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Abstract. Sleep apnea is a sleep disorder caused by a failure in the respiratory process.
There are two types of sleep apnea: central sleep apnea and obstructive sleep apnea,
which are distinguished by respiratory failure. Sleep apnea detection has been a topic of
discussion for a long time. Currently, sleep apnea detection uses ECG signals, which are
then used for machine learning or deep learning. According to previous research, the best
algorithm for detecting sleep apnea is a combination of CNN and LSTM. As a result,
this study aims to compare GoogLeNet and GoogLeNet-BiLSTM to see how well the two
algorithms perform. The results show that in validation and testing, GoogLeNet got an
accuracy of 84.19% and 85.83%, and GoogLeNet-BiLSTM got an accuracy of 83.23%
and 85.75%. However, GoogLeNet-BiLSTM outperforms GoogLeNet in terms of the loss
function with a difference of roughly 29%-30% for validation and 13%-15% for testing,
and the number of epochs required to achieve convergence. So, if you want to get fast and
decent results while sacrificing a little accuracy, GoogLeNet-BiLSTM is the best choice;
otherwise, GoogLeNet can be used.
Keywords: Sleep apnea, RR-Interval, R-Peak amplitude, Electrocardiogram signal,
Deep learning

1. Introduction. Sleep apnea is classified into two types: Central Sleep Apnea (CSA)
and Obstructive Sleep Apnea (OSA). CSA is a sleep problem that occurs as a result of
the breathing muscles not receiving signals from the brain, and OSA is a prevalent sleep
problem characterized by recurring pharyngeal failure [1], yet CSA instances are relatively
rare in sleep apnea cases since CSA is frequently encountered in conjunction with OSA
cases [2]. The average population percentage of patients with sleep apnea was 17% for
women and 22% for men, according to eleven epidemiological studies done between 1993
and 2013 [3]. People with OSA may also have low oxygen saturation. Therefore, every
10% drop in oxygen saturation increases the risk of sudden cardiac death by 14% [4].

Since it is a crucial first step in providing patients with effective therapy for sleep apnea,
the accuracy of sleep apnea diagnosis is vital. The “gold standard” of diagnosis for OSA
is Polysomnography (PSG), which captures brain waves, heart rate, oxygen levels, and
breathing; nevertheless, PSG requires overnight evaluation in a hospital or laboratory
[5]. As a result, various research has discovered a novel method for detecting sleep apnea,
precisely by utilizing the Electrocardiogram (ECG) signal and its derivatives such as Heart
Rate Variability (HRV) or RR-Interval (beat by heartbeat) [6,7], which will subsequently
be detected via machine learning or deep learning. Because ECG signals capture variations
in the heart’s electrical activity during each cardiac cycle, they can be utilized to detect
various conditions [8]. These conditions include arrhythmias [9], sinus bradycardia and
ventricular flutter [10], sleep apnea, etc.
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Previous research has used machine learning and deep learning algorithms such as
Linear Discriminant Analysis (LDA) [2], k-Nearest Neighbor (kNN), Näıve-Bayes, and
Support Vector Machine (SVM) [6], as well as deep learning or hybrid algorithms such
as Convolutional Neural Network (CNN) [11], CNN combined with Long Short-Term
Memory (LSTM) [12], CNN-LSTM combined with Deep Neural Network (DNN) [5], and
multiscale deep neural network [13]. According to prior studies, the best algorithm for
detecting sleep apnea is the CNN-LSTM hybrid algorithm. On the other hand, previous
research exclusively used the CNN architecture, which has a small number of layers and
a network that is not complicated, deep, or wide.
Therefore, in this paper, we will conduct research to identify sleep apnea by utilizing

