
ICIC Express Letters
Part B: Applications ICIC International c⃝2023 ISSN 2185-2766
Volume 14, Number 7, July 2023 pp. 673–683

DEVELOPMENT OF A RISC-V CPU AND EDUCATIONAL LINUX
SYSTEM ON A CHIP FRAMEWORK RV32XSOC

Naoki Abe, Chihiro Koyama and Naohiko Shimizu

School of Information and Telecommunication Engineering
Tokai University

2-3-23, Takanawa, Minato-ku, Tokyo 108-8619, Japan
n2113abe@star.tokai-u.jp; 9bjnm012@fuji.tokai-u.jp; nshimizu@tokai.ac.jp

Received November 2022; accepted February 2023

Abstract. In recent years, RISC-V has become more popular as a practical instruction
set architecture that is royalty-free and open. Both academia and industry have developed
various chips using RISC-V processors so far. Furthermore, the RISC-V community has
ported many former software assets such as gnu-toolchain and Linux to RISC-V. In
this paper, we present Linux-compatible RISC-V System on a Chip, RV32XSoC, and its
educational framework. We designed the system-on-chips with minimum requirements
to support the Unix-like operating system. Furthermore, we constructed an educational
framework by developing the software simulator. We can observe execution flow from
both hardware and software perspectives through the software simulator. We can effec-
tively acquire comprehensive knowledge about computer systems through this work and
its framework.
Keywords: RISC-V processor, Linux-compatible System on a Chip, Hardware educa-
tion

1. Introduction. Semiconductor process shrinking has made to build high-performance
and multifunctional chips. In recent years, system-on-chips (SoCs) that incorporate many
functions on a single chip have become mainstream in the embedded domain. However,
such SoCs are large and complex circuits. In large systems, the software scale has also
become large. For these reasons, hardware/software co-design is important to construct
large systems. Embedded engineers who develop such systems are required to have skills in
both hardware and software. Since such engineers are scarce, human resources with these
skills are wanted in the embedded domain. The objective of this research is to develop a
framework for comprehensive educational exercises in hardware to software for embedded
systems, which are becoming complex. For this purpose, we implemented a compact CPU
with a minimum ISA that can run Unix-like OS and demonstrate the framework by porting
and running xv6 and Linux. We use NSL [1] as a development language. Despite clock
accuracy, NSL has a high-level abstraction. We achieved high abstraction and readability
by describing all SoC components in NSL. The rest of the paper is organized as follows.
Chapter 2 shows related works of this study. Chapter 3 shows the RISC-V processor
core implementation in RV32XSoC. Chapter 4 shows the design of RV32XSoC. Chapter 5
shows the verification method and FPGA configuration results. Chapter 6 shows Unix-like
OS porting of RV32XSoC. Chapter 7 shows the conclusion of this study.

2. Related Work. There are many projects to study LSI. MIPSfpga [2] is learning digi-
tal circuit design and computer architecture by implementing MIPS microprocessors using
BASYS development boards. The semester-long project of the University of Michigan [3]
is learning computer architecture and SystemVerilog through the design and implements
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an out-of-order pipelining processor core using RISC-V. However, these projects focus on
hardware education, and a few of them include software such as operating systems.
Rocket chip [4] and Boom [5] are previous research on the high-performance RISC-V

processors that can run Linux. The Rocket-Chip has the RISC-V core which is imple-
mented almost all ISA, caches, interconnects, and so on. Boom is a RISC-V out-of-order
processor, which can decode and issue multiple instructions, and thus has higher per-
formance than Rocket. Both are open-source, and anyone can use them. Both are im-
plemented in Chisel [6]. Chisel is the register transfer level (RTL) language which is an
internal domain-specific language (DSL) of Scala. Chisel can compile to Verilog. Chisel
achieves high productivity by using Scala-related assets. However, it has a high learning
cost because developers learn both Chisel and Scala. In addition, compiling Chisel to
Verilog is slow because the process includes Scala language processing. Also, the learning
cost is high because of hardware architecture complexity due to multifunctionality.

