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Abstract. AM is a futuristic technology that can fundamentally change the basis of
production technology from centralized mass production to distributed mass customiza-
tion. However, as per the innovation technology adoption lifecycle, AM technology re-
quires a process that can recognize major problems that cause a chasm in its diffusion,
share them, and present practical solutions. Improving real-time tracking and visibility of
AM processes is vital its optimization since it greatly impacts traditional manufacturing
methods. In particular, pore errors in metal AM equipment are a major drawback that
deteriorates product quality and causes monetary and time loss. AM urgently requires a
methodology to track and visualize real-time pore error. In this study, we defined data
and visualization methods for detecting pore errors among big data collected from metal
AM equipment. Also we describe the application prototype of the proposed visualization
method.
Keywords: Big data, Addictive manufacturing, Modeling and simulation, Visualization

1. Introduction. Engineering constantly provides new and efficient methods of manu-
facturing products and services that meet the diverse needs of society. Production tech-
nology has evolved into a form of continuous innovation. It presents a new paradigm for
creative destruction through disruptive innovation. Additive manufacturing (AM), better
known as three-dimensional (3D) printing technology, is a production technology that
manufactures products with 3D structures. It is used for producing consumer products
of different sizes in various fields, including micro-products with sizes of several mm or
less, foods products of unique designs, and buildings with complex shapes. Traditional
manufacturing processes have changed considerably due to AM technology.

Research activities are being carried out on AM technology so that it can enter the
commercial production market in multiple areas, ranging from micro parts and complex
shape, to final systems (i.e., CAD to SYSTEM) [1-6], as seen in Figure 1. Efforts are
being made to expand the industrial ecosystem through various business models.

In [7], Alberts et al. considered the paradigm shift in manufacturing through changes
in the manufacturing methods of the automobile industry over time, as presented in
Figure 2. He proposed that the paradigm of manufacturing technology is driven by the
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Figure 1. Applications of AM technology

Figure 2. The transition of manufacturing paradigm

development manufacturing, which goes through the stages of craft production → mass
production → mass customization → personalized production according to the social
needs and changes in market characteristics. The production approach adopted by Ford
increased the productivity and economic feasibility of mass-produced products. The com-
bination of computer-based automation and manufacturing technologies brought a shift
in production from conventional standardized mass production to partially or completely
customized product production through platform-based flexible production technologies.
As the market paradigm shifts from supplier-centered to consumer-centered, suppliers
need new production technologies to overcome uncertainties in design, performance, price,
product quantity, and after-service (AS). These drawbacks require a combination of infor-
mation and communication technology, along with new manufacturing methods. AM is
a futuristic technology that can fundamentally change the basis of production technology
from centralized mass production to distributed mass customization. Currently, advance-
ments in AM technology have been delayed due to insufficient technological completeness.



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.14, NO.8, 2023 857

However, as per the innovation technology adoption lifecycle, AM technology requires a
process that can recognize major problems that cause a chasm in its diffusion, share them,
and present practical solutions. Shortening the industrialization cycle effectively relies on
“how quickly the industrial ecosystem can be eventually solidified”. In truth, the analysis
results of the holders of AM patented technology indicate that the current AM technol-
ogy is primarily dominated by equipment developers, main suppliers, and end consumers
of industrial product supply chains. Furthermore, there is a lack of participation from
producers of materials and parts that make up the majority. Therefore, if various par-
ticipants take part in the AM industrial ecosystem, and participants in different areas
cooperatively involve themselves in problem-solving activities, the problems posed in the
current AM technology due to the so-called network effects can be solved effectively and
rapidly.

Big data is typically described as collecting huge and complex volumes of datasets for
effective usage. It consists of large amounts of structured data, semi-structured data and
unstructured data. In recent years, a necessity has emerged for utilizing big data in AM
[8,9].

