ICIC Ezxpress Letters
Part B: Azl)\?lications ICIC International (©)2023 ISSN 2185-2766
Volume 14, Number 7, July 2023 pp. 663—672

CHEMOINFORMATICS USING DIMENSIONALITY REDUCTION
AND CLUSTERING FOR ENZYME COMMISSION NUMBER
PREDICTION IN ORGANIC SYNTHESIS

KaTsuya MuTton!, GENJI IWASAKI®, KOoJ1 OKUHARA?* AND YASUHISA ASANO?

!Department of Electrical and Computer Engineering

Graduate School of Engineering

?Department of Information Systems Engineering
3Department of Biotechnology

Faculty of Engineering

Toyama Prefectural University

5180 Kurokawa, Imizu, Toyama 939-0398, Japan

u255018@st.pu-toyama.ac.jp; { iwasaki; asano }@pu-toyama.ac.jp
*Corresponding author: okuhara@pu-toyama.ac.jp

Received November 2022; accepted January 2023

ABSTRACT. The outbreak of COVID-19 has increased the demand for new drug develop-
ment. That has led to a growing interest in chemoinformatics, which is valuable informa-
tion technology to predict chemical reactions. The use of enzymes as catalysts is gaining
importance in terms of the environment and reaction efficiency. In order to predict the
best enzyme to obtain the desired product, the target chemical equation is compared with
typical chemical equations of enzymes classified by Enzyme Commission number (EC
number) using clustering. The EC number of the chemical equation that is evaluated to
have the highest similarity is predicted.

Keywords: EC number, Chemoinformatics, Dimensionality reduction, Clustering

1. Introduction. The global outbreak of COVID-19 is currently increasing the need
for new drug development. Because of it, the chemoinformatics has attracted much at-
tention. Chemoinformatics analyzes properties and structures of chemical compounds or
uses machine learning method to classify, design, and predict chemical reactions.

In the field of organic synthesis, enzymes are increasingly used as biocatalysts in the
design and prediction of chemical reactions. Compared to chemical catalysts, biocatalysts
are known to be environmentally friendly and allow chemical reactions to proceed more
efficiently. Therefore, it is becoming one of the important factors to predict the most
suitable enzyme for a particular reaction to produce desired products. Enzymes are as-
signed an EC number (Enzyme Commission number) consisting of four pairs of numbers
and are classified according to which reaction they catalyze and which bond or substrate
they act on [1, 2]. While organic chemists spend time searching for enzymes by consulting
databases or working with enzyme experts, predicting the optimal EC number for a given
reaction allows them to move quickly to the next experimental step, such as selecting
which enzyme product of that number to use.

There are many studies about EC number prediction, using protein sequences [3, 4],
structural properties of compounds [5, 6], physical and chemical properties [7], etc. While
enzymes are classified according to their properties up to the third digit of the EC number,
the fourth digit distinguishes enzymes with the same properties by name. Therefore, as
it is difficult to predict the fourth digit, many studies predict up to the third digit. This
study focuses on the prediction of the fourth digit of the EC number. In contrast to
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previous studies that predict the fourth digit using protein sequences [3, 4], the proposed
method not only predicts using the amount of change in physical and chemical properties
from reactants to products, but also visualizes the similarity between chemical reactions
that are assigned EC numbers.

Typical chemical reactions data using enzymes belonging to EC numbers are obtained
from KEGG (Kyoto Encyclopedia of Genes and Genomes) [8]. The EC number of the
chemical reaction with the highest similarity is predicted as the best enzyme by comparing
the changes in the characteristic values of the target chemical reaction with those of the
EC number chemical reaction.

This paper is organized as follows. In this section, the background and purpose of
this study were explained. In Section 2, enzymes and EC numbers are described. The
next section introduces the structural representation of compounds in chemoinformatics
and the clustering method used in this study. In Section 4, the proposed method for EC
number prediction is explained. Next, the procedure of experiments, result and discussion
are described. Finally, a “Conclusion” ends this paper.

2. Enzymes and EC Numbers. Enzymes are proteins that catalyze chemical reactions
necessary in living organisms and are indispensable for their survival. They are classified
according to their properties by EC numbers, which consist of four pairs of numbers,
X.X.X.X. The first number is classified into seven categories according to which reaction
it catalyzes: 1 (Oxidoreductases), 2 (Transferases), 3 (Hydrolases), 4 (Lyases), 5 (Iso-
merases), 6 (Ligases), and 7 (Translocases) [1, 2]. The second number indicates which
bond the enzyme acts on, the third number indicates which substrate (compound) it re-
acts with and the coenzyme information it requires, and the fourth number indicates the
name of the enzyme (in the order of registration) belonging to the first to third combi-
nation numbers (EC X.X.X). Figure 1 shows an image of the EC number classification.
For example, carboxylesterases belong to the enzymes called hydrolase and catalyze a
hydrolysis reaction of compound with a carboxyl bond (ID C02391) that are classified as
ester bond shown in the bottom of Figure 1.
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FIGURE 1. Classification of enzymes by EC number (based on [8])
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3. Chemoinformatics and Information Technology.