ECG signals using a hybrid deep learning algorithm, namely the CNN-BiLSTM. The ex-
periment in this study will combine the CNN GoogLeNet architecture with BiLSTM. The
usage of GoogLeNet is based on its capabilities, mainly a highly deep or wide network,
which indicates that the more profound or broader the network, the better the model’s
performance. Furthermore, the capability of BiLSTM in handling time-series data, such
as ECG signals, influences their utilization. In addition, the GoogLeNet architecture rep-
resents a considerable improvement over ZFNet (ILSVRC 2013 Winner) and AlexNet
(Winner of ILSVRC 2012), and it also has a reduced error rate compared to VGGNet
(Runner-up of ILSVRC 2014). Theoretically, when paired with BiLSTM, it can produce
a better result. As a result, the contributions this article may provide are understanding
the performance of GoogLeNet architecture or those integrated with BiLSTM.
This paper is categorized as follows: Section 2 describes the related works, Section 3

describes the methodology, Section 4 describes the result and discussion, and Section 5
describes the conclusion.

2. Related Works. There have been numerous earlier studies that used ECG signals to
detect sleep apnea. Chazal et al. conducted research in 2004 that used Linear Discrimi-
nant Analysis (LDA) and reached an accuracy of roughly 90% [2]. However, Chazal et al.’s
research has limitations, such as the need for more information regarding the sleep stage
in the dataset utilized. Regardless of sleep stage information, Isa et al. did research in
2011 to diagnose sleep apnea using multiple classification algorithms, including k-Nearest
Neighbour (k-NN), Näıve-Bayes, and Support Vector Machine (SVM) [6]. Because there
is no automated feature selection in machine learning classification, Isa et al. used Princi-
pal Component Analysis (PCA) as the feature selection. The accuracy attained from the
research was around 70% for k-NN, 70% for Näıve-Bayes, and 78% for SVM.
Following research that employs a machine learning technique to diagnose sleep apnea,

Banluesombatkul et al. did a study in 2018 utilizing a deep learning approach that uses
CNN-LSTM-DNN and achieved an accuracy of 79.45% [5]. Banluesombatkul et al. de-
veloped the architecture comprising three convolution layers, three LSTM layers, and six
fully connected layers before reaching the output layers. The activation function utilized
in the CNN layer is Rectified Linear Unit (ReLU), and at the fully connected layer, it is
hyperbolic tangent (tanh), which then outputs layers using SoftMax.
There is additional research that exclusively utilizes CNN, such as Wang et al.’s research

in 2019 [11]. Wang et al. employed the LeNet-5 architecture, which has been modified by
changing the convolutional layer from two dimensions to one, adding a dropout layer
with a parameter of 0.8 before the fully connected layer, and employing only one fully
connected layer with a parameter of ten units, which will then divide the output layer into
two classifications. The modified LeNet-5 architecture achieves an accuracy of 87.6%.
To expand knowledge about previous research in research using hybrid algorithms,

there is also research conducted by Shen et al. in 2021 [13]. Shen et al. diagnosed sleep
apnea using Multiscale Dilation Attention (MSDA)-1DCNN, which subsequently applied
a Weighted-Loss Time-Dependent (WLTD) classification. The implementation of dilated
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convolution is focused on balancing the relationship between parameters and performance,
and WLTD is used to overcome imbalanced data and increase the classifier accuracy. The
proposed method achieves an accuracy of 89.8%.

After that, in 2021, Faust et al. conducted research simply utilizing the LSTM algori-
thm [14]. The LSTM architecture consists of 2 forward and backward LSTM layers, and
the output is generated using the sigmoid activation function. The obtained accuracy when
using held-out data is 81.30%. Bahrami and Forouzanfar conducted research utilizing the
LeNet-LSTM hybrid algorithm in the same year [15]. In the performed research, the
hybrid algorithm employs LeNet for feature extraction and LSTM for classification. The
LeNet-LSTM hybrid algorithm yields an accuracy of 80.67 percent.