3. Design of RISC-V Processor in RV32XSoC. We designed the RISC-V processor
which supports a Unix-like operating system. Table 1 shows extensions of the RISC-V
ISA we implemented. We implemented minimum ISA to support Unix-like OS, excluding

Table 1. Implemented RISC-V ISA

Extensions Features
RV32I 32-bit base integer instruction set

M Extension Hardware multiplication and division instruction support
A Extension Atomic memory instruction support

Zifencei Instruction-Fetch fence instruction support
Zicsr CSR instruction support

M/S/U-mode Machine/Supervisor/User mode support
SV32 Page-based 32-bit virtual-memory systems support

Figure 1. The block diagram of our RISC-V processor core



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.14, NO.7, 2023 675

Table 2. The structures we implemented for acceleration

Structures Remarks
Pipelining In-order 5 stage pipeline

TLB 4-entries instruction TLB, and 32-entries data TLB

Cache
4KB direct-mapped instruction cache, and 4KB 2-way set-associative
data cache

Branch
prediction

2-bit saturating counter with 32-entries branch target buffer (BTB)

Forwarding
Detects read-after-write (RAW) hazard and passes directly the value
among the stage

Table 3. Description of pipeline stages

Stage Features Hazard detection (excluding trap)

Ifetch
Fetches instruction of current PC,
updates PC

Instruction cache miss

Decode
Fetches value of operand by reg-
ister file, generates immidiate

RAW hazard, instruction at execute stage
are taken branch or jump

Execute
Processes calculation in ALU, up-
dates BTB on the branching re-
sult

Load hazard (Memory, CSR), multiplica-
tion and division

Memory
Accesses memory or CSR, pro-
cesses AMO instructions

Data cache miss, TLB miss, fence, fence.i,
sfence.vma and AMO

Writeback Updates register-file None

floating-point extensions and some not critical control status registers (CSRs) to run
Unix-like OS from the “general-purpose” ISA [7]. Figure 1 shows an overview of the
RISC-V processor. Our processor has an in-order five-stage pipeline. We implemented
several structures for acceleration such as pipelining to our processor. Table 2 shows the
structures for acceleration we implemented in our processor. The forwarding unit passes
the ALU calculation result or read memory value to the instruction in the previous stage
if the subsequent instruction has read after write (RAW) hazard. The pipeline stages
are composed of Ifetch, Decode, Execute, Memory, and Writeback. Table 3 shows the
description of pipeline stages. In addition to those structures, the processor includes a
trap-control line. The trap control line stalls the appropriate stages when a trap occurs.
After that, the PC updates to the trap vector defined in trap vector CSR.

4. Design of RV32XSoC. We designed the RV32XSoC with minimum required circuits
to support Unix-like OS. Table 4 shows the SoC components we implemented. All these
components are written by NSL. Table 5 shows the NSL code size of the whole components
of our SoC. The total code size is about 7000 lines. The real codes of RV32XSoC are less
than 7000 lines because these codes include debugging signals handling. Figure 2 shows
an overview of RV32XSoC. All these components are memory-mapped access as Figure
2 shows. We implemented UART and SPI Master to use Unix-like OS character/block
devices. These modules can interrupt driven. We use platform level interrupt controller
(PLIC) and core-local interruptor (CLINT) [8] as interrupt controllers. Figure 3 shows
the connection between the processor and the interrupt controller. PLIC handles external
device interrupts. PLIC sends interrupt requests from an external device to the processor
external interrupt pending (EIP) CSR. The processor handles interrupts of source devices
based on information stored in memory-mapped PLIC CSRs. CLINT handles timer in-
terrupt and software interrupt for each hart. CLINT counts time in constant frequency
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Table 4. RV32XSoC components

Components Remarks
RISC-V Processor Single core. Detailed in Section 3: Design of our RISC-V processor

PLIC Support 31 IRQ line, 8-level IRQ priority, 2 hart contexts
CLINT 50Mhz, support only one hart context
UART 50Mhz, support 38400 bps, 8-bit data length, no parity check
SPI I/F 25Mhz, MMC compatible

Table 5. NSL files of RV32XSoC

Filename Lines
A
L
U

adder32.nsl 19
alu32.nsl 67
div32.nsl 74
inc32.nsl 18
mul32.nsl 45
munit32.nsl 95
shifter32.nsl 34
sub32.nsl 19

C
or
e

cache.nsl 390
ptw.nsl 73
tlb.nsl 69
btb.nsl 107

imm gcn.nsl 32
amoalu.nsl 29
inst dec.nsl 213

load store unit.nsl 426
ifetch unit.nsl 234

reg32.nsl 241
rv32x5p.nsl 1037

rv32x core.nsl 1572

S
oC

bootrom.nsl 31
clint.nsl 55
fifo.nsl 61

mmio dev.nsl 62
plic.nsl 361

uart reciever.nsl 158
uart sender.nsl 122
mmcspi.nsl 992

rv32x integration.nsl 337

and generates timer interrupt at the interval set in the timer comparison CSRs. CLINT
also generates software interrupt by writing machine software interrupt pending (msip)
CSR. The software interrupt completes by clearing the msip CSR of CLINT.

