A NOTE ON INTUITIONISTIC FUZZY IMPLICATIVE UP-FILTERS

PANNAWIT KHAMROT¹, THITI GAKETEM², PONGPUN JULATHA³ NAPAPORN CHUNSEE⁴, RUKCHART PRASERTPONG⁵ AND AIYARED IAMPAN^{2,*}

¹Department of Mathematics Faculty of Science and Agricultural Technology Rajamangala University of Technology Lanna Phitsanulok 52 Moo 7, Tambon Ban Krang, Amphur Mueang, Phitsanulok 65000, Thailand pk_g@rmutl.ac.th

²Fuzzy Algebras and Decision-Making Problems Research Unit Department of Mathematics School of Science University of Phayao
19 Moo 2, Tambon Mae Ka, Amphur Mueang, Phayao 56000, Thailand thiti.ga@up.ac.th; *Corresponding author: aiyared.ia@up.ac.th

³Department of Mathematics Faculty of Science and Technology Pibulsongkram Rajabhat University 156 Moo 5, Tambon Phlai Chumphon, Amphur Mueang, Phitsanulok 65000, Thailand pongpun.j@psru.ac.th ⁴Department of Mathematics

Faculty of Science and Technology Uttaradit Rajabhat University 27 Injaime Road, Tambon Tha-it, Amphur Mueang, Uttaradit 53000, Thailand napaporn@uru.ac.th

⁵Division of Mathematics and Statistics Faculty of Science and Technology Nakhon Sawan Rajabhat University 398 Moo 9, Tambon Nakhon Sawan Tok, Amphur Mueang, Nakhon Sawan 60000, Thailand rukchart.p@nsru.ac.th

Received October 2022; accepted December 2022

ABSTRACT. In this paper, we introduce the concept of intuitionistic fuzzy implicative UP-filters of UP-algebras and investigate their properties. Moreover, we discuss the relationship between intuitionistic fuzzy implicative UP-filters and fuzzy implicative UP-filters. Also, we establish the concept of the complement and the level subset of an intuitionistic fuzzy implicative UP-filter.

Keywords: UP-algebra, Implicative UP-filter, UP-filter, Intuitionistic fuzzy implicative UP-filter, Intuitionistic fuzzy UP-filter

1. Introduction. Algebra structure has importance in mathematics with a wide range of research such as BCK-algebras [1], BCI-algebras [2], BCH-algebras [3], KU-algebras [4], and UP-algebras [5]. They are strongly connected with logic. In 2017, Iampan [5] introduced the concept of UP-algebras as a generalization of KU-algebras. Another interesting idea is UP-algebras, and many researchers brought this concept of UP-algebras into various concepts, such as UP-algebras with fuzzy sets, intuitionistic fuzzy sets, interval-valued fuzzy sets, picture fuzzy sets, bipolar fuzzy sets, and neutrosophic sets. The expansion of the UP-algebra concept to a new notion has been attractive; for example, Somjanta

DOI: 10.24507/icicelb.14.04.339

et al. [6] introduced the notion of a UP-filter and discussed the fuzzy set theory of a UP-subalgebra, a UP-ideal and a UP-filter. In 2019, Jun and Iampan [7] introduced the concept of comparative and allied UP-filters and investigated several properties. They discussed a comparative UP-filter to be an implicative UP-filter. The concept of fuzzy sets by Zadeh [8] in 1965 displayed uncertainties that use mathematical tools and the importance of using a wide range of existing theories. Next, the concept of intuitionistic fuzzy sets as a generalization of the concept of fuzzy sets was proposed by Atanassov [9] in 1986. In 2015, Kesorn et al. [10] first introduced and studied the concept of intuitionistic fuzzy sets in UP-algebras. Later in 2019, Thongngam and Iampan [11] studied the concepts of intuitionistic fuzzy UP-filters and intuitionistic fuzzy near UP-filters in UP-algebras. In 2020, Abdullah and Shadhan [12] applied the concept of intuitionistic fuzzy sets on Q-algebras. In addition, Songsaeng et al. [13] have also studied neutrosophic implicative UP-filters of UP-algebras in 2021.

We are interested in extending the notion of implicative UP-filters to intuitionistic fuzzy implicative UP-filters to supplement the intuitionistic fuzzy set notion of UP-algebras. This article aims to introduce the new concept of intuitionistic fuzzy implicative UP-filters (IFIUPFs) detailed below and gives some definitions, properties, and examples of UP-algebras. As a result, we find a relationship between IFIUPFs and their level subsets and complements. Finally, we conclude and plan to future work.