Processes can be optimized through real-time tracking and visualization of AM data
since it greatly impacts traditional manufacturing methods. In particular, pore errors in
metal AM equipment are a major drawback that deteriorates product quality and causes
monetary and time loss. AM urgently requires a methodology to track and visualize real-
time pore error. In this study, we defined data and visualization methods for detecting
pore errors among big data collected from metal AM equipment.

This paper is organized as follows. Section 2 introduces related works on monitoring
and visualization method in metal AM. Section 3 describes the proposed method. Finally,
Section 4 concludes this paper with expected effects and future research plan.

2. Related Work. As summarized in Table 1, the approaches for monitoring the melt
pool mainly examine the appropriateness of the result value through quantification of
the data measured during the formation of the melt pool, and record it by location to
predict whether there is a defect in the stack. If this method is used, it may be useful to
distinguish the parts that are expected to be defective among the stacked parts using the
monitoring result data, but there is a limit in identifying the specific type and cause of
the defect and controlling the defect in real time.

It is necessary to secure various basic data and study related to implementation in
order to control in real time the defect predicted area identified through application pool
monitoring data analysis. Here, the basic data means corresponding melt pool defect data
for each melt pool monitoring image data, and lamination process data for removing melt
pool defects from the same layer or the next side. For this, a real-time digital twin model-
based monitoring technology is required. A real-time digital representation of the physical
domain in addictive manufacturing is needed, to accurately monitor, predict, and control
the process. The state of the physical world keeps changing as it continuously interacts
with the environment and is influenced by humans [15,16].

3. Proposed Approach. The proposed method focuses on the real-time digital repre-
sentation diverse datasets generated from the Internet of Things (IoT) during the manu-
facturing process. During this process, real-time tracking, analysis, and visualization are
provided in the entire manufacturing process, and decision-making and knowledge dis-
covery are supported. Figure 3 displays the real-time visualization method of pore error
detection. The salient features of the proposed system are as follows.

• The environment for data accumulation of the AM process (e.g., batch type and
streaming) is constructed using open-source software; it also collects AM data.



858 D. SEO, D. JUNG, N. KIM, G. HWANG, M. KIM AND S. C. JEONG

Table 1. Related works

Reference Sensor Monitoring method

Kolb et al. [3] CMOS
Pore detection and deformation according
to conditions

Gögelein et al. [4] CMOS camera
Wall thickness value compared to actual
model

Grasso et al. [5] high speed vision
defect detection and conformance to spec-
ifications

Kelly et al. [6] photodiode, camera
Defect analysis for shape, powder flatness,
etc.

Alberts et al. [7] photodiode Compare the signal and noise ratios

Colosimo and Grasso [8] photodiode, camera Monitoring of molten pools

Clijsters et al. [9] photodiode
Distinguish between contour scan and fill
scan

Furumoto et al. [10]
pyrometer, high

speed camera

Temperature measured during powder so-
lidification by a 2-color pyrometer with
optical fiber.

Islam et al. [11] pyrometer, camera Differences in measured values

Craeghs et al. [12] pyrometer
Thermal deformation detection, overheat
detection

Krauss et al. [13] Infrared camera
Signal difference according to process con-
ditions

Lott et al. [14] high speed camera Spot diagram value using FFT and MTF

Jani et al. [15] pyrometer
Powder layer thickness, pyrometer signal
analysis

Figure 3. Real-time visualization process of pore error detection
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• The conceptual design centered on process, data, and architecture is performed to
establish an integrated system for quality control, maintenance, and efficient process
support of AM.

• The developed system is constructed by applying components of the Hadoop ecosys-
tem. Its structure can be applied universally rather than specifically according to
the material and output method.

• The developed system consists of data collection, management, data applications,
and infrastructure areas. Data are collected from a variety of data providers, and
batch and real-time streaming data are processed on the platform.

• The developed system is developed into a structure that utilizes a database structure
and a file system for storing and processing sensors and images collected from AM
equipment.

• The developed system provides the ability to review real-time data via real-time
digital representation of the physical domain in addictive.

