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Abstract. Aiming at the problems that the sparrow search algorithm is easy to fall
into local optimum and poorly stable, an improved sparrow search algorithm based on
nonlinear dynamic adjustment strategy and Cauchy mutation is proposed. A nonlinear
dynamic strategy is adopted to automatically adjust the number of early warning accord-
ing to the change of the fitness value of sparrows and balance the capacity of local search
and global search. Cauchy operator is used to disturb mutation and enhance the capacity
of algorithm to jump out of local optimum. Simulation results on multiple test functions
show that the proposed algorithm has strong optimization capacity and high stability, and
can effectively overcome the premature convergence.
Keywords: Sparrow search algorithm, Nonlinearity, Dynamic adjustment, Cauchy mu-
tation

1. Introduction. The swarm intelligence optimization algorithm [1] is a random search
algorithm inspired by group behavior or physical phenomena of natural organisms. It has
features like easiness to operate and strong robustness. At present, the swarm intelligence
optimization algorithm has got extensive attention and has become one of the research
hotspots in the design and analysis of computer algorithms [2].

Sparrow search algorithm (SSA) is a novel swarm intelligence optimization algorithm
proposed by Xue and Shen [3] in 2020 by simulating foraging behavior and anti-predation
behavior of sparrows, with a higher solution accuracy and speed. However, there are
defects like serious convergence in later iteration. In view of those defects, many scholars
have proposed different improvement strategies of optimization formula and parameter
selection. Wu et al. [4] brought in logistic chaotic mapping and linear decreasing weight
method into SSA. Experiments show that the improved algorithm has less premature
risk, faster speed and better stability than SSA. Mao and Zhang [5] applied Sin chaotic
mapping, dynamic adaptive weights, Cauchy variance and backward learning strategies,
got a better performing algorithm in finding the best solution than three basic algorithms
SSA, GWO and MFO, and two improved sparrow algorithms ASSA and CASSA. Chen
and Chen [6] proposed multiple swarm ant colony optimization (MACO) and quantum
particle swarm optimization (QPSO) based on ACO and PSO to optimize the trajectory
planning and positioning error of a five-degree-of-freedom manipulator, while the optimal
route was verified by simulating the manipulator. However, further analysis found those
existing improvement measures did not adjust the diversity of the population in the
optimization process, for which it needs to be further improved.

Aiming at defects of SSA in convergence speed and accuracy, this paper proposes an
improved sparrow search algorithm based on nonlinear dynamic adjustment and Cauchy
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mutation. Secondly, to verify the effectiveness of this new algorithm, 10 benchmark func-
tions are simulated. Finally, the optimization process of ISSA is visualized.

2. Sparrow Search Algorithm. Sparrow population plays three roles in different pe-
riods: discoverer, participant and early warning. The location of discoverers is updated
as follows:

X t+1
i,j =

 X t
i,j · exp

(
− i

α·itermax

)
if R2 < ST

X t
i,j +Q · L if R2 ≥ ST

(1)

where itermax is the maximum of iterations. α ∈ (0, 1] is a random number. R2 (R2 ∈
[0, 1]) and ST (ST ∈ [0.5, 1]) represent warning value and safety value, respectively. Q is
a random number that follows a normal distribution. L represents a 1× d matrix, where
all elements in the matrix are 1.
The location of participants is updated as follows:

X t+1
i,j =

 Q · exp
(
−Xworst−Xt

i,j

α·itermax

)
if i > n/2

X t+1
p +

∣∣X t
i,j −X t+1

p

∣∣ · A+ · L otherwise
(2)

where Xp represents the optimal position of the discoverer; Xworst represents the worst

position in the whole world. A represents a 1× d matrix, and A+ = AT
(
AAT

)−1
.

When the sparrow flock is foraging, some sparrows will be selected to be on guard.
10%∼20% sparrows were randomly selected from the total for warning behavior. The
location update formula is

X t+1
i,j =


X t

best + β ·
∣∣X t

i,j −X t+1
best

∣∣ if fi > fg

X t
i,j +K ·

(
|Xt

i,j−Xt
worst |

(fi−fw)+ϵ

)
if fi = fg

(3)

where Xbest is the current global optimal position. β is the step control parameter. K ∈
[−1, 1] is a random number, which represents the moving direction of the sparrow. fi is
the fitness value of the current sparrow individual. fg and fw are the current global best
and worst fitness values, respectively.

