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Abstract. This paper proposes a framework for detecting cattle lameness by quantify-
ing the variability of body movement using depth imaging data collected while cows walk
from the milking center to the resting area. The framework identifies critical factors that
determine lameness scores based on the root mean square successive differences, various
types of information entropies, and geometric measures of the collected depth data. To
analyze lameness status, we developed an operational simulation model that combines
Monte Carlo simulation with popular probability distribution functions such as uniform,
normal, Poisson, and Gamma distributions. The simulation results suggest that detec-
tion performance and the characteristics of lame and non-lame cows significantly affect
body movement variability. By using real-life data, we aim to validate this conjecture in
future work.
Keywords: Cattle lameness detection, Depth imaging, Body movement variability, In-
formation entropy, Monte Carlo simulation

1. Introduction. Lameness is a widespread welfare issue that has adverse effects on ani-
mal welfare, milk production, and farm economics worldwide. Limb disorders cause severe
cow mobility, posture, and gait [1,2]. On the other hand, lameness in dairy cattle leads
to significant economic losses and strongly deteriorates cow welfare. These losses include
high treatment costs, reduced milk production, decreased fertility resulting in prolonged
calving intervals, and early culling [3-6]. Unfortunately, farmers often underestimate the
economic effect and prevalence of lameness in their herds, which results in late detection
and treatment of the condition [7,8]. Correct and timely detection of lame cows is essential
for reducing economic losses, improving animal welfare, and lowering on-farm lameness
prevalence.

Traditionally, detecting lame cows has been done by farm experts using visual loco-
motion scoring, which is a labor-intensive, time-consuming, and experience-dependent
method. Furthermore, the irregular practice of performing visual locomotion scoring can
lead to inaccurate diagnoses and untreated lameness. To address these issues, research
has focused on the development of automated lameness detection systems using a variety
of sensor techniques, such as cameras, pressure mats, and accelerometers [11,12].

Automated lameness detection methods can be categorized into three main types: kine-
matic, kinetic, and indirect methods [13]. Among them, computer vision detection sys-
tems using the kinematic method, which measures the geometry of movement without
considering the forces that cause the movement, have become increasingly popular. Most
computer vision-based lameness detection systems utilize traditional 2D or 3D cameras
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or thermal infrared cameras. However, in this paper, we propose using a depth camera in-
stalled at the top of the pathway from the milking center to the resting area for automated
lameness detection.
The hypothesis of this paper is that the variables used to detect lameness are condi-

tioned by large variations among the successive differences in depths of individual cows’
back arch postures. Therefore, an automated lameness detection system should account
for this variation, which we term Body Movement Variability (BMV). The main contri-
bution of this study is to develop an image-based lameness detection system that allows
us to apply BMV on an individual level and uses back posture to classify lameness levels.
The remainder of this paper is structured as follows. Section 2 provides a literature

review of existing automated lameness detection systems and discusses their limitations.
Section 3 describes the proposed method for detecting lameness using a depth camera and
introduces the concept of body movement variability. Section 4 presents the experimental
setup and methodology used in this study. Section 5 presents discussions on methodology
and concluding remarks followed by conclusions in Section 6.

2. Literature Review. Recent research has focused on using image processing tech-
niques to extract features for lameness characteristics from videos [14]. Automated lame-
ness detection has been investigated through several academic research papers, with most
researchers focusing on providing useful cow- and herd-level information to address infor-
mation gaps, particularly regarding mild and moderately lame cows [15-17]. Deep learning
techniques have shown great potential in improving feature extraction accuracy compared
to traditional image processing methods, and there has been a growing interest in using
them for the automatic detection of lameness in cows [5,14].
Automated methods of lameness detection typically fall into three categories: kinemat-

