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Abstract. In this paper, an alternative Kalman smoothing filter is proposed for discrete-
time state-space model. The proposed Kalman smoothing filter is derived from the well-
known standard Kalman filter with a moving window strategy using only finite measure-
ments and inputs on the most recent window. The proposed Kalman smoothing filter
obtains a posteriori knowledge about the window initial condition from the most recent
finite measurements and inputs. The discussion about choosing window length is given.
Computer simulation results for a noisy electric motor system validate the effectiveness
of the proposed Kalman smoothing filter.
Keywords: Kalman filter, Kalman smoothing filter, Moving window strategy, Tempo-
rary uncertainty, Robustness

1. Introduction. The Kalman filter has been recently used in diverse engineering areas
for removing noise from a contaminated signal to help reveal important signal features
and components [1-6]. Meanwhile, because the Kalman filter is a causal filter providing
estimates for states at given times based only on the relative past, the estimates exhibit
a delay. Hence, the Kalman smoothing filter has been developed for estimation problems
where there is a fixed delay between a measurement and the availability of its estimate
[7-10]. Kalman smoothing filters have their own unique features and thus show the follow-
ing common advantages [7-10]. The smoothing filter generally utilizes more measurement
information than the filter to provide state estimates, which can give more accurate esti-
mation performance than the filter. In addition, since the smoothing filter provides state
estimates at the delayed time using measurement information up to the current time,
measurement information can be reflected in advance in the presence of the state change,
which can give more fast convergence than the filter.

However, due to their recursive formulations and infinite memory structure, the Kalman
smoothing filter may exhibit performance degradation and even divergence in severe cases
for mismodeling and temporary uncertainties. In the case of the standard Kalman filter
to resolve this problem, a moving window strategy has been applied successfully [11-
14]. Thus, smoothing filters with a moving window strategy have recently been studied
[15, 16]. However, these smoothing filters have a serious drawback that the window initial
condition has to be handled because the window of past measurements moves forward in
time at each sampling time when a new measurement is available. Thus, the smoothing
filter requires a posteriori knowledge about the window initial condition as well as finite
measurements on the most recent window for each moving window formulation. Since
the window initial state is also a state variable and thus not measurable, it is somewhat
unreasonable in practical systems that a posteriori knowledge about the window initial
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condition is assumed to be completely known. Therefore, how to handle the window initial
condition might be a challenging issue in the smoothing filter with a moving window
strategy. The window initial condition can be assumed to be unknown [15, 16]. However,
this assumption might be somewhat heuristic and seems to have no physical meaning.
Therefore, in this paper, an alternative Kalman smoothing filter is proposed for discrete-

time state-space model. The proposed Kalman smoothing filter is derived from the well-
known standard Kalman filter with a moving window strategy using only finite measure-
ments and inputs on the most recent window. The proposed Kalman smoothing filter
obtains a posteriori knowledge about the window initial condition from the most recent
finite measurements and inputs. The discussion about choosing window length is given.
Computer simulations are performed for a noisy electric motor system to verify the pro-
posed Kalman smoother and compare with the Kalman filter with the moving window
strategy as well as the standard Kalman smoothing filter. Through computer simulation
works, it is shown that the proposed Kalman smoothing filter works well for the nominal
system as well as the temporarily uncertain system. It is also shown that the proposed
smoother can be remarkably better than two filters for the temporarily uncertain system.
This paper has the following structure. In Section 2, a discrete-time state-space model

and a standard Kalman filter are described. In Section 3, an alternative Kalman smooth-
ing filter is developed. In Section 4, the discussion about choosing window length is given.
In Section 5, computer simulations are performed. Then, concluding remarks are given
in Section 6.