3.1. Sensor data and metadata, such as input commands, to detect pore errors.
Each part consists of a related folder labeled “X yyy gcode”, where X represents the part
number and yyy represents the description of the scan strategy. This folder contains
*.gcode files (space-separated text), geometric code (G-code) generator parameter files,
and G-code interpreter parameter files, all of which are tab-separated text files.

AM G-code files are provided and stored for future reference by the author. They are
used for generating raw command files for XYPT (which stands for X, Y, power, and
trigger) command files that contain all the details of the build scan strategy, including
the event timing of the melt pool monitoring camera.

The XYPT command files are stored in the “XYPT Commands” subfolder of the “Build
Command Data.zip” folder. The files are formatted with comma-separated values (.CSV)
American standard code for information interchange (ASCII) text in four columns, where
each file named “*layerXXXX.csv” provides a command for layer number XXXX.

The XYPT file provides basic laser positioning and control commands for AMMT. They
are based on the XY2-100 command protocol for the laser system, where the X (mm) and
Y (mm) columns provide the position commands for the laser. The power (W) column
provides a laser power command.

A trigger column (unitless) is a decimal binary representation used for executing output
trigger channels (eight labeled channels from 0 to 7). For example, to trigger channel
1 (second channel), the binary representation is 0010 and the decimal representation
is “2”; therefore, the “trigger” column of the XYPT file displays “2”. To trigger both
channels 0 and 2 (first and third channels), the binary representation is 0101, the decimal
representation is 5, and the trigger column displays “5”. For this data set, only channel 1
is connected to the melt pool monitoring camera. Therefore, the “2” in the trigger column
indicates the frame capture time. Several additional files related to system settings and
materials are provided in the “Metadata.zip” folder.

3.2. Process monitoring data. Data is collected from two devices: a coaxial MPM
camera and a layer camera. The coaxial MPM camera is optically aligned with the laser
axis; as a result, the melt pool appears to be fixed in view regardless of the XY position.
The layer camera is located in a fixed position on the build plane.

The coordinates defined to describe the orientation and position of the fixed devices,
such as the coaxial MPM camera or layer camera. The spot position is defined as a
< Axlaser, Aylaser > vector. The default coordinate system {A} and the transformation
coordinate system {L} are connected to a laser spot where the x-, y-, and z-axis aligned
with the axes of {A}.
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3.3. Real-time digital representation. This research performs the monitoring from
using GE concept laser 3D printer to collect the data, to visualizing the result. Figure
4 displays the integrated data visualized in real time in a suitable form. First, data
synchronization is performed to reflect the real-time nature of the equipment. Thereafter,
they are graphically matched to the location, including each information. Finally, the
corresponding data are visualized in the form shown in Figure 4, and the size and location
of the melt pool are visualized in real time to display the state and speed of the output
layer according to the laser position, which allows the user to judge pore errors in AM. In
addition, exceptional situations where pore errors may occur are expressed by graphing
the state changes of the melt pool according to the laser energy at the graphical inset of
Figure 4. The process and salient features of the design of the dashboard-style monitoring
interface for interworking real-time sensor data of AM and real-time monitoring of the
corresponding data is as follows: Design the dashboard environment to read files of stored
data, link them up, and recall them in a web-based dashboard environment. The real-
time digital representation of the physical domain in addictive manufacturing is needed,
to accurately monitor, predict, and control the process.

Figure 4. Real-time visualization for detecting porosity in metal addictive
manufacturing

4. Conclusions. In this study, we defined data and visualization methods for detecting
pore errors among big data collected from metal AM equipment. The paper focuses on
the real-time digital representation diverse datasets generated from the Internet of Things
(IoT) during the manufacturing process. Also we describe the application prototype of
the proposed visualization method.
For future work, we are improving the platform to make it capable of analyzing a variety

of AM data, and to be able to use an HPC cloud platform to share workflow among users.
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