ic, kinetic, and indirect methods, with sensor system selection being a major consideration
[5]. A computer vision system using kinematics has shown promise in measuring move-
ment geometry without considering the forces that cause the movement. This system has
a moderate price and non-contact information acquisition method and has demonstrated
that lame cows compared with healthy cows have shorter stride lengths, longer stride du-
ration, slower average speeds, and lower mean vertical distance. Another computer vision
technique recorded stride length, back arch, and swing duration, suitable for detecting
cow lameness [14,18].
Despite the advantages of computer vision lameness detection systems, there are still

some problems that have limited their widespread use, such as accurately obtaining char-
acteristic data, selecting appropriate methods for computer vision-based lameness de-
tection, and exploring multi-feature fusion approaches to detect cow lameness [5,19]. To
address these issues, utilizing deep learning techniques to extract cow lameness features
from videos can improve feature extraction compared to traditional image processing
methods. Additionally, a new approach for lameness detection is to use the Back Move-
ment Variation (BMV) of a cow, defined as the variation of the differences between two
successive depth measures of a cow’s back arch. This approach offers a new way to detect
cow lameness, with details described in the following sections.
To classify lameness levels according to various characteristics, statistical analysis of

the data, such as linear correlation analysis, regression analysis, or machine learning
techniques can be used. However, it is important to consider potential problems with
research methods of lameness detection in cows by computer vision, including the need for
new methods and features more suitable for computer vision-based lameness detection and
the use of complementary methods to improve the accuracy of detection and classification
[20,21].
Therefore, in this paper, we propose a new direction for lameness detection using the

BMV of a cow. As in the above paragraph, the BMV is defined as the variation of the
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differences between two successive depth measures of the cow’s back arch. We will describe
the details of this method in the following sections. Additionally, we suggest exploring
new methods and features more suitable for computer vision-based lameness detection and
using complementary methods to improve the accuracy of detection and classification.

3. Materials and Methods. In this section, the depth image data collection process
and the operational lameness detection model of our proposed method are mainly de-
scribed.

3.1. Depth image data. The setup for data collection was placed in the passageway
from the milking center to the hall with the feeding system. All measurements were taken
on a walking animal from top view by using a depth camera located over the passage at
approximately 3 meters above the ground. An illustrative continuously measuring and
collecting lameness data is shown in Figure 1.

Figure 1. Illustration of depth image data collection

3.2. Operational lameness detection model. In real-life situations, most lameness
data or data sequences exhibit some form of a pattern, whether regular or irregular. To
understand trends in data, statistics – a mathematical tool – can be used. Variability in
statistics is the degree to which data in a set varies or how much difference there is in a
single set of data. It also refers to the consistency of the pattern in a set of data. General
descriptions of a set of data, such as the mean, may not always provide the full picture
of what is going on with the data. Measures of variability, on the other hand, enable
researchers to determine the consistency of results to make assumptions about what is
being studied. Several measures of variability are available to help researchers determine
how much variability is present in a set of data, considering potential outliers. The most
common measures of statistical dispersion include mean deviation, variance, standard
deviation, range, and interquartile range. These measures have been used to study the
variability of heart rates to diagnose healthy and unhealthy individuals, in mental health
care to differentiate between normal and abnormal cases, and in other areas.

In this paper, we propose using the measure of variability to detect lameness scores in
cows. Specifically, we define the BMV of the cow as the variability of successive shortest-
depth intervals, which we refer to as SS intervals. We then calculated three types of
measures for lameness detection scoring: Mean SS

(
SS
)
, Standard Deviation SS (SDSS ),

and Root Mean Square of Successive Differences (RMSSD), collectively known as linear
measures.