3. Improved Sparrow Search Algorithm.

3.1. Nonlinear dynamic change strategy of the number of early warning. In
SSA, the early warning update process is actually a secondary optimization of some
individuals in the population and the number of early warning is constant, and the larger
the number is set, the higher the global search capacity of the algorithm is got, but later
it may cause the algorithm to fall into local extreme.
Consider a 5th order Butterworth filter amplitude-frequency response curve model ex-

hibiting excellent transitions between linear and nonlinear behavior [7], a strategy for
nonlinear dynamic change in the number of early warning based on Butterworth filter is
proposed, according to the fitness value of sparrows after each iteration [8], the proportion
of individuals undergoing secondary optimization gets adjusted by adjusting the number
of early warning. Mathematical model is as follows:

SD =
0.1

1 +
(

fg
fi

)10 + 0.1 (4)

The number of early warning can be automatically adjusted in a range of 10%∼20% with
the change of fitness value, which enhances the intelligence of sparrows in the process of
optimization and keeps the balance between global search and local development capacity.
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3.2. Cauchy mutation strategy. Cauchy mutation [8] originates from Cauchy distri-
bution, longer distributions at both ends of the Cauchy density function give individuals
a higher probability of jumping out of the local optimum, and the mutation produces a
large variability between offspring and parent. Cauchy mutation operation is introduced,
which not only keeps the population diversity when sparrows are obviously clustered at
later algorithm, but also enables the algorithm to jump out of the local optimum. The
specific steps of Cauchy mutation are as follows.

1) Judge whether the algorithm falls into premature convergence according to the vari-
ance of fitness value of sparrow population. The formula is as follows:

σ2 =
1

n

n∑
i=1

(
fi − favg

f

)2

(5)

where f = max(1,max |fi − favg |), favg is the fitness value of all the current sparrows
on average. The size of σ2 reflects the convergence state of the sparrow population, the
greater the value of σ2, the better the diversity of the sparrow population possesses; on
the contrary, the population diversity is poor and the algorithm tends to converge. In
this paper, the threshold value of σ2 is set to 0.1, and when σ2 is less than this threshold
value, the algorithm falls into a premature state.

2) When the algorithm fell into premature state, Cauchy perturbation was performed
on 70% of sparrows. The Cauchy distribution random variable generating function is
introduced as follows:

Cauchy(0, 1) = tan((rand − 0.5) ∗ π) (6)

And the Cauchy mutation was carried out on selected sparrows to obtain

X t+1
i,j = X t

i,j(1 + 0.7 ∗ Cauchy(0, 1)) (7)

3) Although Cauchy perturbation strategy can enhance the capacity of the algorithm to
jump out of local extremum, it cannot be determined that the new position obtained after
perturbation mutation is better than the fitness value of the original position, therefore,
the greedy rule is introduced, by comparing the fitness values of the old and new locations,
whether to update the location is determined. The rules of greed are as follows:

Xbest =

{
X t+1

i,j , f
(
X t+1

i,j

)
< f(Xbest)

Xbest, f
(
X t+1

i,j

)
≥ f(Xbest)

(8)

The pseudo-code of the improved sparrow optimization algorithm is as follows:

Input pop, iter, PD , SD , RD, ST
Establish an objective function F (x), where variable x = (x1, x2, . . . , xd).
Initialize the sparrows population xi and vi.
Rank the fitness values and find the current best individual and the current worst
individual.
For i = 1 : iter

R2 = rand(1)
For j = 1 : PD

Use Equation (1) to update the sparrow’s location;
end for
For j = (PD + 1) : pop

Use Equation (2) to update the sparrow’s location;
end for
For j = 1 : SD

Use Equation (3) to update the sparrow’s location;
end for
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IF variance of the fitness values c1 < 0.1
For j = 1 : RD