The most recent research is a study undertaken by Bahrami and Forouzanfar in 2022
that employs classification utilizing various machine learning and deep learning methods
[12]. In contrast to the research conducted by Bahrami and Forouzanfar in 2021, sever-
al machine learning classification algorithms were utilized in this work, including LDA,
Quadratic Discriminant Analysis (QDA), Logistic Regression (LR), Gaussian Näıve-Bayes
(GNB), SVM, and others. Meanwhile, the CNN-LSTM, CNN-BiLSTM, and CNN-GRU
hybrid algorithms used in this research include AlexNet, ZFNet, VGG16, and VGG19
CNN architectures. The best algorithm in this research was ZFNet-BiLSTM, which had
an accuracy of around 88.13%.

There are several approaches for detecting sleep apnea, ranging from machine learn-
ing to hybrid deep learning. The proposed method from earlier research’s accuracy and
performance is also improving, allowing for further development. Previous studies have
shown that CNN-BiLSTM is the best approach, although the design of the CNN utilized
does not yet use a complex CNN architecture. As a result, this research will try to use
a complex, broad, and deep CNN architecture like GoogLeNet. The study’s implemen-
tation of GoogleNet is based on research conducted by Kim et al. in 2019 [9]. The issue
was raised by Kim et al. regarding the evaluation of ECG signals for arrhythmias using
GoogleNet. This study yielded a very high degree of accuracy, almost 98%. Therefore,
in order to classify sleep apnea, this study aims to employ either pure GoogleNet or a
combination of GoogleNet and BiLSTM.

3. Methodology. This section will describe how the research was conducted. K-Fold
Cross-Validation will generally be used in each model in the research. Details regarding
the data collection, data processing as well as the proposed model’s structure are included
in this section.

3.1. Data collection. The apnea-ECG database (apnea-ecg) [16] was used in this re-
search, and it comprises 70 recordings of ECG signals with durations ranging from 401
to 578 minutes. The ECG signal has a frequency of 100 Hz. The sleep apnea data set
includes 57 males and 13 women with various data outcomes. Every minute of this data
is divided into one epoch, which has 6000 samples and is annotated. Because the data
utilized is from the 2000 challenge, it is separated into two equal parts: data for training
and data for testing. Unlike most research, which uses just 35 records data training, the
research that will be undertaken will use all existing records, exactly 70 records.

3.2. Data preprocessing. In this study, we will employ two data obtained by the ex-
traction procedure from the dataset used, specifically RR-Interval and R-Peak Amplitude.
This data has been used since Wang et al.’s research found that the two data were quite
useful in detecting sleep apnea [11]. In Bahrami and Forouzanfar’s research, it is also men-
tioned that using either the RR-Interval or R-Peak Amplitude might reduce the model’s
performance [12].

The extraction process will be carried out utilizing Wang et al.’s study method of
utilizing the Hamilton Algorithm to obtain the R-Peak, which will be used to compute
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Figure 1. Data preprocessing

the distance between the R-Peaks known as the RR-Interval. The two data sets are also
adjusted using cubic interpolation [11]. Figure 1 represents the data processing schema
used in this study.

3.3. Proposed model. A hybrid model, CNN-BiLSTM, with the CNN architecture
utilizing the GoogLeNet architecture, will be employed in this study. GoogLeNet is a
CNN architecture developed by Szegedy et al. that won the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) 2014 classification task [17]. GoogLeNet is a deep CNN
architecture with 22 layers, including nine inception layers. Because it is excessively deep,
two auxiliary classifiers are used to avoid overfitting and to manage diminishing gradient
descent, resulting in GoogLeNet having three outputs. Auxiliary classifier loss is weighed,
which means that the estimated loss is multiplied by 0.3.
Afterward, the BiLSTM algorithm will be implemented on last output of the GoogLeNet

architecture following the pooling layer. In this research, the parameter value for the
hidden unit is 2048. The final step is the dense layer with an activation function, SoftMax,
and parameters corresponding to the desired output, which is 2. Table 1 represents the
proposed method’s detail used in this study.