2. Discrete-Time State-Space Model and Standard Kalman Filter. A linear
discrete-time state-space model with a control input is represented by

xi+1 = Axi +Bui +Gwi,

zi = Cxi + vi, (1)

where xi ∈ ℜn is the unknown state, ui ∈ ℜp is the control input, and zi ∈ ℜq is the
known measurement. Matrices A, B, C and G represent a system matrix, a control input
matrix, a measurement matrix, and a noise matrix, respectively. At the initial time i0
of system, the state xi0 is a random variable with a mean x̄i0 and a covariance Σi0 . The
system noise wi ∈ ℜp and the measurement noise vi ∈ ℜq are zero-mean white Gaussian
and mutually uncorrelated. The covariances of wi and vi are denoted by positive definite
matrices Q and R, respectively.
The well-known standard Kalman filter [1-4] provides a minimum variance state esti-

mate x̂i, called the one-step predicted estimate of the system state xi with a control input
as follows:

x̂i+1 = Ax̂i +
[
AΣiC

T
(
R + CΣiC

T
)−1

]
(zi − Cx̂i) +Bui

= A
(
I + ΣiC

TR−1C
)−1 (

x̂i + ΣiC
TR−1zi

)
+Bui, (2)

Σi+1 = AΣiA
T +GQGT − AΣiC

T
(
R + CΣiC

T
)−1

CΣiA
T

= A
(
I + ΣiC

TR−1C
)−1

ΣiA
T +GQGT , (3)

where x̂i0 = x̄i0 and Σi is the error covariance of the estimate x̂i with initial value Σi0 .
The Kalman filter has been a standard choice for the state estimation and thus a beautiful
reference for diverse engineering areas. The Kalman filter has the recursive formulation
for computational efficiency. However, since the Kalman filter processes all past measure-
ments, it tends to accumulate estimation errors during its implementation. Therefore,
the Kalman filter has been known to show performance degradation and even divergence
phenomena for mismodeling and temporary uncertainties.
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3. Alternative Kalman Smoothing Filter with Moving Window Strategy as
well as Handling Window Initial Condition. From the standard Kalman filter (2)
and (3), an alternative Kalman smoothing filter is developed to estimate the state xi−d

at the lagged time i − d. The lagged time i − d means there is a fixed delay between
the measurement and the availability of its estimate. The positive integer d is the delay
length satisfying 0 ≤ d < M and equal to the number of discrete time steps between the
lagged time i− d at which the state is to be estimated and the current time i of the last
measurement used in estimating it.

To apply the moving window strategy, only finite measurements as well as inputs on

the most recent window
[
i−M

(
△
= iM

)
, i
]
are utilized for smoothing process. Hence, the

standard Kalman filter (2) and (3) can be modified by x̂iM+j on the window [iM , i] as
follows:

x̂iM+j+1 = A
(
I + ΣiM+jC

TR−1C
)−1 (

x̂iM+j + ΣiM+jC
TR−1ziM+j

)
+BuiM+j, (4)

where the error covariance ΣiM+j is given by

ΣiM+j+1 = A
(
I + ΣiM+jC

TR−1C
)−1

ΣiM+jA
T +GQGT , (5)

and 0 ≤ j ≤ M − 1. Then, at the current time i, the state estimate x̂i can be represented
by the following form:

x̂i = ΦM x̂iM +
M−1∑
j=0

ΦM−jΣiM+jC
TR−1ziM+j +

M−1∑
j=0

ΦM−jBuiM+j,

where the matrix Φj is given by

Φj+1 = ΦjA
[
I + ΣiM+M−j−1C

TR−1C
]−1

, Φ0 = I.

Therefore, at the lagged time i− d, the alternative Kalman smoothing filter x̂i−d can be
represented by the summation form with the window initial condition as follows:

x̂i−d = ΦM−dx̂iM +
M−d−1∑

j=0

ΦM−jΣiM+jC
TR−1ziM+j +

M−d−1∑
j=0

ΦM−jBuiM+j. (6)

At this point, a posteriori knowledge about the window initial condition {x̂iM ,ΣiM} on
the window [iM , i] is required for (5) and (6).

With the window initial state xiM , finite measurements Zi and inputs Ui on the most
recent window [iM , i] can be expressed by the following regression form

Zi − ΞUi = ΓxiM + ΛWi + Vi, (7)

where Zi and Ui are defined by

Zi
△
=


ziM
ziM+1

...
zi−2

zi−1

 , Ui
△
=


uiM

uiM+1
...

ui−2

ui−1

 , (8)

and Wi, Vi have the same form as (8) for wi, vi, respectively. Matrices Γ, Ξ and Λ are
defined by

Γ
△
=


C
CA
...