3.1. Structural representation of compounds. Chemoinformatics is the study of
predicting and classifying chemical reactions by representing the structure of compounds
in a format that is easy to handle on a computer. One way to express the characteristics
of a compound on a computer is to quantify its physical properties and chemical charac-
teristics. These property values are called descriptors. A compound can be represented
as a multidimensional feature vector with many property values.

The Python library, RDKit [9], handles this representation method. It can read chem-
ical structure information files obtained from databases and create objects to draw struc-
tural formula. By calculating characteristic values of compounds from the structural for-
mula object, it is possible to evaluate the similarity between compounds and make pre-
dictions by machine learning. Figure 2 shows how the structural formula of a compound
is drawn using RDKit, and the results of calculating the Molecular Weight (MolWt).

from rdkit import Chem
Rylitol = Chem.MolFromMolFile( Xylitol.mol™)
Rylitol

H

HO OH

H H
Chem.MolToSmiles(Xylital)
‘OC[CaH](0)[CcaaH](0)[Cad](0)co’
from rdkit import Chem

from rdkit.Chem import Descriptors

Rylitol = Chem.MolFromMolFile( Xylitol.mol™)
Descriptors MolWt(¥ylitol)

162 .1460000000000%

FiGURE 2. Compound information using RDKit

3.2. Clustering method. This section describes a clustering method used in dimen-
sionality reduction.

Agglomerative clustering (complete linkage method)

Each data is considered as a cluster, and the distance between the data in one cluster
and the data in another cluster is calculated using Euclidean distance, etc. The pair with
the farthest distance is considered to be the cluster distance. The two clusters with the
smallest cluster distance are merged one after another until the specified number of clusters
is reached. If the data belonging to clusters C; and Cy are x; and Xa, respectively, the
distance between x; and Xz is d(x1, X2) and the distance between the clusters is d(Cy, Cs)
[10], the distance between clusters in the complete linkage method is as follows:

d(C’l, 02) = max {d(Xl, Xz)} (1)

x1€C1,x2€C2

4. Proposed Method.

4.1. Prediction of EC numbers using changes in characteristic values. In this
study, the structural changes of the target chemical equation and the representative chem-
ical equation of the EC number (EC chemical equation) are compared, and the EC number
of the most similar EC chemical equation is predicted as the optimal enzyme candidates.
Here, a representative chemical equation refers to a reaction change from a substrate to
a product that occurs in nature, such as in living organisms, and is registered as one or
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F1GURE 3. Typical chemical equation for EC 3.1.1.2 (based on [8])
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F1GURE 4. Comparison of similarity of chemical equation

more for each EC number. As an example, in EC 3.1.1.2 of KEGG ENZYME [8], 3 typical
chemical equations are registered with R numbers as shown in Figure 3.

In the comparison of structural changes, the image is as shown in Figure 4. In the target
chemical equation, it is known which reactant is used to obtain the desired product by
retrosynthesis analysis. If the structural change from reactant to product of the target
chemical equation is similar to that of an EC chemical equation, we assume that using the
enzyme of the chemical equation in the target will increase the efficiency of the reaction
to obtain the target product in high yield. This is based on the concept of molecular
similarity used in chemistry [12].

The following characteristic value changes are used as an indicator of structural change.
When the number of reactants and products in a chemical equation is two each, the char-
acteristic value of reactant ¢ is RT; and that of product i is PD;. In this case, the change
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in characteristic value cv; (j = 1,2,...,n) for n descriptors of physical and chemical
property values is defined as follows:
Cv; = (PDl + PDQ) — (RTl + RTQ) (2)

For each chemical equation, the amount of change in the characteristic value of n descrip-
tors is derived. The n-dimensional feature vector with these elements is used as the feature

of the structural change of the chemical equation. The feature vector DF; (i = 1,2,...,m)
for m chemical equations are expressed as follows:
DF; = (cvi, Cja, . .., Uy - . ., CU) (3)

The similarity of the feature vectors between the target and each EC chemical equation
is evaluated, and the EC number of the chemical equation with the highest evaluation
is predicted as the best enzyme candidate. SOM (Self-Organizing Map) [11] is used to
evaluate the similarity.

