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Abstract. Mobile devices have been an essential part of society and with the ever-
growing market share, the potential for harm has also increased. With that being said,
the implementation of machine learning to aid in preventing these threats is also on
the rise. One approach is to use an ensemble learning method in which smaller and
lighter models, also known as base learners, are put together to predict the same problem
with higher accuracy. The models used in this exploration include Decision Trees, Näıve
Bayes Classifiers, and Logistic Regression. Two ensemble methods were tested when put
together or put in groups: bagging and stacking. Multiple combinations were tested with
these models and methods on a dataset which consists of 50,000 data of applications,
each with 1,436 features. The most successful model, a Bagged Decision Tree Ensemble,
produced an accuracy of 90.67%, AUC score of 84.44%, and precision value of 91.10%.
Keywords: Android permission-based malware detection, Decision Trees, Ensemble
learning, Logistic Regression, Näıve Bayes Classifier

1. Introduction. Android has been a leader in the mobile phone OS market with over
two and a half billion devices running it [1]. With such a large reach, the importance
of keeping the Android devices secured becomes a quintessential concern for all as these
systems hold important assets such as personal information and credential data [2]. An
aspect of Android systems that enhances its popularity is its open-sourced nature which
can help in innovative development, but it also allows customization of the overall system
[3]. As a result, malicious perpetrators can develop and implement security vulnerabilities
to be deployed in a potential user’s device [4]. A possible medium that perpetrators can
use to distribute their customized vulnerabilities is through mobile applications published
in the application market. Consequently, the open-sourced nature of Android allows users
to download and install these applications from any given source: official ones under
Google and unofficial third-party sources [5].

Over the years, Android as an operating system has attempted to reduce the amount
of malware, or simply complicated the process of malware being installed in an Android
system [6]. These include Bouncer, the in-house malware detection system implement-
ed on the Google Play Store through the Android permission system [7]. Bouncer was
proven to be outdated and unsatisfactory due to its lack of sensitivity in detecting mal-
ware [6], while the detection system by the Google App Store lacks protection as it only
detects malicious intent through analysis of the application metadata as the application
is uploaded into the Play Store [8].

With the constant evolution of malware, the implementation of machine learning models
in detecting malicious software has been gaining traction [2], specifically those that process
a variety of features within the Android system. In detecting malware, a static analysis
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examines an application’s code and determines its intent without executing it [10], while
a dynamic analysis monitors an application in an executed state. Static analysis has a
bigger advantage in terms of detecting malware as it serves as a preemptive attempt to
halt a possible attack. On the other hand, dynamic approaches require more resources as
it needs to run the application in question [11].
Accordingly, this paper will take a static approach to the detection of malicious An-

droid applications. In static approaches, individual models are implemented on extracted
features from the application code and are proven to be effective, such as DroidMat and
DREBIN [12-14]. As one of those features, permissions play an important role. Strict
permissions have also been analyzed and proven to be effective, seen through their high
accuracy values [15,16]. As in [15], Random Forest algorithm produced the highest ac-
curacy of 81% on a dataset of 10,000 data points, compared to Support Vector Machine
(SVM), Gaussian Näıve Bayes, and K-Means. Choosing the right models to implement
in a detection system is crucial, as they need to be the most accurate and effective option
[17]. Therefore, a comparison of the features and different individual models that could
be used to detect a possible malware was made [18].
Based on the comparisons of models and methodologies, the models that resulted in

the highest accuracy using static analysis are Näıve Bayes, Decision Trees, and Logistic
Regression [16,19]. As these models work well on their own, the question that is posed
consequently is how it can be improved. One approach is to implement Ensemble Learn-
ing Systems using these proven models [20,21]. These three algorithms also yielded a 97
to 99 percent detection rate [22] which further the implication that the implementation
of an ensemble learning system would prove to be more effective than the single model
traditional approach. However, these algorithms were implemented on an older Android
system. Hence, this study will implement the same three algorithms on an updated An-
droid version. Different ensemble methodologies were compared and the result showed
that the accuracy of the models was elevated to 0.970 and 0.893 through the Bagging
method [23] and Stacking method [24], respectively.
After combining the outcomes of the studies gathered, this paper further implements

the Bagging and Stacking ensemble learning systems using the three base models: Näıve
Bayes, Decision Trees, and Logistic Regression. These models will be used to detect
malicious applications within the Android Mobile System, based on the permissions an
application requires using a recent dataset with 50,000 application data. The increased
size of the dataset compared to previous studies will be used to further confirm and
analyze the effectivity of implementing ensemble learning systems in malware detection
within Android mobile systems.
The remainder of the paper is composed as follows. First, Section 2 describes the

methodology used in this research. In Section 3, the results of the experiment are dis-
cussed. Finally, Section 4 concludes this research along with the future works.