Table 1. Detail of the proposed model for GoogLeNet-BiLSTM

Layer Configuration
Input Size = (180, 1, 2)

GoogLeNet Modified all kernel sizes, e.g., (n, n) to (n, 1)
BiLSTM Filter = 2048

Fully Connected (Output) Dense = 2, Activation = SoftMax

4. Result and Discussion. This section contains detailed information regarding the
experimental setup, the results of the experiments, and a discussion of the comparison
between previous research and the proposed model.

4.1. Experimental setup. To achieve optimal and consistent outcomes in this research,
k-Fold Cross Validation with k = 5 will be performed. The most common values for k are
3, 5, and 10. The basic concept of the number k is that a small k is less expensive but
more biased, while a big k is more expensive but has a lower bias. Consequently, k = 5
was chosen for this study in an effort to make it cheaper and less biased. In addition, this
study only uses a dataset that is neither too huge nor too small. The experiment begins
by dividing the dataset into two portions, 70% for training data, 20% for data testing,
and 10% for data validation. The parameter optimizer in the model used is ADAM with
a loss function using Categorical Cross Entropy (CCE). Then, the epoch for this research
is 50, the learning rate is determined using a schedule with a beginning learning rate of
0.001, and every 10 epochs are divided by 10.



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.14, NO.5, 2023 471

4.2. Result. Several popularly used metrics from previous research, including accuracy,
sensitivity, specificity, and F-Score, were used to evaluate the proposed model’s perfor-
mance. Nevertheless, this study will also include two more metrics involving loss functions
that use CCE and precision. The metric loss function is used in the evaluation to deter-
mine how effectively the model generates the desired result. According to Demirkaya et al.
in 2020, loss functions are easier to train and more generic [18]. For calculating the met-
ric evaluation, the confusion metric containing True Positive (TP), True Negative (TN),
False Positive (FP), and False Negative (FN) will be utilized. The following formula will
be used to calculate the evaluation metrics:

Accuracy =
(TP + TN )

(TP + TN + FP + FN )
(1)

Sensitivity =
TP

(TP + FN )
(2)

Specificity =
TN

(TN + FP)
(3)

Precision =
TP

(TP + FP)
(4)

F -Score = 2 ∗ (Precision ∗ Sensitivity)
(Precision+ Sensitivity)

(5)

CCE = −
n∑

i=1

ti log(pi), for n classes (6)

t is the vector of the actual label and p is the probability of the predicted label in
Equation (6) regarding CCE. Table 2 shows the outcomes of the experiments conducted
on the proposed models, consisting of performance metrics between validation (Val.) and
testing (Test.). In validation, the performance of the traditional GoogLeNet method beats
the performance of the GoogLeNet-BiLSTM hybrid algorithm in metrics other than loss
function.

Table 2. Result experiment of CNN GoogLeNet architecture

Name Type Accuracy Sensitivity Specificity Precision F-Score CCE
GoogLeNet- Val. ±83.23% ±75.53% ±87.88% ±79.02% ±77.23% ±0.54
BiLSTM Test. 85.75% 80.97% 88.79% 82.07% 81.51% 0.46

GoogLeNet
Val. ±84.19% ±77.40% ±88.30% ±80.03% ±78.68% ±0.77
Test. 85.83% 81.31% 88.69% 82.00% 81.65% 0.54

GoogLeNet-BiLSTM and GoogLeNet on validation differed in accuracy, sensitivity,
specificity, precision, and F-Score by 0.96%, 1.87%, 0.42%, 1.01%, and 1.45%, respec-
tively. However, in testing, GoogLeNet-BiLSTM outperforms the evaluation metrics of
precision, specificity, and loss function with the difference in accuracy, sensitivity, speci-
ficity, precision, and F-Score, respectively are 0.08%, 0.34%, 0.1%, 0.07%, and 0.14%.