2. **Preliminaries.** In this section, we present the concept of UP-algebras and other definitions used in the study of this article.

Definition 2.1. [5] An algebra $\tilde{M} = (\tilde{M}, \star, 0)$ of type (2,0) is called a UP-algebra, where \tilde{M} is a nonempty set, \star is a binary operation on \tilde{M} , and 0 is a fixed element of \tilde{M} if it satisfies the following axioms:

$$\left(for \ all \ \tilde{p}, \tilde{q}, \tilde{r} \in \tilde{M}\right) \left(\left(\tilde{q} \star \tilde{r}\right) \star \left(\left(\tilde{p} \star \tilde{q}\right) \star \left(\tilde{p} \star \tilde{r}\right) \right) = 0 \right),$$
(1)

$$\left(for \ all \ \tilde{p} \in \tilde{M}\right) \left(0 \star \tilde{p} = \tilde{p}\right),\tag{2}$$

$$\left(for \ all \ \tilde{p} \in \tilde{M}\right) \left(\tilde{p} \star 0 = 0\right),\tag{3}$$

$$\left(for \ all \ \tilde{p}, \tilde{q} \in \tilde{M}\right) \left(\tilde{p} \star \tilde{q} = 0, \tilde{q} \star \tilde{p} = 0 \Rightarrow \tilde{p} = \tilde{q}\right).$$

$$\tag{4}$$

From [5], we know that the concept of UP-algebras is a generalization of KU-algebras. For ease of study, we write \tilde{M} instead of a UP-algebra $\left(\tilde{M}, \star, 0\right)$.

The binary relation \leq on \tilde{M} is defined as follows: (for all $\tilde{p}, \tilde{q} \in \tilde{M}$) ($\tilde{p} \leq \tilde{q} \Leftrightarrow \tilde{p} \star \tilde{q} = 0$) and the following assertions are valid (see [5, 14]).

$$\left(\text{for all } \tilde{p} \in \tilde{M}\right) (\tilde{p} \le \tilde{p}), \tag{5}$$

$$\left(\text{for all } \tilde{p}, \tilde{q}, \tilde{r} \in \tilde{M}\right) \left(\tilde{p} \le \tilde{q}, \tilde{q} \le \tilde{r} \Rightarrow \tilde{p} \le \tilde{r}\right),\tag{6}$$

$$\left(\text{for all } \tilde{p}, \tilde{q}, \tilde{r} \in \tilde{M}\right) \left(\tilde{p} \le \tilde{q} \Rightarrow \tilde{r} \star \tilde{p} \le \tilde{r} \star \tilde{q}\right),\tag{7}$$

$$\left(\text{for all } \tilde{p}, \tilde{q}, \tilde{r} \in \tilde{M}\right) \left(\tilde{p} \le \tilde{q} \Rightarrow \tilde{q} \star \tilde{r} \le \tilde{p} \star \tilde{r}\right),\tag{8}$$

$$\left(\text{for all } \tilde{p}, \tilde{q}, \tilde{r} \in \tilde{M}\right) \left(\tilde{p} \le \tilde{q} \star \tilde{p}, \text{ in particular, } \tilde{q} \star \tilde{r} \le \tilde{p} \star \left(\tilde{q} \star \tilde{r}\right)\right), \tag{9}$$

for all
$$\tilde{p}, \tilde{q} \in \tilde{M}$$
 $(\tilde{q} \star \tilde{p} \le \tilde{p} \Leftrightarrow \tilde{p} = \tilde{q} \star \tilde{p}),$ (10)

$$\left(\text{for all } \tilde{p}, \tilde{q} \in \tilde{M}\right) \left(\tilde{p} \le \tilde{q} \star \tilde{q}\right), \tag{11}$$

ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.14, NO.4, 2023

$$\left(\text{for all } \tilde{a}, \tilde{p}, \tilde{q}, \tilde{r} \in \tilde{M}\right) \left(\tilde{p} \star \left(\tilde{q} \star \tilde{r}\right) \le \tilde{p} \star \left(\left(\tilde{a} \star \tilde{q}\right) \star \left(\tilde{a} \star \tilde{r}\right)\right)\right),\tag{12}$$

$$\left(\text{for all } \tilde{a}, \tilde{p}, \tilde{q}, \tilde{r} \in \tilde{M}\right) \left(\left(\left(\tilde{a} \star \tilde{p} \right) \star \left(\tilde{a} \star \tilde{q} \right) \right) \star \tilde{r} \le \left(\tilde{p} \star \tilde{q} \right) \star \tilde{r} \right),$$

