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Abstract. An autoregressive (AR) model with a fuzzy number of predictions was pro-
posed. However, the difficulty of obtaining a prediction equation may hinder its use.
Therefore, the interval AR model was combined with an interval regression model using
possibility grades, and an interval AR was easily obtained. Compared with my previous
fuzzy AR model, the proposed model requires only one LP to be solved and about 0.12
times less computation. In the model validation using the consumer price index, the mul-
tiple correlation coefficient of the proposed model is about 1.92 times that of the AR. In
the model validation using the Nikkei Stock Average, the root mean squared errors of the
proposed model are about 0.05 times those of the AR.
Keywords: Interval regression, Interval autoregressive, Possibility grade, Consumer
price index, Nikkei Stock Average

1. Introduction. Regression and time-series models have been used in various economic
and management applications. However, there is a lack of data analysts, particularly in
Japanese companies. Based on the concept of soft computing, data analysis methods have
proposed models that are relatively easy to handle and that provide interval predictions
that are easy to interpret [1, 2, 3, 4, 5, 6, 7, 10, 11, 16]. Among the four Box-Jenkins
models, the autoregressive (AR) model is often used owing to its simple structure and
ease of use.

There are several Box-Jenkins models [8, 9, 11, 12, 13, 15] based on soft computing. A
fuzzy ARIMA model proposed by Tseng et al. [8] uses real-valued time series and expresses
the vagueness of a time series system by using fuzzy regression coefficients. Because the
time series model uses a fuzzy regression model, it is not only easy to handle, but also
has good prediction accuracy. An AR model is not only simple in structure and easy
to handle, but also has good prediction accuracy. There are two types of interval-type
AR models that use fuzzy time series and fuzzy regression coefficients: the fuzzy AR
model proposed by Ozawa introduced in [11] and the interval AR model proposed by
Yabuuchi et al. [12, 13, 15]. Both models are easy to handle. Specifically, a fuzzy AR
model uses an interval difference series and aims to fully illustrate the possibility of an
analysis target of a difference series. In contrast, an interval AR model uses interval time
series and a fuzzified Yule-Walker equation to illustrate the intrinsic trend of an analysis
target. However, because interval-type time series are processed using fuzzy operations,
the computational complexity of obtaining predictions is high. To solve this issue, this
study combines an interval-type regression model using possibility grades with an interval-
type AR model to significantly reduce computational complexity.

The remainder of this paper is organized as follows. As mentioned above, the main
elements of this study were an interval AR model and an interval regression model with
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possibility grades. Section 2 briefly explains the interval AR model proposed by Yabuuchi
et al. Section 3 briefly explains the interval regression model with the possibility grades.
Section 4 explains the interval AR model with possibility grades for the time series pro-
posed herein. In Section 5, the usefulness of the proposed method is verified using two
numerical examples. Finally, Section 6 summarizes the study.

2. Interval Autoregressive Model. The Box-Jenkins model has four time-series mod-
els, including an AR model and a moving average model. Among these models, the AR
model is not only sufficiently flexible to be applied regardless of whether the subject
of analysis is linear or nonlinear but also has good forecasting accuracy. Therefore, AR
models are used in various applications. However, because the AR model uses stationary
time series, it requires expertise in probability, statistics, etc. AR models are very useful
time-series models; however, they may be described by users as time-series models with
a high level of skill.
Yabuuchi et al. proposed an interval AR model based on soft computing [12]. This model

uses an interval-valued time series Xt =
[
XL

t , X
C
t , X

U
t

]
. Here, L, C, and U denote the

lower, central, and upper limits of the fuzzy numbers, respectively, and will be described
in the same way in this study. The predictions of the next interval-type time series are
written using the fuzzy autoregressive coefficients bj =

[
bLj , b

C
j , b

U
j

]
, (j = 1, 2, . . . , p) as

follows:

Xt = b1Xt−1 + b2Xt−2 + · · ·+ bpXt−p. (1)

Fuzzy autocovariance lk = Cov
[
XtXt−k

]
and fuzzy autocorrelation rk = lk/l0 =

[
rLk , r

C
k ,

rUk
]
are obtained using fuzzy operations. However, because the value range of the auto-

correlation coefficient is [−1, 1], the fuzzy autocorrelation coefficient is defined by alpha
cutting such that −1 ≤ r ≤ 1.
Autoregressive coefficients are obtained using the Yule-Walker, maximum likelihood,

or least-squares methods. In this study, the fuzzified Yule-Walker method was used. In
the fuzzified Yule-Walker method, the Yule-Walker equation consists of fuzzy numbers,
and fuzzy autoregressive coefficients are obtained by solving a linear programming (LP)
problem [14].
Using real-valued autocorrelation coefficients ρj (j = 1, 2, . . . , p) and autoregressive

coefficients αj, we obtain the following Yule-Walker equation:
1 ρ1 · · · ρp−1

ρ1 1 · · · ρp−2
...

...
. . .

...
ρp−1 ρp−2 · · · 1




α1

α2
...
αp

 =


ρ1
ρ2
...
ρp

 . (2)

In a conventional AR model, autoregressive coefficients are obtained from Equation (2).
However, in an interval AR model, the autocorrelation and autoregressive coefficients
are both fuzzy numbers and are not equal, as shown in Equation (2). Therefore, the
Yule-Walker equation using fuzzy numbers is defined as follows:

R1

R2
...
Rp

 =


1 r1 · · · rp−1

r1 1 · · · rp−2
...

...
. . .

...
rp−1 rp−2 · · · 1




b1
b2
...
bp

 ⊇


r1
r2
...
rp

 . (3)

Here, the left-hand side of Equation (3) is written as Rj =
[
RL

j , R
C
j , R

U
j

]
(j = 1, 2, . . . , p).

In Equation (3),
∑p

j=1

(
RU

j −RL
j

)
can be interpreted as the vagueness of the interval AR.

Because the autoregressive coefficients are not uniquely determined by Equation (3), they
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are attributed to the following LP problem to obtain the fuzzy autoregressive coefficients
that minimize the vagueness of the interval AR.

min
b

p∑
j=1

(
RU

j −RL
j

)
s.t. Rj ⊇ rj, j = 1, 2, . . . , p.

(4)

The constraint Rj ⊇ rj in the above LP problem implies the following equation:

RL
j ≤ rLj , RC

j = rCj , rUj ≤ RU
j . (5)

Specifically, because an interval AR model uses fuzzy operations, the center of its interval
AR coincides with that of the conventional AR.

3. Interval Regression Model Using Possibility Grade. The output of an interval-
type fuzzy regression model is the interval value. In this regression model, the inter-
val in which samples are observed is illustrated as the possibility of an analysis target.
When the obtained samples are non-fuzzy numbers, such as (xi, yi), xi = [xi1, xi2, . . . , xip]
(i = 1, 2, . . . , n), the predicted interval values are Yi =

[
Y L
i , Y C

i , Y U
i

]
. If we want to obtain

a fuzzy regression that includes all samples and illustrates the possibility of an analysis
target, we have Y L

i ≤ yi ≤ Y U
i . Although it is possible to include all the samples and

illustrate the possibility of an analysis target, the trend of the estimated interval val-
ues may differ from that of yi. In such cases, fuzzy regression can illustrate the trend
and possibility of sample yi by relaxing the restriction that fuzzy regression includes the
samples.