CAM−2

CAM−1

 , Ξ
△
=


0 0 · · · 0 0

CB 0 · · · 0 0
...

...
...

...
...

CAM−3B CAM−4B · · · 0 0
CAM−2B CAM−3B · · · CB 0

 ,
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Λ
△
=


0 0 · · · 0 0

CG 0 · · · 0 0
...

...
...

...
...

CAM−3G CAM−4G · · · 0 0
CAM−2G CAM−3G · · · CG 0

 . (9)

The noise term ΛWi + Vi in (7) is zero-mean white Gaussian as follows:

ΛWi + Vi ∼ N (Zi − ΞUi; 0,Π) , (10)

where N (Zi − ΞUi; 0,Π) denotes the Gaussian probability density function evaluated at
Zi − ΞUi with zero-mean and covariance matrix

Π
△
= Λ

diag
 M︷ ︸︸ ︷
Q Q Q · · · Q

ΛT +

diag
 M︷ ︸︸ ︷
R R R · · · R

 , (11)

where diag(Q Q Q · · · Q) and diag(R R R · · · R) denote block-diagonal matrices with
M elements of Q and R, respectively.
Then, using the approach of best linear unbiased estimation in [17], the window initial

condition x̂iM is obtained by

x̂iM =
(
ΓTΠ−1Γ

)−1
ΓTΠ−1 (Zi − ΞUi) . (12)

In addition, the window initial condition ΣiM is obtained by the error covariance of x̂iM

as follows:

ΣiM

= E
[
{xiM − x̂iM} {xiM − x̂iM}T

]
= E

[{
xiM −

(
ΓTΠ−1Γ

)−1
ΓTΠ−1 (Zi − ΞUi)

}{
xiM −

(
ΓTΠ−1Γ

)−1
ΓTΠ−1 (Zi − ΞUi)

}T
]

=
(
ΓTΠ−1Γ

)−1
. (13)

Therefore, a posteriori knowledge about the window initial condition {x̂iM ,ΣiM} in (12)
and (13) on the window [iM , i] is given for (5) and (6) in the unbiasedness sense. As shown
in (13), the window initial condition ΣiM is constant value. Thus, the error covariance
ΣiM+j (5) defined on the window [iM , i] can be rewritten as follows:

Σj+1 = A
(
I + ΣjC

TR−1C
)−1

ΣjA
T +GQGT , 0 ≤ j ≤ M − 1, (14)

with the window initial condition Σ0 = ΣiM =
(
ΓTΠ−1Γ

)−1
.

Using (12), the Kalman smoothing filter (6) with the window initial condition x̂iM can
be rewritten by

x̂i−d = ΦM−dx̂iM +
M−d−1∑

j=0

ΦM−jΣjC
TR−1ziM+j +

M−d−1∑
j=0

ΦM−jBuiM+j

= ΦM−d

(
ΓTΠ−1Γ

)−1
Γ̄T Π̄−1 (Zi − ΞUi) +

M−d−1∑
j=0

ΦM−jΣjC
TR−1ziM+j

+
M−d−1∑

j=0

ΦM−jBuiM+j

= ΦM−dΣ0Γ
TΠ−1 (Zi − ΞUi) +

M−d−1∑
j=0

ΦM−jΣjC
TR−1ziM+j +

M−d−1∑
j=0

ΦM−jBuiM+j
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= ΦM−dΣ0Γ
TΠ−1Zi +

 M−d︷ ︸︸ ︷
ΦMΣ0 ΦM−1Σ1 · · · Φd+1ΣM−d−1

d︷ ︸︸ ︷
0 0 · · · 0

CTR−1Zi

−ΦM−dΣ0Γ
TΠ−1ΞUi +

 M−d︷ ︸︸ ︷
ΦM ΦM−1 · · · Φd+1

d︷ ︸︸ ︷
0 0 · · · 0

BUi, (15)

where the transition matrix Φj is given by

Φj+1 = ΦjA
[
I + ΣM−j−1C

TR−1C
]−1

, Φ0 = I. (16)

Finally, the proposed Kalman smoothing filter x̂i−d (15) can be expressed by the simple
matrix form as the following theorem.