3.2.1. Linear measures for lameness. The formulations of the linear measures for lameness
are described in the following lists.
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i) Mean SS interval
(
SS
)
: Let the SS interval time series include successive shortest

depths intervals, i.e., SS = (SS1, SS2, . . . , SSN). Then, the Mean SS interval
(
SS
)

and the Body Fluctuation Rate (BFR) are defined as follows:

SS =
1

N

N∑
n=1

SSn, BFR =
T

SS
(1)

where SSn denotes the value of the nth SS interval and T represents the time duration
for individual cow recording.

ii) Standard Deviation of SS intervals (SDSS ): SDSS is the square root of variance.
Since variance is mathematically equal to the total power of spectral analysis, SDSS
reflects all the cyclic components responsible for variability in the period of recording.
SDSS is defined as follows:

SDSS =

√√√√ 1

N − 1

N∑
n=1

(
SSn − SS

)2
(2)

iii) Root Mean Square of Successive Differences (RMSSD) calculating the shortest depth
interval SS ; that is defined as follows:

RMSSD =

√√√√ 1

N − 1

N−1∑
n=1

(SSn+1 − SSn)
2 (3)

These measures described in Equations (1)-(3) were used for scoring lameness levels by
thresholds in a suitable manner. Similarly, we established some non-linear measures for
cow body fluctuations variability for cow lameness detection.

3.2.2. Non-linear measures for lameness. The proposed body movement variability can
also be measured by using non-linear methods. Specifically, we applied various types of
entropy from information theory. In 1948, Shannon (Mathematician) proposed the con-
cept of entropy which is known as Shannon Entropy (SE) to measure how the information
within a signal can be quantified with absolute precision as the amount of unexpected
data contained in the message. Although there are several common entropies, we utilized
two of them: Multiscale Entropy (MSE) and Distribution Entropy (DistEn) for lameness
detection.

i) Multiscale entropy analysis : The MSE analysis is a new method of measuring the
complexity of finite length time series. We have developed and applied MSE for the
analysis of dairy cows’ depth data time series. The computational procedure for MSE
can be used with a variety of measures of entropy for which we prefer to estimate
entropy using the Sample Entropy (SampEn) measure. SampEn is a refinement of the
approximate entropy family of statistics. Both have been widely used for the analysis
of physiologic datasets. In order to define multiscale entropy, we first reconstructed
the given depths data by averaging the data points within non-overlapping windows
of increasing length, τ . The schematic illustration for scales 2 and 3 is shown in Figure
2. Each element of the time series yτj is calculated according to Equation (4) where τ
represents the scale factor and 1 ≤ j ≤ N/τ . The length of each time series is N/τ .

yτj =

(
1

τ

) jτ∑
i=(j−1)τ+1

xi (4)

For scale 1, the constructed time series is simply the original time series. SampEn
with unity delay is calculated for each time series and then plotted as the function of
the scale factor τ to obtain the corresponding multiscale entropy.
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Figure 2. Schematic illustration of the procedure for scales 2 and 3

ii) Distribution entropy analysis : In this section, we developed the DistEn in order to
analyze the depth data for dairy cow lameness problems. DistEn is a recently intro-
duced measure of signal “complexity”. It is calculated from the empirical Probability
Distribution Function (ePDF) of vector-to-vector distances of the signal. DistEn is a
function of three parameters: data length N , embedding dimension m and the num-
ber of bins M used in the probability distribution. In most cases, DistEn is known
to be less influenced by changes in N and M . Additionally, DistEn performs better
than other entropy measures, especially for short-length signals. In this paper, we
explored the depth data relevance of DistEn cow lameness pattern analysis.

3.2.3. Definition of distribution entropy. DistEn is calculated based on the ePDF of
distances among vectors formed from a given time series. For given time series data
{x(n) : 1 ≤ n ≤ N} of length N and embedding dimension m, DistEn is calculated as
follows.

1) Form (N −m) vectors of length m each, given by {Xm
i : 1 ≤ i ≤ (N −m)}, where

Xm
i = {x(i+ k) : 0 ≤ k ≤ m− 1} (5)

2) Take each Xm
i vector of step 1) as a template vector and find its distance from every

vector Xm
j where the distance is given by the following equation:

dmij =
{
max

∣∣Xm
i −Xm

j

∣∣ : 1 ≤ j ≤ (N −m), j ̸= i
}

(6)

3) When step 2) is repeated for all ith template vectors where 1 ≤ i ≤ (N − m), a
distance matrix D of dimension ((N −m)× (N −m− 1)) is formed as shown below:

D =

 dm12 . . . dm1(N−m)
...