A general fuzzy regression model uses the regression coefficientsA = [a, c] for triangular
fuzzy numbers, multiplied by

Yi = Axi = [a, c]xi = [axi − c|x|i,axi,axi + c|x|i] . (6)

In regression coefficient A, a = [a1, a2, . . . , ap] is the center and c = [c1, c2, . . . , cp] (c ≥ 0)
is the coefficient of its width. Therefore, the fuzzy regression model can be rewritten as
the following LP problem:

min
a,c

c

s.t. Yi ⊇ yi, i = 1, 2, . . . , n.
(7)

Because this fuzzy regression model includes all samples in its intervals, the possibility
of an analysis target illustrated by the obtained regression is distorted depending on the
data distribution. Therefore, fuzzy robust regression models that reduce the distortion
caused by the shape of the data distribution were investigated. Among the proposed
models is a regression model that does not use the inclusion relation between the sample
and regression as constraints for an LP problem [15]. A regression model was obtained
by maximizing the possibility grade obtained from the predicted and observed values.

The possibility grade µ derived from samples and predicted values are as follows:

µi = max

{
0, 1− |axi − yi|

c|xi|

}
. (8)

The objective function used in the LP problem to obtain the regression was
∑n

i=1 µi/c|xi|,
which is the possibility grade divided by the width of the predictions. The possibility grade
is the degree to which the interval regression illustrates the possibility of samples, and the
value of the possibility grade is at its maximum when the center of the interval regression
coincides with the sample values. The width of the predictive value of interval regression is
the vagueness of the obtained interval regression. In particular, when the value of µ/c|x|
is large, the sample is close to the center of the predictions, ax, and the width of the
predictions is small. Additionally, an interval regression model was defined to include the
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data distribution. Hence, the prediction accuracy of interval regression varies significantly
depending on the data distribution. Specifically, samples near the periphery of the data
distribution distort the possibility of what is being analyzed. In a curve-fitting method,
such as regression, the predictions must illustrate the trend being analyzed. Therefore, we
manage the sample included in the interval regression to obtain the appropriate regression
coefficients. The LP problem can be expressed as follows:

max
a,c

n∑
i=1

µi

c|xi|
s.t. s ≤ smax.

(9)

Parameter s is the number of samples inside the interval predictor Y , and smax is an upper
bound for s. Because the conventional model has a constraint equation for the inclusion
relationship between samples and regression, the size of the LP problem increases when
the number of samples is large, making it difficult to obtain a solution. However, in the
fuzzy robust regression model with this possibility grade, the size of the LP problem did
not change with the number of samples. Therefore, it can be used for time series analysis.

4. Interval Autoregressive Model Using Possibility Grade of Time Series. In
the interval AR model, an autocorrelation coefficient is calculated from fuzzy numbers,
and autoregressive coefficients are obtained from the Yule-Walker equation constructed
using fuzzy numbers, which complicates the task. Therefore, rather than using the method
of moments to obtain the autoregressive coefficients, it is more efficient to apply the model-
building method of an interval regression model that maximizes the possibility grade, as
shown in Equation (9). In this study, an interval AR model obtained by maximizing the
sum of the possibility grades was proposed.
The interval AR model proposed in this study obtains the autoregression shown in Equ-

ation (1). The autoregressive coefficients were obtained using the LP shown in Equation
(9). The calculation procedure is as follows.

Step 1: Determination of the AR equation
Using the stationary time series, we determined the AR formula using autocorrelation
coefficients.

Step 2: Set smax

In the proposed model, smax has a significant impact on the prediction accuracy of
this model. Not only is fine-tuning impossible, but the small values of parameter
smax increase the vagueness of the time series. Therefore, smax should be set to an
appropriate value based on the number and distribution of data used to construct
this model. In this study, however, this value is set heuristically.

Step 3: Obtain regression coefficients
Regression coefficients are obtained using the LP of Equation (9).

The proposed model uses only fuzzy operations in model construction and, in some
cases, in the conversion of original series to predictions. When using fuzzy time series,
fuzzify a time series, compute a fuzzy factorial series, calculate the alpha cut value of a
fuzzy autocorrelation with LP, derive the regression coefficient with LP, and compute the
predictive value. Using Excel, to calculate autocorrelations up to lag 24, approximately 99
columns are calculated and two LP problems are solved. In the case of the proposed model,
only 12 columns of calculations and one LP problem are required. Thus, the number of
columns to calculate and LP are reduced by a factor of 0.12 and 0.5, respectively.