Theorem 3.1. Assume that {A,C} is observable and M ≥ n. Then, the proposed Kalman
smoothing filter x̂i−d on the window [i−M, i] is expressed by the following simple matrix
form:

x̂i−d
△
= (HI +HZ)Zi + (−HIΞ +HU)Ui, (17)

where matrices HI, HZ , and HU are as follows:

HI = ΦM−dΣ0Γ
TΠ−1, (18)

HZ =

 M−d︷ ︸︸ ︷
ΦMΣ0 ΦM−1Σ1 · · · Φd+1ΣM−d−1

d︷ ︸︸ ︷
0 0 · · · 0

CTR−1, (19)

HU =

 M−d︷ ︸︸ ︷
ΦM ΦM−1 · · · Φd+1

d︷ ︸︸ ︷
0 0 · · · 0

B. (20)

It is noted that matrices (18), (19), and (20) require computation only on the interval
[0,M ] once and is time-invariant for all windows.

Theorem 3.1 means the proposed Kalman smoothing filter x̂i−d (17) is time-invariant.
The on-line computation of the proposed Kalman smoothing filter requires only smoothing
updates. Hence, the computational complexity of the proposed Kalman smoothing filter
is O(M) and thus linear in the size of the window length M . In practice, this means that
quite a large M can be chosen without worrying about computational burden.

4. Choice of Window Length. The window length M can be a useful design param-
eter for the proposed Kalman smoothing filter. Thus, the important issue here is how
to choose an appropriate window length M that makes the proposed Kalman smoothing
filter’s performance as good as possible. The noise suppression of the proposed Kalman
smoothing filter might be closely related to the window length M , and it can have greater
noise suppression as the window length M increases. That is, choosing a larger M gen-
erally results in better noise reduction performance, since more measurements are taken
into account. However, at the same time, a larger M increases the convergence time of the
proposed Kalman smoothing filtered estimate. In addition, the complexity of computing
the Kalman smoothing filter, though this complexity is only O(M), becomes larger as the
window length increases. This illustrates the proposed Kalman smoothing filter’s com-
promise between noise suppression and tracking ability. Therefore, from an engineering
perspective, there is tradeoff that chooses the window length M . Since window length
M is an integer, fine adjustment of the properties with M is difficult. Moreover, it is
difficult to determine the window length systematically. In applications, one method of
determining the window length is to take the appropriate value that can provide sufficient
noise suppression. A heuristic would be to determine window length M in advance based
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on the error covariance Σj in (14). When the L2 norm of error covariance matrix ΣM falls
below a certain threshold, M in the vicinity is set the window length M . Since the error
covariance generally decreases over time, this heuristic allows to choose M in terms of the
L2 norm of the error covariance. This heuristic will be implemented in computer simula-
tions. Therefore, it can be stated from the above discussions that the window length M
can be considered a useful parameter to make the performance of the proposed Kalman
smoothing filter as good as possible.

5. Computer Simulations. In this section, the proposed Kalman smoothing filter is
applied for a direct current (DC) motor system through computer simulations. System
matrices for discrete-time state-space model (1) for the DC motor system are as follows
[18]:

A =

[
0.8178 −0.0011
0.0563 0.3678

]
, B =

[
0.1813
0.0069

]
, G =

[
0.0006
0.0057

]
, C =

[
1 0

]
, (21)

where the motor is operated without any payload, and the armature current and the
rotational speed are chosen as outputs measured by sensors. The DC motor encounters
an external source, that is, the input voltage to drive the motor. This external source is
treated as a control input ui. The control input is emulated by the unit step. For the
noisy DC motor system (21), system and measurement noise covariances are taken by
Q = 0.022 and R = 0.032, respectively.
Even if various dynamic systems and signal systems are represented in state-space mod-

el accurately on a long time scale, it may undergo unpredictable changes, such as jumps
in frequency, phase, and velocity. Because these effects typically occur over a short time
horizon, they are called temporary uncertainties [11-14]. As representative temporary
uncertainties, there are a model uncertainty, an unknown input, and incomplete measure-
ment information, etc. The state estimation for dynamic systems should be robust to
diminish the effects of these temporary uncertainties. In order to verify intrinsic robust-
ness property of the proposed Kalman smoothing filter, the DC motor system is assumed
to have a temporary model uncertainty as follows:

xi+1 = (A+∆Ai) xi +Bui +Gwi,

yi = (C +∆Ci) xi + vi, (22)

where

∆Ai = δi · I2×2, ∆Ci =
[
0.2δi 0.2δi

]
,

with

δi =

{
0.05 if 150 ≤ i ≤ 200,

0 otherwise.

