
and heterogeneous leader. A novel leader-follower formation control protocol is proposed.
ii) The formation control of second-order MASs with switching topology can can be used
to solve the vehicles or UAVs formation transformation problem.

2. Problem Formulation. Consider the second-order nonlinear MASs as follows:

η̇i(t) = νi(t),

ν̇i(t) = ui(t) + fi(ηi, νi), i = 1, . . . ,m, (1)

where ηi(t) = (ηi1, . . . , ηin)
T ∈ Rn is the position vector, νi(t) = (νi1, . . . , νin)

T ∈ Rn is
the velocity vector, ui(t) ∈ Rn is the control input, and fi(·) ∈ Rn is the continuously
differentiable vector-valued function with f(0) = 0.
The desired reference signals are governed by

η̇l(t) = νl(t),

ν̇l(t) = fl(ηl, νl), (2)

where position reference ηl ∈ Rn, velocity reference νl ∈ Rn, and fl(·) ∈ Rn is a smooth
bounded function.
The following assumptions are made on system (1).

Assumption 2.1. [8] There exist constants ρ1i ≥ 0, ρ2i ≥ 0, such that

∥f(ηi, νi)− f(ηl, νl)∥ ≤ ρ1i∥ηi − ηl∥+ ρ2i∥νi − νl∥.

Assumption 2.2. [3] There exist constants γ1, γ2, such that ∥ηl∥ ≤ γ1, ∥νl∥ ≤ γ2.

Algebraic Graph Theory. Define G = {Gm = (V, εm, Am)|m ∈ M} as the collection
of all possible digraphs. Then, the underlying graph can be denoted by Gσ(t), and σ(t) :
[0,+∞] → M represents the piecewise constant switching function. And σ(t) represented
that topology switches finite times in any bounded time interval. Define the switching

topology Gu =
{
V,
∪M

m=1 εm,
∑M

m=1Am

}
in a collection of digraphs G = {G1, . . . , GM}.

According to Lemma 2.4 in the later, the average matrix −E0 = − 1
M

∑M
m=1Em is a

Hurwitz matrix. Thus, the equation ET
0 Q + QE0 = I2(n−1) has a positive definite solu-

tion Q. Denote B = diag{b1, b2, . . . , bn}T as the communication weights between follower
agents and leader. And b1 + b2 + · · · + bn > 0 represent that at least one follower agent
connects with leader.
Let

σ(t0) = argmin
{
hT
0E1h0, . . . , h

T
0EMh0

}
,

where index argmin represents the minimum among M, Em = ET
mQ+QEm and h(t0) =

h0.
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The switching instant is defined as follows:

tk+1 = inf
{
t > tk : h

T (t)Eσ(tk)h(t) > rσ(tk)h
T (t)h(t)

}
σ(tk+1) = argmin {h(tk+1)E1h(tk+1), . . . , h(tk+1)EMh(tk+1)} ,

where rσ(t) ∈ (0, 1).

Lemma 2.1. [10] Let irreducible matrix L = [lij] ∈ Rmm, lij = lji ≤ 0 and lii =
∑m

j=1 lij.

Then all the eigenvalues of L̃ =

 l11 + d1 · · · l1m
...

. . .
...

lm1 · · · lmm + dm

 are positive, and d1+ · · ·+

dm > 0, di =
∑n

j=1 aij.

Lemma 2.2. [11] If Q1(y) = QT
1 (y) and Q2(y) = QT

2 (y) can be satisfied, the matrix

inequality that

(
Q1(y) Q3(y)

QT
3 (y) Q2(y)

)
≥ 0 is equivalent to any one of the following two

conditions:
(a) Q1(y) > 0, Q2(y)−QT

3 (y)Q
−1
1 (y)Q3(y) > 0;

(b) Q2(y) > 0, Q1(y)−Q3(y)Q
−1
2 (y)QT

3 (y) > 0.

Lemma 2.3. [12] For any two real vectors x, y ∈ Rn and positive definite matrix Φ ∈ Rnn,
we have

2xTy ≥ xTΦx+ yTΦ−1y.

Lemma 2.4. [13] If Laplacian matrices L1, L2, . . . , LM are associated with the graphs

G1, G2, . . . , GM , respectively, then, −
∑M

i=1ELiF is anti-stable if and only if node 0 is
jointly globally reachable for these graphs.