$$(13)$$

$$\left(\text{for all } \tilde{p}, \tilde{q}, \tilde{r} \in \tilde{M}\right) \left(\left(\tilde{p} \star \tilde{q} \right) \star \tilde{r} \le \tilde{q} \star \tilde{r} \right), \tag{14}$$

$$\left(\text{for all } \tilde{p}, \tilde{q}, \tilde{r} \in \tilde{M}\right) \left(\tilde{p} \le \tilde{q} \Rightarrow \tilde{p} \le \tilde{r} \star \tilde{q}\right), \tag{15}$$

$$\left(\text{for all } \tilde{p}, \tilde{q}, \tilde{r} \in \tilde{M}\right) \left(\left(\tilde{p} \star \tilde{q} \right) \star \tilde{r} \le \tilde{p} \star \left(\tilde{q} \star \tilde{r} \right) \right), \tag{16}$$

$$\left(\text{for all } \tilde{a}, \tilde{p}, \tilde{q}, \tilde{r} \in \tilde{M}\right) \left(\left(\tilde{p} \star \tilde{q} \right) \star \tilde{r} \leq \tilde{q} \star \left(\tilde{a} \star \tilde{r} \right) \right).$$

$$(17)$$

You may find further UP-algebra studies and examples at [15, 16, 17, 18, 19, 20].

Definition 2.2. A nonempty subset \tilde{S} of \tilde{M} is called (1) a UP-subalgebra (UPS) of \tilde{M} if

$$\left(for \ all \ \tilde{p}, \tilde{q} \in \tilde{S}\right) \left(\tilde{p} \star \tilde{q} \in \tilde{S}\right), \tag{18}$$

(2) a UP-ideal (UPI) of \tilde{M} if

 $0 \in \tilde{S}$.

$$\left(for \ all \ \tilde{p}, \tilde{q}, \tilde{r} \in \tilde{M}\right) \left(\tilde{p} \star (\tilde{q} \star \tilde{r}) \in \tilde{S}, \tilde{q} \in \tilde{S} \Rightarrow \tilde{p} \star \tilde{r} \in \tilde{S}\right),$$
(20)

(3) a UP-filter (UPF) of \tilde{M} if (19) and

$$\left(for \ all \ \tilde{p}, \tilde{q} \in \tilde{M}\right) \left(\tilde{p} \in \tilde{S}, \tilde{p} \star \tilde{q} \in \tilde{S} \Rightarrow \tilde{q} \in \tilde{S}\right), \tag{21}$$

(4) an implicative UP-filter (IUPF) of \hat{M} if (19) and

$$\left(for \ all \ \tilde{p}, \tilde{q}, \tilde{r} \in \tilde{M}\right) \left(\tilde{p} \star (\tilde{q} \star \tilde{r}) \in \tilde{S}, \tilde{p} \star \tilde{q} \in \tilde{S} \Rightarrow \tilde{p} \star \tilde{r} \in \tilde{S}\right).$$
(22)

From [21], Jun and Iampan show that every IUPF is a UPF, but the converse is not true in general.

Theorem 2.1. [17] Let \mathfrak{K} be a nonempty family of UPFs (resp., IUPFs) of \tilde{M} . Then $\cap \mathfrak{K}$ is a UPF (resp., IUPF) of \tilde{M} .

Now, we review the concepts of fuzzy sets and intuitionistic fuzzy sets.

A fuzzy set (FS) ω in a nonempty set \tilde{S} is a function from \tilde{S} into the unit closed interval [0,1] of real numbers, i.e., $\omega : \tilde{S} \to [0,1]$. For any two FSs ω_1 and ω_2 in \tilde{S} , we define $(1) \ \omega_1 \ge \omega_2 \Leftrightarrow \omega_1(\tilde{p}) \ge \omega_2(\tilde{p})$ for all $\tilde{p} \in \tilde{S}$, (2) $\omega_1 = \omega_2 \Leftrightarrow \omega_1 \ge \omega_2$ and $\omega_2 \ge \omega_1$, (3) $(\omega_1 \wedge \omega_2) (\tilde{p}) = \min \{\omega_1(\tilde{p}), \omega_2(\tilde{p})\}$ for all $\tilde{p} \in \tilde{S}$. Let ω be an FS in \tilde{S} . The FS $\overline{\omega}$ is defined by $\overline{\omega}(\tilde{p}) = 1 - \omega(\tilde{p})$ for all $\tilde{p} \in \tilde{S}$. We call $\overline{\omega}$ as the complement of ω in \tilde{S} .