Although the proposed Kalman smoothing filter is designed by the nominal discrete-time
state-space model (21), actual measurements for the smoothing are obtained from the
temporarily uncertain system (22). To make a clearer comparison of estimation perfor-
mances, simulations of 30 runs are performed using different noises.
Before actual simulations, the L2 norm of error covariance matrix ΣM is computed

from the error covariance equation (14) in order to determine the optimal window length
M that can provide enough noise suppression. The L2 norm of error covariance matrix
ΣM is obtained from the Matlab function norm(X). This function returns the L2 norm
or maximum singular value of matrix X, which can be also implemented approximately
using another Matlab function max(svd(X)). The L2 norm of error covariance matrix ΣM

is plotted according to increasing window lengths in Figure 1. It can be seen that the
L2 norm of error covariance matrix reduces as the window length grows and converges
when the window length is around M = 20. Of course, the L2 norm of error covariance
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Figure 1. Choosing optimal window length using L2 norm of ΣM
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Figure 2. Estimation errors of the proposed Kalman smoothing filter ac-
cording to diverse window lengths

matrix can be more reduced when M > 20. For diverse window lengths such as M = 15,
M = 20, and M = 25, estimation errors of the proposed Kalman smoothing filter are
compared. As mentioned already in Section 4, the proposed Kalman smoothing filter can
have greater noise suppression as the window length M increases. On the other hand,
at the same time, a larger M increases the convergence time of the proposed Kalman
smoothing filtered estimate. Therefore, from an engineering perspective, there is tradeoff
that chooses the window length M , which can be confirmed in Figure 2.

To illustrate the validity of the proposed Kalman smoothing filter and to compare with
the Kalman filter with the moving window strategy and the standard Kalman smoothing
filter, the window length is taken by M = 20. Figure 3 shows root-mean-square (RMS)
estimation errors for 30 simulations. Figure 4 shows estimation errors for one of 30 sim-
ulations. As shown in simulation results, the estimation error of the proposed Kalman
smoothing filter is smaller than those of other two filters on the interval where model-
ing uncertainty exists. In addition, the convergence of estimation error is much faster
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Figure 3. Comparison of RMS estimation errors (M = 20)
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Figure 4. Comparison of estimation errors (M = 20)

than those of other two filters after temporary uncertainty disappears. Moreover, the
proposed Kalman smoothing filter can be comparable to the other two filters after the
effect of temporary uncertainty completely disappears. Therefore, the proposed Kalman
smoothing filter can be more robust than the other two filters when applied to temporarily
uncertain systems, although it is designed with no consideration of robustness.

6. Conclusion. An alternative Kalman smoothing filter has been proposed for discrete-
time state-space model. The proposed Kalman smoothing filter has been derived from
the well known standard Kalman filter with a moving window strategy using only finite
measurements and inputs on the most recent window. The discussion about choosing
window length has been given. Computer simulations have been performed for a noisy
electric motor system to verify the proposed Kalman smoother and compare with the
Kalman filter with the moving window strategy as well as the standard Kalman smoothing
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filter. Through computer simulation works, it has been shown that the proposed Kalman
smoothing filter works well for the nominal system as well as the temporarily uncertain
system. It has been also shown that the proposed smoothing filter can be remarkably
better than two filters for the temporarily uncertain system.

Time-varying systems can be often used for many practical and real-time applications.
Thus, the smoothing filter for time-varying systems is necessary. In addition, in order to
improve computational reliability and overcome computational burden, the computational
efficiency should be considered for the implementation of the time-varying smoothing
filter. These can be considered as future research topics.

Acknowledgment. This research was supported by the MSIT (Ministry of Science and
ICT), Korea, under the ICAN (ICT Challenge and Advanced Network of HRD) pro-
gram (IITP-2022-RS-2022-00156326) supervised by the IITP (Institute of Information &
Communications Technology Planning & Evaluation).