. . .
...

dm(N−m)1 · · · dm(N−m)(N−m−1)

 (7)

From Equation (7), it is evident that elements in D are being repeated twice, i.e.,
dmij = dmji .

This is true because the distances are absolute values as can be seen from Equation
(6). Thus, in formulating DistEn, it becomes sufficient to use either the upper triangle
or lower triangle of D. Here, we used the upper triangle only and denote the resulting
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matrix as D′, where

D′ =

 dm12 . . . dm1(N−m)
...

. . .
...

· · · dm(N−m)(N−m−1)

 (8)

The elements of the distance matrix D′ are now divided equally into M number of bins
and the corresponding histogram is obtained. Now, at each bin t of the histogram, its
probability is estimated as follows:

pt =
count in bin t

total number of elements in matrix D
, 1 ≤ t ≤ M (9)

where pt is the probability of the ith bin in the histogram.
By the definition of Shannon entropy, the normalized DistEn of a given time series x(n)

is defined by the following expression:

DistEn(m,M) =
−1

log(M)

M∑
t=1

pt log(pt) (10)

The distribution entropy used in our model was calculated by the following step-by-step
procedures.
1) Collect depth data for lame and non-lame cows, separately.
2) For illustration, we generate these data by using random number generator in Excel.
3) Compute the distance between two data points for collected or generated data.
4) Group the set of data points into a predefined number of bins.
5) Suppose there are m number of bins, such as b1, b2, b3, . . . , bm.
6) Compute the probabilities pi defined as follows:

pi =
number of distance measures in bi
total number of distances in all bins

(11)

7) Compute the distribution entropy by using the following formula:

DistEn = −
m∑
i=1

pi log pi (12)

4. Experimental Works Simulation Procedure.

4.1. Depth data collection. An Intel Depth Sensing Camera is mounted at a height
of 3 meters and positioned face down at an angle towards the pathway between the
milking station and resting area. The camera’s angle is carefully calibrated to ensure it
can capture the entire length of the cattle’s backs as they walk past. Once the camera is
set up and calibrated, it captures depth data of the cattle’s backbones as they walk along
the pathway to the milking station. This data is used to monitor the cattle’s lameness.
The data collection subsystem is illustrated in Figure 1.
To illustrate the proposed methodology in the materials and methods section, we col-

lected the depth video images of a cow from a top view. Then, the differences of successive
depths were formed as a sequence of SS intervals. The illustrative sequence of depths is
described in Figure 3, which uses the 3D image of the sample cow from Figure 1.

4.2. Simulation setting and procedure. The simulation process to calculate the lame-
ness condition of the cows is described in the following step-by-step procedure. According
to the sample depth data, we observed that the depth data sequence lies between 250
millimeters and 550 millimeters for non-lame cows and between 50 millimeters and 450
millimeters for lame cows. Thus, we use the following steps for simulation.
Step 1 : To obtain non-lame data, we generate a sequence of random numbers between

250 and 550 using the uniform distribution.
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Figure 3. A sequence of depth data

Step 2 : To obtain lame data, we generate a sequence of random numbers between 50
and 450 using the uniform distribution.

Step 3 : Let {xj} be a sequence of generated random numbers. These numbers can be
considered as a sequence of realization of a certain random variable. Therefore, we can
derive a probability distribution.

Step 4 : Calculate mean and variance using the following formulas:

mean = m =
1

N

N∑
j=0

xj, variance = σ2 =

(
1

N

N∑
j=0

(xj −m)

)2

Step 5 : Calculate the probability distribution:

pj =
xj∑N
j=0 xj

for j = 0, 1, . . . , N

Step 6 : Compute Root Mean Square of Successive Differences (RMSSD) of Depths
values using Equation (3).