Definition 2.3. An FS ω in \tilde{M} is called

(1) a fuzzy UP-subalgebra (FUPS) of \tilde{M} if

$$\left(for \ all \ \tilde{p}, \tilde{q} \in \tilde{M}\right) \left(\omega(\tilde{p} \star \tilde{q}) \ge \min\left\{\omega(\tilde{p}), \omega(\tilde{q})\right\}\right),\tag{23}$$

(2) a fuzzy UP-ideal (FUPI) of M if

$$\left(for \ all \ \tilde{p} \in \tilde{M}\right) \left(\omega(0) \ge \omega(\tilde{p})\right),\tag{24}$$

$$\left(for \ all \ \tilde{p}, \tilde{q}, \tilde{r} \in \tilde{M}\right) \left(\omega(\tilde{p} \star \tilde{r}) \ge \min\left\{\omega(\tilde{p} \star (\tilde{q} \star \tilde{r})), \omega(\tilde{q})\right\}\right),\tag{25}$$

341

(3) a fuzzy UP-filter (FUPF) of \tilde{M} if (24) and

$$\left(\text{for all } \tilde{p}, \tilde{q} \in \tilde{M} \right) \left(\omega(\tilde{q}) \ge \min \left\{ \omega(\tilde{p}), \omega(\tilde{p} \star \tilde{q}) \right\} \right), \tag{26}$$

(4) a fuzzy implicative UP-filter (FIUPF) of \tilde{M} if (24) and

$$\left(for \ all \ \tilde{p}, \tilde{q}, \tilde{r} \in \tilde{M}\right) \left(\omega(\tilde{p} \star \tilde{r}) \ge \min\left\{\omega\left(\tilde{p} \star (\tilde{q} \star \tilde{r})\right), \omega(\tilde{p} \star \tilde{q})\right\}\right).$$
(27)

An intuitionistic fuzzy set (IFS) in a nonempty set \tilde{S} is an object having the form $F = \{(\tilde{p}, \omega_F(\tilde{p}), \delta_F(\tilde{p})) \mid \tilde{p} \in \tilde{S}\}$, where $\omega_F : \tilde{S} \to [0, 1]$ and $\delta_F : \tilde{S} \to [0, 1]$ denote the degree of membership and degree of nonmembership, respectively, and (for all $\tilde{p} \in \tilde{S}$) $(0 \leq \omega_F(\tilde{p}) + \delta_F(\tilde{p}) \leq 1)$. We shall use the symbol $F = (\omega_F, \delta_F)$ for the IFS $F = \{(\tilde{p}, \omega_F(\tilde{p}), \delta_F(\tilde{p})) \mid \tilde{p} \in \tilde{S}\}$ for the sake of notational simplicity.

Kesorn et al. [10] and Thongngam and Iampan [11] introduced the concepts of intuitionistic fuzzy UP-subalgebras, intuitionistic fuzzy UP-ideals, and intuitionistic fuzzy UP-filters of UP-algebras as follows.

Definition 2.4. [10] An IFS $F = (\omega_F, \delta_F)$ in \tilde{M} is called an intuitionistic fuzzy UPsubalgebra (IFUPS) of \tilde{M} if

$$\left(for \ all \ \tilde{p}, \tilde{q} \in \tilde{M}\right) \left(\omega_F(\tilde{p} \star \tilde{q}) \ge \min\left\{\omega_F(\tilde{p}), \omega_F(\tilde{q})\right\}\right), \tag{28}$$

$$\left(for \ all \ \tilde{p}, \tilde{q} \in \tilde{M}\right) \left(\delta_F(\tilde{p} \star \tilde{q}) \le \max\left\{\delta_F(\tilde{p}), \delta_F(\tilde{q})\right\}\right).$$
(29)

Definition 2.5. [10] An IFS $F = (\omega_F, \delta_F)$ in \tilde{M} is called an intuitionistic fuzzy UP-ideal (IFUPI) of \tilde{M} if

$$\left(for \ all \ \tilde{p} \in \tilde{M}\right) \left(\omega_F(0) \ge \omega_F(\tilde{p})\right),\tag{30}$$

$$\left(for \ all \ \tilde{p} \in \tilde{M}\right) \left(\delta_F(0) \le \delta_F(\tilde{p})\right),\tag{31}$$

$$\left(for \ all \ \tilde{p}, \tilde{q}, \tilde{r} \in \tilde{M}\right) \left(\omega_F(\tilde{p} \star \tilde{r}) \ge \min\left\{\omega_F\left(\tilde{p} \star (\tilde{q} \star \tilde{r})\right), \omega_F(\tilde{q})\right\}\right), \tag{32}$$

$$\left(for \ all \ \tilde{p}, \tilde{q}, \tilde{r} \in \tilde{M}\right) \left(\delta_F(\tilde{p} \star \tilde{r}) \le \max\left\{\delta_F\left(\tilde{p} \star (\tilde{q} \star \tilde{r})\right), \delta_F(\tilde{q})\right\}\right).$$
(33)