REFERENCES

[1] M. Grewal, Applications of Kalman filtering in aerospace 1960 to the present, IEEE Control Systems
Magazine, vol.30, no.3, pp.69-78, 2010.

[2] F. Auger, M. Hilairet, J. M. Guerrero, E. Monmasson, T. Orlowska-Kowalska and S. Katsura,
Industrial applications of the Kalman filter: A review, IEEE Trans. Industrial Electronics, vol.60,
no.12, pp.5458-5471, 2013.

[3] M. Rhudy, R. Salguero and K. Holappa, A Kalman filtering tutorial for undergraduate students,
International Journal of Computer Science & Engineering Survey, vol.8, no.1, pp.1-18, 2017.

[4] A. Barrau and S. Bonnabel, Invariant Kalman filtering, Annual Review of Control, Robotics, and
Autonomous Systems, vol.1, no.1, pp.237-257, 2018.

[5] J. Yang, Y. Liu and Z. Li, Unconstrained continuous control set model predictive control based on
Kalman filter for active power filter, International Journal of Innovative Computing, Information
and Control, vol.17, no.5, pp.1705-1716, 2021.

[6] C. Urrea and R. Agramonte, Kalman filter: Historical overview and review of its use in robotics 60
years after its creation, Journal of Sensors, vol.2021, pp.1-21, 9674015, 2021.

[7] A. Aravkin, J. V. Burke, L. Ljung, A. Lozano and G. Pillonetto, Generalized Kalman smoothing:
Modeling and algorithms, Automatica, vol.86, pp.63-86, 2017.

[8] R. Dehghannasiri, X. Qian and E. R. Doughert, A Bayesian robust Kalman smoothing framework
for state-space models with uncertain noise statistics, EURASIP Journal on Advances in Signal
Processing, vol.2018, no.1, DOI: 10.1186/s13634-018-0577-1, 2018.

[9] C. Grudzien and M. Bocquet, A fast, single-iteration ensemble Kalman smoother for sequential data
assimilation, Geoscientific Model Development Discussions, DOI: 10.5194/gmd-2021-306, 2021.

[10] S. Sharma, R. Kulkarni, A. Vishnoi and R. Gannavarpu, Wrapped phase denoising using adaptive
kalman smoother algorithm, Journal of Modern Optics, vol.69, no.15, pp.838-849, 2022.

[11] Y. S. Shmaliy, S. Zhao and C. K. Ahn, Unbiased finite impulse response filtering: An iterative
alternative to Kalman filtering ignoring noise and initial conditions, IEEE Control Systems Magazine,
vol.37, no.5, pp.70-89, 2017.

[12] S. Zhao, Y. S. Shmaliy and F. Liu, Fast Kalman-like optimal FIR filter for time-variant systems
with improved robustness, ISA Transactions, vol.80, pp.160-168, 2018.

[13] S. H. You, C. K. Ahn, Y. S. Shmaliy and S. Zhao, Fusion Kalman and weighted UFIR state estimator
with improved accuracy, IEEE Trans. Industrial Electronics, vol.67, no.12, pp.10713-10722, 2020.

[14] P. S. Kim, Diverse derivation methods and expressions of discrete-time finite memory structure filter,
Engineering Letters, vol.29, no.2, pp.658-667, 2021.

[15] S. Zhao, J. Wang, Y. Shmaliy and F. Fei, Discrete time q-lag maximum likelihood FIR smoothing
and iterative recursive algorithm, IEEE Trans. Signal Processing, vol.69, no.11, pp.6342-6354, 2021.

[16] P. S. Kim, Two-stage Bayesian finite memory structure smoother for discrete-time systems, ICIC
Express Letters, vol.15, no.3, pp.209-217, 2021.

[17] J. Mendel, Lessons in Estimation Theory for Signal Processing, Communications, and Control,
Prentice-Hall, Englewood Cliffs, NJ, 1995.

[18] M. Brenna, F. Foiadelli and D. Zaninelli, DC motor drives, Electrical Railway Transportation Sys-
tems, pp.359-422, DOI: 10.1002/9781119386827.ch8, 2018.