Definition 2.1. [3] The leader-follower formation is achieved if the solutions of MASs
satisfy

lim
t→∞

∥ηi(t)− ηl(t)− pi∥ = 0, lim
t→∞

∥νi(t)− νl(t)∥ = 0,

where pi = (pi1, . . . , pin)
T ∈ Rn describes the desired relative position between the reference

signal and agent i.

The control objective of this article is to design a formation control protocol for the
nonlinear MASs under switching topologies and heterogeneous leader, such that a) all
closed-loop signals are SGUUB; b) the leader-follower formation can be achieved.

3. Control Protocol Design. In this section, the formation issue of MASs (1) is solved
by designing the switching topology control strategy. To derive the switching topology
formation protocol, the coordinate transformation is defined as follows:

hηi(t) = ηi − ηl − pi,

hνi(t) = νi − νl, i = 1, . . . ,m. (3)

Taking time derivative of (3) along (1) and (2), one has

ḣηi(t) = hνi,

ḣνi(t) = ui + fi(ηi, νi)− fl(ηl, νl), i = 1, . . . ,m. (4)

Rewrite the error dynamic (4) as follows:

ḣ(t) =

(
hνi(t)

u(t) + F (h)− fl(ηl, νl)⊗ 1m

)
, (5)

where h(t) =
[
hT
η , h

T
ν

]T
, hη(t) =

[
hT
η1, . . . , h

T
ηm

]T
, hν(t) =

[
hT
ν1, . . . , h

T
νm

]T
, u(t) =

[
uT
1 , . . . ,

uT
m

]T
, F (h) =

[
fT
1 , . . . , f

T
m

]T
.
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The formation errors of position and velocity can be defined as follows:

eηi =
∑
j∈Ni

aij(ηi − pi − ηj + pj) + di(ηi − ηl − pi),

eνi =
∑
j∈Ni

aij(νi − νj) + di(νi − νl), i = 1, . . . ,m, (6)

where aij is the element of matrix A; di is the connection weight.
According to (3), one has

eηi =
∑
j∈Ni

aij(hηi − hηj) + dihηi,

eνi =
∑
j∈Ni

aij(hνi − hνj) + dihνi, i = 1, . . . ,m, (7)

where Ni is the collection of neighbors of agent i.
The formation control protocol can be designed as follows:

ui = −αieηi − αieνi, i = 1, . . . ,m, (8)

where αi > 0 is a constant designed later.
Substituting (8) into (4), the following result can be obtained

ḣηi(t) = hνi, i = 1, . . . ,m,

ḣνi(t) = −αieηi − αieνi + fi(ηi, νi)− fl(ηl, νl). (9)

Transform (9) to compact form as

ḣ(t) =

(
−

(
0n×n −In

∆L̃ ∆L̃

)
⊗ Im

)
h(t) +

(
0nm

F (h)− fl(ηl, νl)

)
= (−E ⊗ Im)h(t) + F̄ , (10)

where ∆ = diag{α1, . . . , αn}, L̃ = L+D, D = diag{d1, . . . , dn}.

Theorem 3.1. Consider the MASs (1) with reference signals (2) under the switching
topology. The formation control (8) can achieve the control objective if the design param-
eters αi and κ satisfy the following conditions

αi = κδi,

κ ≥ maxl≤i≤n{4ρi1 + 3ρi2}
2rλmin(rIn + 2ΛD)

+ 2, (11)

where r = min{r1, r2, . . . , rM}, δ = (δ1, δ2, . . . , δn)
T , λmin(rIn + 2ΛD) is the minimum

eigenvalue of symmetrical matrix rIn + 2ΛD, Λ = diag{δ1, δ2, . . . , δn}.

Proof: Choose the Lyapunov function as follows:

V (t) =
1

2
hT (t)(Q⊗ Im)h(t),

where

Q =

(
κ(Θ + 2ΛD) In

In In

)
, Θ = LTΛ + ΛL.

From (11), reexpress Q =

(
L̃T∆+∆L̃ In

In In

)
with αi = κδi.