4.2. Dimensionality reduction by agglomerative clustering. A complete linkage
method of agglomerative clustering is used for the 208 descriptors to adjust the number
of descriptors and reduce the dimensionality of the feature vectors [14]. The agglomerative
clustering implemented in sklearn of Python [15] is used as the clusterring program. In
this study, the inverse of the correlation coefficient between descriptors is used as the
distance between descriptors in each cluster. When the correlation coefficient between
descriptors u and v iS Sy, 1/Sy, is the distance between descriptors. A distance matrix
such as Table 1 is created by Pyhton for clustering. Here, elements with a correlation
coefficient of 1 are set to 0.

TABLE 1. Distance matrix

descriptor 1 | descriptor 2 | --- | descriptor n
descriptor 1 0 1/s19 . 1/s1n
descriptor 2 1/s91 0 e 1/s9,
descriptor n 1/Sn1 1/Sn2 e 0

In quantitative structure-activity relationship analysis, which predicts the properties of
structurally similar compounds by modeling the structure of the compounds with physical
and chemical properties, setting the threshold of the correlation coefficient in the range of
0.95 to 0.9999 is shown to be sufficient to reduce the number of descriptors [13]. To achieve
as much dimensionality reduction as possible, when creating new descriptor clusters, we
set the merge threshold as s,, = 0.95, that is, 1/s,, < 1/0.95 ~ 1.05. In this case, the
distance between clusters, d(C}, Cs), is obtained as follows from Formula (1).

1
d(Cy,Cs) = max

u€C1,v€C2 Syyyy

(4)

Using these, clustering among descriptors is performed in the following procedure.

1) Merge the pair with the minimum distance among the pairs of descriptors that satisfy
1/8yp < 1.11.

2) If descriptor pairs satisfying 1/s,, < 1.11 exist between clusters, merge clusters C}
and Cy with minimum distance d(Cy, Cy). Repeat until there are no more descriptor
pairs that satisfy the condition.

3) After clustering is completed, a table of correspondence is obtained between cluster
numbers and descriptors belonging to the clusters.

4) Standardize and average the sequence of the amount changes in the characteristic value
of each descriptor in the cluster, and use the composite descriptor as a new descriptor.
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Dimensionality reduction is performed by combining descriptors in the same cluster
and replacing them with a composite descriptor, cluster X (X is the cluster number).

4.3. Clustering of feature vectors by SOM. SOM [11] is a clustering method that
maps multidimensional data to lower dimensions and visualizes them. It clusters the
feature vectors of the target and EC chemical equation. Enzymes of EC number whose
chemical equation is located near the target are presented as the best enzyme candidates.

The SOM program uses source code created with reference to R language files output
by KH Corder [16]. The input data are the feature vectors of each chemical equation after
dimensionality reduction and standardized for all of it. The labels of the plot points are
the target and the EC number of the chemical equation.

The number of units is 400 (20 x 20) and the shape of them is hexagonal. The training is
divided into two stages: a rough ranking phase and a convergence phase [17]. The number
of training cycles is 1,000 for the first phase and 200,000 for the second phase. After
the SOM is run, feature vectors are mapped onto each winner unit, and agglomerative
clustering with color coding is performed. This clustering is done by the Ward’s method
using Euclidean distance. In this case, the number of clusters is 9.

5. Experimental Results and Discussion.

5.1. Outline of numerical experiment. The experimental flow of this study is de-
scribed below. First, information about each chemical equation is obtained from KEGG
[8] and PubChem [18]. Next, the physical and chemical property values of the compounds
are calculated using 208 descriptors in RDKit, and the feature vectors of each chemical
equation are created by obtaining the change in characteristic value. After dimensionality
reduction, the feature vectors of each chemical equation are mapped using SOM.

Target chemical equation and evaluation method of the proposed method

This time, we focus on the chemical equation for the first step of synthesis in the process
of producing molnupiravir. The target chemical equation is shown in Figure 5. Target 2 is
the original synthesis, which selectively esterifies the primary alcohol of ribose (first term
on the left side) [19]. Here, eight enzyme products are screened. The enzyme product
with the best yield is the enzyme classified as EC 3.1.1.3. In this experiment, target 1,
which is considered to be more reactive, was probably tested before synthesis of target 2.
The reaction of target 1 is also a possible reaction when the enzyme of EC 3.1.1.3 is used.
Therefore, we evaluate the proposed method based on how closely the feature vector of
the EC 3.1.1.3 chemical equation is located to the feature vectors of these two chemical
equations in SOM.
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50°C,20h
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FIGURE 5. Target chemical equation (based on [19])

EC chemical reaction to be compared

The EC chemical equations to be compared with the target using SOM are about 100
types in the EC 3.1.1 class. This is because the target is an esterification reaction, and
EC 3.1.1, Carboxylic Ester Hydrolases, are considered appropriate as the enzymes to be
predicted.
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Data acquisition and creation of feature vectors

First, the information about EC chemical equation was collected using the source code
[20] which obtains EC numbers and reactions of KEGG. Next, the structural information
files of the compounds in the chemical reaction were obtained from PubChem, and the
feature vectors of the EC chemical equation were created using RDKit. The used EC
chemical equations consist of two reactants and two products. The feature vectors of the
targets were obtained using the structure information files available on SciFinder™ [21].