5. Analysis of the Nikkei Stock Average and Consumer Price Index. The inter-
val AR model with possibility grades for the time series proposed in this study is applied
to the Japanese consumer price index (CPI) and the Nikkei Stock Average. The CPI does
not fluctuate significantly over a short period. In contrast, the Nikkei Stock Average is
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an average of specific stocks, and its stock price changes relatively widely. Moreover, the
Nikkei Stock Average tends to change widely over a short period. In this section, the
effectiveness of the proposed model for these time series is discussed.

The CPI used in this section is based on monthly data from January 1970 to September
2013, spanning 43 years. The Nikkei Stock Average is based on monthly data from January
1970 to December 2000, spanning 30 years. In both datasets, the last two years of data
were used for model validation, whereas the other data were used for model building. In
particular, the CPI was used for model building from January 1970 to September 2011,
and the Nikkei Stock Average was used from January 1970 to December 1998.

5.1. Analysis of consumer price index. For the consumer price index, the following
factorial series was used to obtain a time series.

xt = ∆6∆3yt = (yt − yt−3)− (yt−6 − yt−9). (10)

Table 1 shows the autocorrelation coefficients for the time series xt. Owing to the large
values of the autocorrelation coefficients ρ1 and ρ6 for lags 1 and 6, shown in Table 1, the
autoregression can be obtained as follows:

xt = b1,1xt−1 + b1,2xt−6,

Xt = A1,1Xt−1 +A1,2Xt−6.

Here, the obtained conventional AR is denoted as AR1, and the obtained interval AR is
denoted as IAR1. The coefficients of IAR1 are A1,j = [a1,j, c1,j], j = 1, 2, where aj is the
center of the coefficient and cj is the width. As mentioned above, the number of samples
in the time series used to build a model was 486; therefore, the interval autoregressive
coefficients were obtained using s1,max = 243. The regression coefficients for AR1 and
IAR1 are presented in Table 2. The original series and predictions obtained using AR1
and IAR1 are shown in Figure 1. Figure 1 shows that the predictions based on AR1
were more variable than those of the original series. In contrast, the IAR1 predictions
did not fluctuate as much as the AR1 predictions and predicted the original series with
good accuracy. Table 3 shows the correlation coefficients and root mean squared errors
(RMSE) between the predictions of the two ARs and the original series. The correlation
coefficients were almost unity for both the ARs. The correlation coefficient between AR1
and the original series was 0.2966, whereas the correlation coefficient between IAR1 and
the original series was 0.5691 in the model validation. These correlation coefficients may
be due to the small sample size of 24 during the validation period.

Table 1. Autocorrelation coefficients of the consumer price index

Lag 0 1 2 3 4 5 6 7
COR 1 0.5740 0.1679 −0.0220 −0.0769 −0.3328 −0.6085 −0.2738

Lag 8 9 10 11 12 13 14 15
COR 0.0364 0.1226 0.0572 0.1867 0.3184 0.0920 −0.1079 −0.0629
Note: COR denotes a correlation coefficient.

Table 2. Regression coefficients of the consumer price index

j 1 2
AR1 b1,j 1.3770 −1.3989

IAR1
a1,j 0.1667 −0.6271
c1,j 0 0.7063



698 Y. YABUUCHI

Figure 1. Original series of the consumer price index and forecasted values
by AR1 and IAR1

Table 3. RMSE and correlation coefficients between the original series,
AR1, and IAR1

Used samples 1970.04-2013.09 1970.01-2011.09 2011.10-2013.09

COR
AR1 0.9973 0.9974 0.2966

IAR1 0.9993 0.9993 0.5691

RMSE
AR1 1.9041×103 1.9037×103 1.8740×103

IAR1 1.9043×103 1.9039×103 1.8739×103

5.2. Analysis of the Nikkei Stock Average. For the Nikkei Stock Average, the orig-
inal series yt is transformed as follows and used in the analysis.

xt = (yt − yt−9)/yt−9.