Step 7 : Compute DistEn for illustration using Equation (12).
The illustrated computations for non-lame cows and lame cows are shown in Table 1

and Table 2, respectively. According to the calculation results from Table 1 and Table
2, we found that lame cows had higher RMSSD than non-lame cows, but the non-linear
measure entropies were lower in lame cows than in non-lame cows.

Furthermore, we calculated some common statistical shape measures, such as skewness,
kurtosis, standard deviation, and variance, using the simulation data shown in Table 1
and Table 2. Since the standard deviation and variance are classical measures, we only
present the formulas to calculate skewness and kurtosis.

Skewness: skew = m3

/(
m

3/2
2

)
where m3 =

∑
(x − m)3

/
n and m2 =

∑
(x − m)2

/
n, and m is the mean and n is the

sample size, as usual, m3 is called the third moment of the data set, and m2 is the variance
which is the square of the standard deviation.

The other common measure of shape is called kurtosis. As skewness involves the third
moment of the distribution, kurtosis involves the fourth moment. The outliers in a sample,
therefore, have even more effect on the kurtosis than they do on the skewness, and in a
symmetric distribution both tails increase the kurtosis. The moment coefficient of kurtosis
of a data set is computed almost the same way as the coefficient of skewness: just change
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Table 1. Illustrated computation for non-lame cow

Generated

Data (x)

Linear measure Non-linear measure

Mean (m) (x−m)2 Sum P = x/Sum logP Entropy

400

429.450

867.303

8589

0.047 −4.424 0.206

408 460.103 0.048 −4.396 0.209

528 9712.103 0.061 −4.024 0.247

524 8939.703 0.061 −4.035 0.246

541 12443.400 0.063 −3.989 0.251

326 10701.900 0.038 −4.720 0.179

539 12001.200 0.063 −3.994 0.251

433 12.603 0.050 −4.310 0.217

315 13098.800 0.037 −4.769 0.175

506 5859.903 0.059 −4.085 0.241

550 14532.300 0.064 −3.965 0.254

380 2445.303 0.044 −4.498 0.199

549 14292.200 0.064 −3.968 0.253

543 12893.600 0.063 −3.984 0.252

422 55.503 0.049 −4.347 0.214

316 12870.900 0.037 −4.765 0.175

318 12421.100 0.037 −4.755 0.176

402 753.503 0.047 −4.417 0.207

304 15737.700 0.035 −4.820 0.171

285 20865.800 0.033 −4.914 0.163

Sum 8589 Mean 9048.246 Sum 1 − 4.286

Mean (m) 429.450 RMSSD 95.122 Average entropy 0.214

the exponent 3 to 4 in the formulas:

Kurtosis: a4 = m4

/
m2

2 and m2 =
∑

(x− x̄)2
/
n

From the simulation data in Table 1 and Table 2, we found that the corresponding
shape measures and standard deviation and variance are shown in Table 3.
It can be interpreted as follows: Since the kurtosis for the lame cow is greater than

that of the non-lame cow, the lame cow data has more outliers than the non-lame cow.
Similarly, the non-lame cow data is negatively skewed, and the lame data is positively
skewed. By looking at the variances, lame cow data is more fluctuating than non-lame
cow data.
After calculating the shape measures and other statistical values, we can use them to

determine the lameness condition of the cows. The following procedure outlines how we
use these values in our simulation.
Step 1 : Take the RMSSD value obtained from the depth data of the cow.
Step 2 : Check if the RMSSD value is within the range of non-lame cows or lame cows.