The time derivative of V (t) is

V̇ (t) = −1

2
hT (t)

((
ETQ+QE

)
⊗ Im

)
h(t) + hT (t)(Q⊗ Im)F̄ . (12)
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According to (12), we have that for t ∈ (tk, tk+1)

−hT
((
ET

σ(tk)
Q+QEσ(tk)

)
⊗ Im

)
h

≤ −
[
κ
(
rσ(tk)In + 2ΛD

)
0n×n

0n×n κ
(
rσ(tk)In + 2ΛD

)
− 2In

]
hTh.

By applying matrix theory, one gets

H1 = ET
σ(tk)

Q+QEσ(tk) =

[
κ
(
rσ(tk)In + 2ΛD

)
0n×n

0n×n κ
(
rσ(tk)In + 2ΛD

)
− 2In

]
. (13)

Substituting (13) into (12), yields

V̇ (t) = −1

2
hT (t)(H1 ⊗ Im)h(t) + hT (t)(Q⊗ Im)F̄ . (14)

Using the following fact

hT (t)(Q⊗ Im)F̄ =
(
hT
η (t) + hT

ν (t)
)
(F (h)− fl(ηl, νl)),

Equation (14) can become

V̇ (t) = −1

2
hT (t)(H1 ⊗ Im)h(t) +

(
hT
η (t) + hT

ν (t)
)
(F (h)− fl(ηl, νl)). (15)

By using Young’s inequality and Cauchy-Schwarz inequality, one gets

hT
η (t)(F (h)− fl(ηl, νl)) ≤

n∑
i=1

(∥hηi∥∥F (h)− fl(ηl, νl)∥)

≤
n∑

i=1

(∥hηi∥ (ρ1i∥hηi∥+ ρ2i∥hνi∥+ ρ1i∥pi∥))

≤
n∑

i=1

(
3ρ1i + ρ2i

2
∥hηi∥2 +

ρ2i
2
∥hνi∥2 +

ρ1i
2
∥pi∥2

)
. (16)

Similarly, one has

hT
ν (t)(F (h)− fl(ηl, νl)) ≤

n∑
i=1

(∥hνi∥∥F (h)− fl(ηl, νl)∥)

≤
n∑

i=1

(∥hηi∥(ρ1i∥hηi∥+ ρ2i∥hνi∥+ ρ1i∥pi∥))

≤
n∑

i=1

(ρ1i
2
∥hηi∥2 +(ρ1i + ρ2i)∥hνi∥2 +

ρ1i
2
∥pi∥2

)
. (17)

Substituting (16) and (17) into (15), one gets

V̇ (t) ≤ −1

2
hT (t)(H2 ⊗ Im)h(t) +

n∑
i=1

ρ1i∥pi∥2, (18)

where

H2 =

[
κ
(
rσ(tk)In + 2ΛD

)
−N1 0n×n

0n×n κ
(
rσ(tk)In + 2ΛD

)
−N2

]
,

N1 =

 4ρ11 + ρ21 · · · 0
...

. . .
...

0 · · · 4ρ1n + ρ2n

 ,
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N2 =

 2ρ11 + 3ρ21 · · · 0
...

. . .
...

0 · · · 2ρ1n + 3ρ2n

 .

Together with (11), rewrite Inequality (18) as follows:

V̇ (t) ≤ −λmin(H2)

λmax(Q)
V (t) +

n∑
i=1

ρ1i∥pi∥2 ≤ −c1V (t) + c2, (19)

where c1 =
λmin(H2)
λmax(Q)

, c2 =
∑n

i=1 ρ1i∥pi∥2.
By (19), one gets

V (t) ≤ e−c1tV (0) +
c2
c1

(
1− e−c1t

)
. (20)

The proof of Theorem 3.1 is completed.

4. Conclusion. This article has introduced the formation control issue for the nonlinear
MASs with switching topology and heterogeneous leader. Based on the switching topology
design principle and the formation control design theory, a new heterogeneous formation
control scheme has been developed. The proposed formation control method can guaran-
tee that all the signals of the second-order heterogeneous MASs are SGUUB and achieve
the formation control objective. Our future work will be directed at the formation control
for heterogeneous nonlinear MASs with quantized control inputs. In addition, finite-time
formation control [14], is an interesting work in the future.
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