Use Equation (7) to update the sparrow’s location;
end for

end if
The number of the sparrows who perceive the danger nonlinear dynamic change
according to Equation (4).
Get the current new location;
If the new location is better than before, update it;
t = t+ 1;

end for
Return Xbest, fg

4. Simulation Experiment and Result Analysis. To further prove the effectiveness
of ISSA that was proposed, PSO, BA, GWO and SSA are used for comparison, and ten test
functions commonly used are selected to test the convergence accuracy, convergence speed
and stability of the proposed algorithm. In addition, three two-dimensional functions are
selected to visualize the movement track of sparrow population. For avoiding the bias
of single results, 30 experiments were conducted independently for each optimization
problem in 30 and 70 dimensions for each of the five algorithms.

4.1. Basic test functions. In order to simulate difficulties of searching space in practice,
10 kinds of single-peak and multi-peak test functions were selected according to their
dimensions for numerical experiments. The specific function expressions and the range of
values are shown in Table 1.

Table 1. Test functions

Function name Expression Initial range

Schwefel’s 2.22 f1(x) =
n∑

i=1

|xi|+
n∏

i=1

|xi| [−10, 10]

Schwefel’s 2.21 f2(x) = max{|xi|, 1 ≤ i ≤ n} [−100, 100]

Rosenbrock’s f3(x) =
n−1∑
i=1

[
100

(
xi+1 − x2

i

)2
+ (xi − 1)2

]
[−30, 30]

Step f4(x) =
n∑

i=1

([xi + 0.5])2 [−100, 100]

Quartic f5(x) =
n∑

i=1

ix4
i + random[0, 1) [−1.28, 1.28]

Schwefel’s 2.26 f6(x) =
n∑

i=1

−xi sin
(√

|xi|
)

[−500, 500]

Rastrigin’s f7(x) =
n∑

i=1

[
x2
i − 10 cos(2πxi) + 10

]
[−5.12, 5.12]

Ackley’s f8(x) = −20 exp

(
−0.2

√
1

n

n∑
i=1

x2
i

)
− exp

(
1

n

n∑
i=1

cos(2πxi)

)
+ 20 + e [−32, 32]

Griewank’s f9(x) =
1

4000

n∑
i=1

x2
i −

n∏
i=1

cos

(
xi√
i

)
+ 1 [−600, 600]

Peneralized f10(x) =
π

n

{
10 sin(πy1) +

n−1∑
i=1

(yi − 1)2
[
1 + 10 sin2(πyi+1)

]}
+

n∑
i=1

u(xi, 10, 100, 4) [−50, 50]
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4.2. Algorithm parameter setting. For verifying the effectiveness of ISSA fairy, the
simulation experiment runs in the same running environment, MATLAB 2020b is used to
complete this simulation. The population number of each algorithm is 100, the maximum
of iteration is 100, and other parameter algorithms as shown in Table 2.

Table 2. Parameter setting table

Algorithm Parameter setting

PSO c1 = c2 = 1.49

BA R0 = 0.7, Af = 0.9, Rf = 0.9, F ∈ [0, 2]

GWO Linearly decreasing from A 2 to 0, r1, r2 ∈ [0, 1]

SSA PD = 70%, R2 = 0.6, SD = 20%

ISSA PD = 70%, R2 = 0.6, SD = 20%, RD = 70%

4.3. Results analysis. Table 3 shows results of five algorithms on 10 test functions,
it is shown both in 30 dimensions and in 70 dimensions, and the proposed ISSA has
different magnitudes of improvement in convergence accuracy, where the optimal and
average values of functions f1, f2, f6 to f9 all reach the theoretical optimum. Comparing
the experimental results in 30 and 70 dimensions, it is shown the convergence accuracy
of the proposed algorithm does not decrease significantly with the increase of dimensions,
that is, sparrows can jump out of the local optimum. The data of standard deviation
shows the standard deviation of ISSA is smaller than that of the other four algorithms
under 10 standard test functions, which indicates that the stability and robustness of
ISSA are obviously better than those of the other five algorithms.