If the value is within the range of non-lame cows, then the cow is considered to be non-
lame. If the value is within the range of lame cows, then the cow is considered to be
lame.
Step 3 : If the RMSSD value is outside the range of non-lame or lame cows, we can use

the statistical shape measures to further classify the lameness condition. For example,
if the RMSSD value is higher than the range of lame cows and the skewness value is
positive, then the cow is considered to be severely lame.
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Table 2. Illustrated computation for lame cow

Generated

Data (x)

Linear measure Non-linear measure

Mean (m) (x−m)2 Sum P = x/Sum logP Entropy

229

249.100

404.010

4982

0.046 −4.443 0.204

103 21345.210 0.020 −5.596 0.116

401 23073.610 0.080 −3.635 0.293

312 3956.410 0.063 −3.997 0.250

428 32005.210 0.086 −3.541 0.304

343 8817.210 0.069 −3.860 0.266

117 17450.410 0.024 −5.412 0.127

282 1082.410 0.057 −4.143 0.235

317 4610.410 0.064 −3.974 0.253

103 21345.210 0.020 −5.596 0.116

234 228.010 0.046 −4.412 0.207

332 6872.410 0.067 −3.908 0.260

365 13432.810 0.073 −3.771 0.276

94 24056.010 0.019 −5.728 0.108

191 3375.610 0.038 −4.705 0.180

222 734.410 0.045 −4.488 0.199

174 5640.010 0.035 −4.840 0.169

441 36825.610 0.089 −3.498 0.310

66 33525.610 0.013 −6.238 0.083

228 445.210 0.046 −4.450 0.204

Sum 4982 Mean 12961.290 Sum 1 − 4.160

Mean (m) 249.100 RMSSD 113.848 Average entropy 0.208

Table 3. Shape measures

Skew Kurtosis
Standard
deviation

Variance

Non-lame −0.24294 −0.70098 122.3935 14980.16
Lame 0.370586 −0.51958 184.1996 33929.5

Step 4 : Based on the lameness classification, appropriate measures can be taken to
prevent further deterioration of the cow’s condition. For example, if a cow is found to be
lame, steps can be taken to provide it with appropriate medical care, change its diet, or
reduce its workload to allow for proper rest and recovery.

By using this simulation procedure, farmers can easily monitor the lameness condition
of their cows, identify potential health issues early on, and take necessary actions to
prevent further complications. This can result in healthier and more productive cows,
leading to higher milk yields and greater profits for farmers.

5. Discussion on Methodology and Concluding Remarks. The concept of BMV
can be considered as an analogy to heart rate variability in medicine. However, unlike
heart rate variability, which has been analyzed in both the time and frequency domains,
BMV is based on depth data in image frames to investigate the lameness conditions of
individual cows. To the best of our knowledge, no such investigations have been conducted
in the literature for dairy cows. Therefore, our study is at an early stage, and much work
needs to be done to confirm the validity of our approach.
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Although we have performed the simulation model for illustrative purposes only, our
calculation results from Tables 1 and 2 indicate that there is a higher RMSSD in lame
cows and a lower RMSSD in non-lame cows. However, the non-linear measure entropies
were lower in lame cows than in non-lame cows. These findings will be further analyzed
using real-life data in future works.
Early detection of lameness at all stages of lactation is essential for the milk production

of a dairy farm. In this paper, we have introduced the concept of BMV for cow lameness
detection, using two types of variability measures: linear and non-linear measures. These
measures have been successfully utilized in human health analysis in terms of heart rate
variability. However, this concept is newly developed in animal health studies. We hope
that our proposed concept will be beneficial in investigating lameness analysis by refining
the measures from all technological perspectives.
In conclusion, we have discussed the potential of BMV as a novel method for the

early detection of lameness in dairy cows. However, we acknowledge that our study is
still in its infancy and that further work needs to be done to validate our approach. We
plan to utilize real-life data and conduct performance evaluations to make comprehensive
comparisons with current state-of-the-art methods. We hope that our work will provide
a solid foundation for further investigation into this critical area of animal health.

6. Conclusions. Early detection of lameness at all stages of lactation is an important
factor in the milk production of a dairy farm. In this paper, we have introduced BMV con-
cepts for cow lameness detection. We considered two types of variability measures namely
linear and non-linear measures. These measures were successfully utilized in human health
analysis in terms of heart rate variability. However, this concept is newly developed in an-
imal health studies. We hope that our proposed concept would be beneficial to investigate
lameness analysis by refining the measures from all technological perspectives.
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