5. Verification.

5.1. RV32XSoC software simulator. We developed a software simulator of RV32X-
SoC for verification and debugging. Figure 4 shows the simulator verification flow. We
use Verilator [9] to generate a C++ RTL simulation model from the compiled Verilog
HDL files. Our software simulator verification flow is as follows. First, compile the NSL
files of the simulation-only module and whole components of our SoC to Verilog HDL by
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Figure 2. An overview of RV32XSoC

Figure 3. Processor and interrupt controller connection

NSL compiler (NSL2VL). Second, generate a C++ RTL simulation model by Verilator.
Then, compiling our simulator source and simulation model on gnu C++ compiler (g++)
makes the software simulator. Figure 5 shows the interface between the simulator and
the RV32XSoC simulation model. The simulator expands the executable linkable format
(elf) passed as a command-line argument into the host machine memory and interfaces
between the host machine memory and the simulation model. The simulator passes the
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Figure 4. Verification flow

Figure 5. Interface of RV32XSoC simulator

host machine standard input to the UART input and passes the UART output to the
host machine standard output. The simulator emulates the MMC card as a binary file.
Thus, the simulator emulates RV32XSoC and generates a waveform dump and execution
log. The waveform dump is a value change dump (VCD) format. We can detect imple-
mentation errors and analysis timing-critical paths with VCD observation software. The
execution log contains much helpful information for debugging like disassembling, regis-
ter/memory trace, interrupt information, and procedure/object tracking. Figure 6 shows
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Figure 6. Simulator execution log

an example of the execution log. We can analyze RV32XSoC execution flow using the
software-level output from the execution log and the register-transfer-level output from
the wave dump.

5.2. FPGA configuration. We did an FPGA logic synthesis of RV32XSoC using Quar-
tus Prime 21.1. Table 6 shows the configuration result of our SoC and its RISC-V core.
We choose Cyclone V 5CEBA4F23C7 and Arria II EP2AGX45DF29I5 as synthesis tar-
get devices. Large data blocks such as cache are allocated to block RAM by Quartus
Prime RAM inference. We can use more resources for further expansion and accelera-
tion because both targets have surplus logic elements. We did a comparison with other
Linux-ready RISC-V SoC. Table 7 shows a comparison between RV32XSoC and other
Linux-ready RISC-V SoC design configurations. OpenPiton+Ariane [10] includes the 64-
bit RISC-V processor which implements RV64GC (In the configuration, without FPU),
UART, SD/SDHC controller, MMU, Ethernet, CLINT, PLIC, and debug module. Open-
Piton+Ariane is the largest scale configuration result in the comparison. It is because it
has a large data path and most SoC components. RVSoC [11] includes the RISC-V pro-
cessor which implements RV32IMAC, RISC-V microcontroller which implements RV32I,
MMU, VirtIO-based console, and disk. RVSoC is the least scale configuration result in
the comparison, but it is because it has no pipeline structure. In comparison, RV32XSoC
is the compact configuration result even though pipeline structure.

Table 6. RV32XSoC and its RISC-V core FPGA configuration result

Family LUTs FFs
Logic

utilization
Memory
blocks

DSP
block

Fmax

RV32XSoC
Cyclone V 14647 18136

11985/18480
(65%)

16/No data
(5%)

6/66
(9%)

48.21Mhz

Arria II 18291 17405
No data
(78%)

17/319
(5%)

4/232
(2%)

71.67Mhz

RISC-V core
Cyclone V 10641 8586

7122/18480
(39%)

14/No data
(5%)

6/66
(9%)

47.37Mhz

Arria II 8515 10360
No data
(44%)

15/319
(5%)

4/232
(2%)

71.76Mhz
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Table 7. FPGA resource usage comparison of Linux-ready RISC-V SoC

OpenPiton+Ariane [10] RVSoC [11] RV32XSoc
Family Virtex-7 Artix-7 Cyclone V
LUTs[k] 99 10 14
FFs[k] 73 6 18

BRAM type RAMB36 (36kb/tile) M10K (10kb/tile)
BRAM tiles 63 33 16

DSPs 16 No data 6
configured ISA RV64IMAC RV32IMAC RV32IMA

Pipeline 6-stage In-order None 5-stage ln-order

5.3. Dhrystone benchmark. We did the Dhrystone benchmark to evaluate the perfor-
mance of our processor. Table 8 shows the result of the benchmark. We did the benchmark
of RV32XSoC processor core implemented on Cyclone V 5CEBA4F23C7 based board.
The benchmark program was compiled with GCC 11.1.0 using the -O2 option. Figure
7 shows a comparison of DMIPS/Mhz with other CPUs. Our processor has almost the
same performance as Pic 24 and MSP430, which are low-end embedded processors.