In order to show the optimization speed and precision of ISSA algorithm more intu-
itively, draw the convergence curves of ISSA algorithm and the other four comparison
algorithms on 10 test functions in 70 dimensions, are drawn and shown in following Fig-
ures 1 and 2, where the abscissa is the iteration number and the ordinate is the optimal
logarithmic fitness value.

ISSA convergence curve always shows inflection point first, which indicates that the
convergence speed of ISSA is better than other four algorithms, and the convergence
speed advantage of ISSA is more obvious in f3, f6 and f10.

In order to show ISSA’s trajectory more intuitively, the reduced wave function, Rasstri-
gin function and Ackley function are selected for optimization search. The darkest position
in the figure is the global optimum. Figure 3 clearly shows that most sparrows can gather
at or near the global optimum, and a small number of sparrows are trapped in the local
optimum, but still have the ability to move to (0, 0).

The simulation results show that ISSA has higher accuracy and faster convergence
speed. The results of numerical experiments also show that the global search ability and
local development ability of the algorithm are dynamically balanced and more stable.
Therefore, ISSA’s optimization performance is relatively stronger and smarter, and it is
a more efficient algorithm.

5. Conclusion. Aiming at the defects of SSA, an improved sparrow search algorithm
based on nonlinear dynamic adjustment and Cauchy mutation is proposed. Based on
the nonlinear dynamic change of Butterworth filter and sparrow population fitness value,
the number of vigilants is changed dynamically, which effectively balances the global
development and local search ability of the algorithm; the Cauchy variation strategy is
integrated to improve the probability of the algorithm to jump out of the local extremes
and improve the global exploration performance. 10 test functions are selected to simulate
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Table 3. Comparison of test function optimization results