2. Methodology.

2.1. Data collection. The dataset used in this exploration is a dataset titled Android
Permissions Dataset [25]. This dataset holds data on 50,000 applications coming from the
Android Play Store and third parties. Each data entry holds information on the application
and the permissions required before installation or during run time. In total, each data
entry holds 1,436 features or possible permissions. Initially, the dataset separates the
sources of the applications and holds a separate list of applications that are considered
malware. With that, data labeling was carried out based on the provided data.

2.2. Research design. The exploration for this research was conducted following the
application model depicted in Figure 1. Firstly, the data collection and preprocessing
phase was carried out. In this phase, the data was labeled and exported into data frames
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for ease of processing. From then on, the non-binary values were removed and all that was
left became the features columns and the labels produced. Moving to the next phase, each
individual model was trained, tested, and evaluated. In this stage, the data was split into
training and testing data. Following the split, the data was then fit into the individual
models, and then trained and tested. After each iteration in which the model was tested,
evaluation metrics were calculated. This process was repeated based on the previously set
scope. Once the best parameters were gathered, they were used in assembling the ensemble
models. The final phase was the ensemble model training, testing, and evaluation. The
steps needed for the ensemble models were similar to the individual models. However,
rather than tuning the parameters, different combinations of ensembles were created based
on the best parameters from the previous phase. The effectiveness of the ensemble models
was assessed by the end of the last process through several evaluation metrics.

Figure 1. Application model of ensemble learning model building

2.3. Experimentation. As previously mentioned, multiple experiments were carried out
by tuning the parameters of the individual models and through the combinations of the
ensemble models. In terms of the individual models, the parameter tuning values are
shown in Table 1.

Table 1. Individual model parameter testing values

Individual model testing
Scenario Parameters to be tested and range of values

Decision Trees
Max Depth (1-100), Random State (1-100), Criterion (Gini, En-
tropy)

Näıve Bayes
Alpha Value (1-100), Random State (1-100), Type (BernoulliNB,
GaussianNB)

Logistic Regression Random State (1-100), Solver (liblinear, lbfgs, saga)

Similarly, there are testing parameters and conditions for the ensemble models. The two
main techniques used for the ensemble methods include bagging and stacking. In terms of
bagging, the experimentation to see the effect of increasing the number of base learners on
the accuracy of the ensemble model was conducted. The number of base learners with the
best accuracies was then used in the stacking method, to investigate whether the stacking
method could be used to further improve the accuracy of the model. Additionally, stacking
the same amount of each base learner into a bigger model was carried out. The values
tested on each method are summarized in Table 2.

In both testing the individual models and the ensemble models, only one parameter was
changed in each test. This enables the gathering of the best value for the final concluding
model that has the highest evaluation metric.
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Table 2. Ensemble model testing values

Ensemble model testing
Classifiers Values to be tested

Bagging classifier Number of Base Learners (1-100)
Stacking classifier Set Number (results from Bagging), Stacking Same Amount (1-100)

3. Results and Discussion. The classification models are mainly evaluated on the three
metrics as follows.
1) Accuracy describes the correctness of a prediction produced by a model and sum-

marized in Equation (1).

Accuracy =
True Positive (TP ) + True Negative (TN )

TP + TN + False Negative (FN ) + False Positive (FP )
=

TP + TN

P +N
(1)

2) Precision on the other hand is the count of correctly predicted positive data points
produced by the results of the model. The formula to calculate this can be mathematically
summarized as shown in Equation (2).

Precision =
TP

TP + FP
(2)

3) AUC value is based on the ROC curve, also known as the Receiver Operating Char-
acteristic curve, and is drawn to depict the relationship between the true positive rate,
and the false positive rate within a threshold. The area under the ROC curve sums up the
ability of a model in ranking predictions. A higher AUC value indicates that the model
will have a higher probability in properly detecting a prediction.
With the metrics calculated, when choosing models to form into an ensemble, the

accuracy scores were prioritized. Based on the iterations done to get the best values, it
can be concluded that the best accuracy for each individual model was obtained through
the parameters displayed in Table 3.

Table 3. Parameter configuration that resulted in the highest accuracy

Best values of individual models
Model Parameters Acc Prec AUC

Decision Trees
Max Depth = 56; Random State = 44;

Criterion = Entropy
0.8796 0.7890 0.7544

Näıve Bayes Alpha = 82; Type = Bernoulli 0.8321 0.5514 0.6282
Logistic Regression Random State = 0; Solver = liblinear 0.8596 0.7374 0.6558

When assembling a bagging group, the previous parameters were used to set the base
learners. Through the process of bagging, Table 4 shows the number of base learners need-
ed to achieve the highest evaluation metrics. The accuracy changes through the increase
of the number of base learners, as shown in Figure 2.