Table 8. Dhrystone benchmark result

Family MHz Dhrystone/sec DMIPS DMIPS/MHz
Cyclone V 50.0 39406 22.428 0.448

Figure 7. Comparison of DMIPS/MHz with other CPUs [12]

6. Unix-Like OS Support. We ported the RV32XSoC to xv6 and Linux to make Unix-
like operating system practice and teaching environment. We can effectively learn the
interface between the computer hardware and OS through the exercise environment we
constructed. We did these two OS validations using the RV32XSoC software simulator.
Table 9 shows the problems encountered during validation. These problems were not
detected in the unit test. We were able to fix these problems early by analyzing the
execution logs and waveforms of the software simulator.

6.1. xv6. xv6 is RISC-V compatible educational operating system developed by MIT.
The pure xv6 is designed to run in QEMU with VirtIO as an external disk and UART16550
as serial communication. Accordingly, we replaced the device driver to make it compatible
with the RV32XSoC-specific UART and disk controller.
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Table 9. Problems with xv6 and Linux validation

Problem Cause
xv6 outputs “panic:re-
lease” message and fails
to boot.

The executed instruction was re-executed after the return
from interrupt. As a result, illegal value was entered in the
instruction which source and destination are the same.

Linux/init process does
not work.

AMOSWAP.W instruction following the FENCE instruc-
tion had been executed twice. As a result, the mutex used
in the init program had an incorrect value, cause deadlock.

Linux stops working after
a few tens of seconds af-
ter boot.

When the machine interrupt occurred immediately after
the supervisor exception, the supervisor context was de-
stroyed. As a result, it was not possible to recover from the
interrupt.

Figure 8. Executable overview

Figure 9. Character device access overview

6.2. Linux. We choose Linux version 5.11 for validation. We made a device tree and
device driver which are necessary to run Linux on RV32XSoC. The device tree is a format
for describing hardware-specific information and is referenced in the Linux kernel. We
use OpenSBI as the firmware and boot loader to run Linux. OpenSBI is a supervisor
binary interface (SBI) [13] that runs in machine mode. It works as the interface between
hardware and the supervisor software by controlling the device driver. In this project, we
packed OpenSBI, Linux, the device tree, and the device driver in one executable. Figure
8 shows an overview of the packed executable. The device tree is passed to the Linux
kernel by the SBI. Linux kernel accesses the device driver via SBI. Figure 9 shows an
overview of Linux character device access using SBI. RV32XSoC-specific hardware I/O
process is done by elevating the privilege mode using the ECALL instruction. In addition
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Figure 10. Linux on RV32XSoC

Table 10. Gantt chart on developing RV32XSoC

Work
Time (month)

1 2 3 4 5 6 7 8

RISC-V core implementation
SoC components implemation

Programming simulator
Testing ISA

Testing SoC components
Porting xv6

Porting OpenSBi, Linux

to building these interfaces, we set up the root file system using busybox [14] and Linux
kernel config for the features we implemented. Thus, we constructed the Linux execution
environment. Figure 10 shows Linux running in the execution environment.

7. Conclusion. We developed an educational SoC framework with a compact CPU that
is highly effective in education. Table 10 shows the development Gantt chart. We were
able to understand, develop, and debug the system in a short period by using the high-level
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synthesis language NSL. Through this project, we can effectively acquire comprehensive
knowledge about computer systems such as computer architecture, operating system,
and device driver. We can learn the interface between hardware and software through
the framework by supporting Unix-like OS such as Linux and xv6. RV32XSoC is highly
readable and compact. For this reason, we can use it as a basic framework for various
educational programs, such as CPU speed acceleration, adding I/O, and adding OS sup-
port. Therefore, the framework we constructed is effective for learning and teaching both
hardware and software.
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Out-of-Order RISC-V Core, Technical Report UCB/EECS-2017-157, EECS Department, University
of California, Berkeley, 2017.

[6] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis, J. Wawrzynek and K. Asanovič,
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