In the metric loss function, GoogLeNet-BiLSTM outperforms GoogLeNet by roughly
29%-30% for validation and 13%-15% for testing. According to Figure 2(a) loss function
curve, GoogLeNet-BiLSTM performs better than GoogLeNet because, as can be observed
from the loss function curve shown, GoogLeNet-BiLSTM achieves its lowest value and
convergence first.

Additionally, by examining the accuracy curve from Figure 2(b), it is still possible to
conclude that GoogLeNet-BiLSTM and GoogLeNet both achieved competitive accuracy
throughout the epoch. Because GoogLeNet-BiLSTM can provide results with a minimal
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(a) (b)

Figure 2. Loss function curve (a) and accuracy curve (b) from training
GoogLeNet-BiLSTM and GoogLeNet

error rate and accuracy comparable to GoogLeNet with fewer epochs, it can also be faster
at providing appropriate results.

4.3. Discussion. Because there are several approaches for detecting sleep apnea, this
research will also compare it to models given by other researchers whose models are still
relatively new. The research that became the comparison was likewise chosen based on
using the same dataset. The comparison of the proposed model in this research with
state-of-the-art detection of sleep apnea may be shown in Table 3.

Table 3. Comparison of GoogLeNet-BiLSTM and GoogLeNet with state-
of-the-art sleep apnea detection

Reference Model Accuracy Sensitivity Specificity Description

Faust et al.
Using 35 of the 70 records

[14]
LSTM 81.30% 59.90% 91.75% and no mention of the metric

loss function.

89.80% 89.10% 89.40%

Using 35 records for training
Shen et al. MSDA-1DCNN and 35 records for validation,

[13] + WLTD but no mention of the metric
loss function.

LeNet-BiLSTM 79.98% 68.38% 87.11%

Using 35 records for training
and 35 records for testing,

Bahrami and
but no mention of the metric

Forouzanfar
loss function.

[12,15]
ZFNet-BiLSTM 88.13% 81.49% 92.27%

Using 70 records with k-Fold
Cross Validation, but no
mention of the metric loss
function.

GoogLeNet-
85.75% 80.97% 88.79% –

Our model BiLSTM
GoogLeNet 85.83% 81.31% 88.69% –

Based on Table 3, accuracy and sensitivity from GoogLeNet-BiLSTM and GoogLeNet
are higher than LSTM and LeNet-BiLSTM, but lower than MSDA-1DCNN + WLTD and
ZFNet-BiLSTM with specificity just higher than LeNet-BiLSTM. However, it should be
noted that just one study, which used the ZFNet-BiLSTM model, showed experimental
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setup similarities. The ZFNet-BiLSTM model makes use of all accessible records (70 in
total) and utilizes k-Fold Cross Validation with k = 5 with only 35 records from the
available 70 records or 70 records divided equally into 35 training and testing records
were employed in research with other models.

One critical point is missing from all existing papers: the loss function evaluation
metric. Knowing the error rate of the model used is very helpful in determining whether
the model is feasible or not because accuracy alone is insufficient.

5. Conclusions. It can be concluded that in validation, GoogLeNet performs exception-
ally well in metrics other than loss functions, such as accuracy, sensitivity, specificity, pre-
cision, and F-Score from GoogLeNet-BiLSTM. However, in testing, GoogLeNet-BiLSTM
can outperform GoogLeNet in metrics of precision, specificity, and loss function. There-
fore, GoogLeNet-BiLSTM is the best option if you want the lowest loss function possible
and be faster at providing decent results because there are only slight differences with
GoogLeNet.

Due to the deep design of GoogLeNet alone, overfitting is potential when paired with
BiLSTM. Therefore, some adjustments must be made so that there is a possibility of
reducing the performance of GoogLeNet-BiLSTM, and that is the limitation of this study.
As a result, in the future, we can look for ways to improve the performance of GoogLeNet-
BiLSTM.
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