Table 4. Bagging parameter values with the highest evaluation metrics

Best values from bagging
Base learner # of base learners Accuracy Precision AUC score
Decision Trees 61 0.9067 0.9110 0.8444
Näıve Bayes 9 0.8337 0.5488 0.6274

Logistic Regression 3 0.8608 0.7734 0.6624
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Figure 2. Bagging test results for increasing number of base learners

As seen in Figure 2, the increasing number of base learners does not significantly im-
prove the accuracy of the ensemble model. However, there is a slight increase at the start
of each curve. This upturn proves the theory that an ensemble learning would produce a
higher accuracy compared to an individual model.

In terms of bagging, as shown in Table 4, it can be said that the decision trees make
the best-bagged ensemble. Specifically having 61 trees within the ensemble produces the
highest evaluation metrics compared to the two other base learner models. These ideal
amounts for each bagged model were then implemented in the stacking methodology. The
precision value is also the highest with the decision trees. This value is important as
it indicates the model’s ability to predict positive values. Compared to the other base
learners, decision trees produce a significantly higher value. Therefore, a more viable
prediction can be made with it. This point is further proven with the AUC score being
the highest. This value indicates the model’s ability to distinguish one class from the
other. With a significantly higher AUC score, the decision tree ensemble has the best
ability to classify whether an application is malicious or benign. Overall, through the
bagging method, having a series of decision tree base learners would produce the most
effective detection model.

Another approach in ensemble learning is the stacking methodology in which a pre-
diction is made by a group of base learners, called the intermediate learners. After the
intermediate predictions are made, an additional model is used on top to make the final
decision, also noted here as the level 1 aggregator. The accuracy results are affected by
having different level 1 aggregators, as can be seen in Table 5.

Table 5. Stacking parameter values with the highest accuracy

Best values from stacking

Scenario
# of

Decision
Trees

# of Logistic
Regression
Classifiers

# of
Näıve Bayes
Classifiers

Level 1
Aggregator

Accuracy

1 1 1 1 Logistic Regression 0.8801
2 1 1 1 Näıve Bayes 0.8569
3 1 1 1 Decision Trees 0.8592
4 61 3 9 Logistic Regression 0.8839
5 61 3 9 Näıve Bayes 0.8569
6 61 3 9 Decision Trees 0.8561
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As seen in Table 5, an ensemble with one base learner each was implemented with
the three main models as the level one aggregator. Through the accuracies, it can be
said that the Logistic Regression classifier produces the best accuracy with an 88.01%
detection rate. This result can also be seen in the experimentation where the number of
base learners was based on the best values obtained from bagging which then yielded an
88.39% detection rate.
With the best level one aggregator decided, an experimentation to see the effects of

increasing the number of base learners in parallel was also conducted. The results to this
experimentation can be seen in Figure 3 which shows the trend of the accuracies produced.
It is seen that there is a sharp increase at the beginning of the experimentation, though
as more base learners are added, it is shown to have no significant effect. It could also
be said that there is no prominent trend that can be distinguished from increasing the
number of each base learner. However, it is observed that once there are 94 of each base
learner, the accuracy becomes the same and the trend flatlines.

Figure 3. Test result for increasing the number of base learners

Based on this experimentation result shown in Table 6, it can be inferred that 4 is the
most optimal value in terms of obtaining the highest accuracy when stacking the same
amount of each base learner. Having 4 of each base learner and consequently stacked with
a logistic regression classifier is seen to produce the highest accuracy with 86.37%. This
value is considered significant compared to the next highest few accuracy values which all
revolved around 86.33%.

Table 6. Results for the best value for stacking the same amount of base
learners

Best values from stacking the same amount each
# of

Decision
Trees

# of Logistic
Regression
Classifiers

# of
Näıve Bayes
Classifiers

Level 1
Aggregator

Accuracy

4 4 4 Logistic Regression 0.86374964
9 9 9 Logistic Regression 0.86338195
25 25 25 Logistic Regression 0.86334110
24 24 24 Logistic Regression 0.86330024
6 6 6 Logistic Regression 0.86325939

4. Conclusions and Future Works. In conclusion, ensemble learning methods can
be implemented to increase the accuracy of individual models. However, continuously
increasing the number of base learners in the bagging methodology does not improve
the overall performance of the model. On the other hand, the experimentation in the
stacking methodology shows that not all aggregators can improve the accuracy. Overall,
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it is found that the best results gathered came from a homogeneous ensemble model
which implemented the bagging ensemble technique that aggregated 61 decision trees.
The individual learners within the model each used a max depth of 56 and the random
state of 44. This best model was also proven to be successful based on its accuracy of
90.67%, AUC value of 84.44%, and precision of 91.10% in classifying malware from benign
apps.

For the future work, the research can be extended to give a primary focus on minimizing
the false negative rate to optimize recall. This can be beneficial as when it comes to
detecting malware, the effect of a false negative becomes significantly more detrimental.
Furthermore, through the implementation of external datasets and analysis, the detection
model could also be improved to have the ability to determine the type of malware from
the permissions an application requests.
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