F Algorithm
Best Ave Std Best Ave Std

d = 30 d = 70

f1

PSO
BA

GWO
SSA
ISSA

4.594E-04
2.073E-06
0.000E+00
0.000E+00
0.000E+00

5.416E-03
3.407E-03
0.000E+00
0.000E+00
0.000E+00

1.487E-02
1.487E-02
0.000E+00
0.000E+00
0.000E+00

3.549E-04
1.663E-04
0.000E+00
0.000E+00
0.000E+00

6.264E-03
9.658E-03
0.000E+00
0.000E+00
0.000E+00

1.769E-02
2.278E-02
0.000E+00
0.000E+00
0.000E+00

f2

PSO
BA

GWO
SSA
ISSA

1.375E-04
2.015E-05
0.000E+00
0.000E+00
0.000E+00

5.692E-03
1.414E-04
0.000E+00
0.000E+00
0.000E+00

1.157E-02
1.499E-04
0.000E+00
0.000E+00
0.000E+00

2.989E-04
3.636E-06
0.000E+00
0.000E+00
0.000E+00

3.909E-03
1.313E-04
0.000E+00
0.000E+00
0.000E+00

8.843E-03
2.576E-04
0.000E+00
0.000E+00
0.000E+00

f3

PSO
BA

GWO
SSA
ISSA

1.001E+01
1.007E-04
8.134E-04
6.715E-06
1.523E-08

4.564E+01
1.148E+01
7.550E+00
1.697E-04
3.638E-06

4.747E+01
1.435E+01
1.356E+01
3.093E-04
4.773E-06

1.131E+01
1.088E-04
9.424E-01
1.238E-04
1.752E-07

4.573E+01
2.732E+01
2.065E+01
1.689E-03
2.024E-05

8.506E+01
3.415E+01
2.886E+01
3.612E-03
4.469E-05

f4

PSO
BA

GWO
SSA
ISSA

1.171E-05
8.687E-08
3.244E-03
1.065E-07
8.007E-12

1.870E-04
1.938E-06
1.645E-01
2.854E-06
2.806E-09

7.611E-04
5.171E-06
2.307E-01
1.311E-05
4.789E-09

1.290E-06
1.160E-07
1.320E-01
1.318E-07
2.839E-11

1.233E-04
4.649E-06
5.837E+00
7.038E-06
3.563E-08

1.092E-03
1.098E-05
7.241E+00
5.082E-05
4.823E-08

f5

PSO
BA

GWO
SSA
ISSA

2.227E-04
3.368E-04
1.040E-04
1.024E-04
7.693E-07

2.576E-03
2.815E-03
2.368E-03
3.140E-04
3.571E-05

6.138E-03
5.912E-03
1.876E-02
4.332E-04
4.599E-05

1.794E-04
1.039E-04
1.015E-04
1.029E-04
2.192E-06

3.270E-03
3.539E-03
4.095E-03
2.947E-04
3.297E-05

1.545E-03
8.463E-03
2.396E-02
2.377E-04
4.050E-05

f6

PSO
BA

GWO
SSA
ISSA

−8.380E+03
−1.257E+04
−1.257E+04
−1.257E+04
−1.257E+04

−8.308E+03
−1.257E+04
−1.242E+04
−1.257E+00
−1.257E+04

1.250E+02
1.897E-07
5.280E+02
1.219E+00
5.324E+00

−8.380E+03
−2.933E+04
−2.933E+04
−2.933E+04
−2.933E+04

−7.748E+03
−2.933E+04
−2.897E+04
−2.933E+04
−2.933E+04

1.185E+03
4.622E-07
7.453E+02
8.147E+00
5.855E+00

f7

PSO
BA

GWO
SSA
ISSA

1.770E-02
6.674E-08
0.000E+00
0.000E+00
0.000E+00

3.953E+00
1.257E-04
0.000E+00
0.000E+00
0.000E+00

2.954E+00
4.709E-04
0.000E+00
0.000E+00
0.000E+00

1.598E+00
2.097E-07
0.000E+00
0.000E+00
0.000E+00

5.922E+00
9.195E-04
0.000E+00
0.000E+00
0.000E+00

3.535E+00
7.054E-03
0.000E+00
0.000E+00
0.000E+00

f8

PSO
BA

GWO
SSA
ISSA

1.649E+00
4.074E-06
8.882E-16
8.882E-16
8.882E-16

1.651E+00
2.584E-04
8.882E-16
8.882E-16
8.882E-16

2.950E-03
4.222E-04
0.000E+00
0.000E+00
0.000E+00

1.689E+00
6.310E-06
8.882E-16
8.882E-16
8.882E-16

1.691E+00
5.018E-03
8.882E-16
8.882E-16
8.882E-16

4.520E-03
1.010E-03
0.000E+00
0.000E+00
0.000E+00

f9

PSO
BA

GWO
SSA
ISSA

1.056E-07
5.875E-09
0.000E+00
0.000E+00
0.000E+00

2.375E-04
2.500E-03
0.000E+00
0.000E+00
0.000E+00

1.172E-07
5.697E-07
0.000E+00
0.000E+00
0.000E+00

1.140E-07
1.176E-10
0.000E+00
0.000E+00
0.000E+00

1.559E-03
4.872E-08
0.000E+00
0.000E+00
0.000E+00

1.172E-03
2.430E-08
0.000E+00
0.000E+00
0.000E+00

f10

PSO
BA

GWO
SSA
ISSA

1.053E-07
9.238E-08
3.826E-04
2.216E-07
2.484E-12

2.079E-06
4.224E-08
4.297E-02
3.235E-07
3.025E-10

1.718E-06
3.388E-08
7.391E-02
3.340E-07
4.956E-10

2.134E-07
1.02E-08
9.969E-06
2.279E-08
1.185E-10

5.658E-06
4.575E-08
4.410E-02
5.163E-07
5.067E-09

3.260E-05
1.278E-07
2.725E-01
1.468E-06
9.099E-09
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Figure 1. Convergence curves of single-peak test functions of 5 algorithms

Figure 2. Convergence curves of multi-peak test functions of 5 algorithms

the ISSA proposed in this paper with similar algorithms in different dimensions, and
the results show that ISSA has better overall performance, better convergence speed
and accuracy, and good stability and robustness. There are still many problems for SSA
research, which can try to introduce reverse learning into the algorithm and also combine
the new ideas of this paper with other swarm intelligence algorithms.
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Figure 3. (color online) Optimization trajectory of ISSA
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