Table 4 shows the autocorrelation coefficients for the time series xt. Table 4 shows that
the correlations between lags 1 and 5 are large, leading to the following autoregressive
equation:

xt = b2,1xt−1 + b2,2xt−2 + b2,3xt−3 + b2,4xt−4 + b2,5xt−5,

Xt = A2,1Xt−1 +A2,2Xt−2 +A2,3Xt−3 +A2,4Xt−4 +A2,5Xt−5.

Here, a conventional AR is denoted as AR2, and an interval AR is denoted as IAR2; the
coefficients of IAR2 are A2,j = [a2,j, c2,j], j = 1, 2, 3, 4, 5, where a2,j is the center of a
coefficient and c2,j is its width. The number of samples in the time series used to build
the model was 334, and the interval AR was obtained with s2,max = 184. The obtained
autoregressive coefficients obtained for AR2 and IAR2 are listed in Table 5. The predicted
values based on the original series, AR2, and IAR2 are shown in Figure 2. The results of
the model validation are shown to the right of the vertical line for January 1989 in Figure
2. The correlation coefficients and RMSE between the predictions of the two ARs and the
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Table 4. Autocorrelation coefficients of the Nikkei Stock Average

Lag 0 1 2 3 4 5 6 7
COR 1 0.9078 0.8335 0.7595 0.6734 0.5873 0.5006 0.4282

Lag 8 9 10 11 12 13 14 15
COR 0.3563 0.2710 0.2730 0.2647 0.2517 0.2377 0.2358 0.2203
Note: COR denotes a correlation coefficient.

Table 5. Regression coefficients of the consumer price index

j 1 2 3 4 5
AR2 b2,j 0.8504 0.0921 0.0704 −0.0551 −0.0640

IAR2
a2,j 1.1225 0.0384 −0.0101 −0.2084 −0.3024
c2,j 0 0 0.3185 0.1254 0

Figure 2. Original series of the Nikkei Stock Average and forecasted val-
ues by AR2 and IAR2

original series are listed in Table 6. During the model validation period, the correlation
coefficients for AR2 and IAR2 were −0.3392 and −0.0269, respectively. Both the ARs
were uncorrelated, as illustrated in Figure 2. The small sample size (24) may be related
to the small correlation coefficient values.

Comparing AR2 and IAR2 again in Figure 2, it appears that the predictions of AR2 are
more accurate than those of IAR2 for the period up to December 1988, when the model
was being constructed. Conversely, IAR2 had a better prediction accuracy from January
1999 onward.

6. Conclusions. The interval AR model proposed by the author uses an interval time
series that has a heavy workload. This study introduced a method for constructing an
interval regression model to reduce the workload of interval AR. The proposed approach
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Table 6. RMSE and correlation coefficients between the original series,
AR2, and IAR2

Used samples 1970.03-2000.12 1970.01-1998.12 1999.01-2000.12

COR
AR2 0.9833 0.9887 −0.3392

IAR2 0.9787 0.9811 −0.0269

RMSE
AR2 1.7853×103 1.7311×103 2.4158×103

IAR2 1.1733×102 1.1675×102 1.1675×102

significantly reduced the workload. We also confirmed that the prediction accuracy was
comparable to that of the conventional AR, even for time series with significant behavior
change. We confirmed that the proposed method is useful not only for time series with
moderate behavior change but also for time series with significant changes in behavior,
such as stock prices.
This study reduced the computational complexity. However, in Figures 1 and 2, the

predicted values show different behavior from the original series. The research work in
this study is to improve the accuracy of the predictions.
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