Table 2 shows the feature vectors for target 1 and each chemical equation. The rows
indicate the target and EC number, and the columns contain the names of 208 descriptors.
The numbers represent the fourth number of EC 3.1.1. The numbers after the period
distinguish the chemical equations which have the same EC number. The numbers after
the underscore classify the chemical equations registered in multiple EC numbers. From
this table, descriptors with nan-values or divergent values in the elements and with 98%
or more of the elements having the same value were excluded. Finally, dimensionality
reduction was performed on the feature vector consisting of 113 descriptors.

5.2. Experimental results and discussion.
Dimensionality reduction of feature vectors

For the comparison between the EC chemical equation and the target 1 (target 2)
chemical equation, 12 (12) synthetic descriptors were created, and 84 (84) dimensional
feature vectors were obtained.

SOM results of EC number prediction for targets

Figure 6 shows the results for target 1. “E” means EC numbers other than EC 3.1.1
class. EC 3.1.1.80 and EC 3.1.1.45 chemical equations are located near target 1 and be-
long to the same cluster as it. The chemical equations in KEGG are shown in the left
part of Figure 7. These are the esterification reaction of 2-Maleylacetate and Norajma-
line, respectively. Near target 2, the EC reaction equations shown in the right part of
Figure 7 were located. EC 3.1.1.75 and EC 3.1.1.101 are hydrolysis reactions on Poly-
beta-hydroxybutyrate and Polyethylene terephthalate, respectively.

Discussion 1

Although five representative chemical equations of EC 3.1.1.3 were used, including
duplicates of other EC numbers, all of them were far from the targets and belonged to
different clusters from them as shown in Figure 6. There are two reasons for this.

First, the most important descriptors were not weighed while combining highly corre-
lated descriptors allowed to reduce the dimentionality of feature vectors. We would like
to consider a method to select only a small number of important descriptors.

Second, it is possible that factors other than the amount of change in characteristic
values have affected the EC number prediction. For example, in the target 2 reaction,
tert-amyl alcohol is used as the solvent, and the product is produced by shaking at 50°C
for 20 hours [19]. On the other hand, the EC chemical equation is a reaction that occurs
in nature and organic solvents are not used basically. It is necessary to create features
that take account of factors such as the reagents used in the experiment, the solvent, the
experimental environment, and the combination ratio.

Discussion 2

While the studies that predicted the fourth digit [3, 4] focus on the evaluation of pre-
diction accuracy, the advantage of this study is not only to predict the EC number for the
target given the correct answer, but also to visualize the similarity among other chemical
reactions by SOM. Although the prediction accuracy was not satisfactory because the
correct answer, EC 3.1.1.3, was far from the target, features such as a cluster of chemical
equations containing polymers around target 2 were able to be observed. Investigating
these properties of the EC chemical equations located near these targets seems to lead to
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FIGURE 7. EC 3.1.1 chemical equations located near the targets (based on [8])

better enzyme predictions. In addition, these EC numbers are likely to be little-known
enzymes, because the number of references for these EC numbers in BRENDA is only
about 30, compared to about 370 for EC 3.1.1.3. Therefore, it is necessary to examine
whether these enzymes of the EC numbers are better than those of EC 3.1.1.3 through
validation experiments.

6. Conclusion. Data was obtained from KEGG, PubChem, and other sources, and a
feature vector was created by calculating the amount of changes in characteristic values
consisting of 208 descriptors for each chemical equation using RDKit. The clustering of
feature vectors was performed by SOM. The amount of changes in characteristic values of
EC 3.1.1.80 was determined to be similar to that of target 1. In the case of target 2, EC
3.1.1.10 and 3.1.1.75 were presented. Although enzymes of EC 3.1.1.3 were not selected
as the most suitable enzymes, we expect that further examination of these predicted EC
numbers would result in a discovery of better enzymes than those of EC 3.1.1.3.

As a future study, we will focus on a method to select the appropriate combination
of descriptors that can most accurately classify EC classes to predict the optimal EC
numbers for the targets.
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