Definition 2.6. [11] An IFS $F = (\omega_F, \delta_F)$ in \tilde{M} is called an intuitionistic fuzzy UP-filter (IFUPF) of \tilde{M} if (30), (31), and

$$\left(for \ all \ \tilde{p}, \tilde{q} \in \tilde{M}\right) \left(\omega_F(\tilde{q}) \ge \min\left\{\omega_F(\tilde{p} \star \tilde{q}), \omega_F(\tilde{p})\right\}\right),\tag{34}$$

$$\left(for \ all \ \tilde{p}, \tilde{q} \in \tilde{M}\right) \left(\delta_F(\tilde{q}) \le \max\left\{\delta_F(\tilde{p} \star \tilde{q}), \delta_F(\tilde{p})\right\}\right). \tag{35}$$

3. Intuitionistic Fuzzy Implicative UP-Filters. In this section, we introduce the concept of IFIUPFs, and we investigate properties of IFIUPFs in UP-algebras.

Definition 3.1. An IFS $F = (\omega_F, \delta_F)$ in \tilde{M} is called an intuitionistic fuzzy implicative UP-filter (IFIUPF) of \tilde{M} if (30), (31), and

$$\left(\text{for all } \tilde{p}, \tilde{q}, \tilde{r} \in \tilde{M}\right) \left(\omega_F(\tilde{p} \star \tilde{r}) \ge \min\left\{\omega_F\left(\tilde{p} \star (\tilde{q} \star \tilde{r})\right), \omega_F(\tilde{p} \star \tilde{q})\right\}\right),$$
(36)

$$\left(for \ all \ \tilde{p}, \tilde{q}, \tilde{r} \in \tilde{M}\right) \left(\delta_F(\tilde{p} \star \tilde{r}) \le \max\left\{\delta_F\left(\tilde{p} \star (\tilde{q} \star \tilde{r})\right), \delta_F(\tilde{p} \star \tilde{q})\right\}\right).$$
(37)

Example 3.1. Consider a UP-algebra $\tilde{M} = \{0, \tilde{q}_1, \tilde{q}_2, \tilde{q}_3, \tilde{q}_4\}$ with the following Cayley table:

*	0	\tilde{q}_1	\tilde{q}_2	\tilde{q}_3	\tilde{q}_4
0	0	\tilde{q}_1	\tilde{q}_2	\tilde{q}_3	\tilde{q}_4
\tilde{q}_1	0	0	0	\tilde{q}_1	\tilde{q}_2
\tilde{q}_2	0	\tilde{q}_1	0	\tilde{q}_4	\tilde{q}_1
\tilde{q}_3	0	\tilde{q}_2	\tilde{q}_4	0	0
\tilde{q}_4	0	0	0	\tilde{q}_1	0

Define an IFS $F = (\omega_F, \delta_F)$ in \tilde{M} as follows:

A	0	\tilde{q}_1	\tilde{q}_2	\tilde{q}_3	\tilde{q}_4
ω_F	0.2	0.4	0.2	0.5	0.7
δ_F	0.1	0.2	0.1	0.4	0.5

Then $F = (\omega_F, \delta_F)$ is an IFIUPF of \tilde{M} .

Theorem 3.1. Every IFIUPF of \tilde{M} is an IFUPF.

Proof: Let $F = (\omega_F, \delta_F)$ be an IFIUPF of \tilde{M} . Then for all $\tilde{p}, \tilde{q} \in \tilde{M}, \omega_F(0) \ge \omega_F(\tilde{p}), \delta_F(0) \le \delta_F(\tilde{p}), \omega_F(\tilde{q}) = \omega_F(0 \star \tilde{q}) \ge \min \{\omega_F(0 \star (\tilde{p} \star \tilde{q})), \omega_F(0 \star \tilde{p})\} = \min \{\omega_F(\tilde{p} \star \tilde{q}), \omega_F(\tilde{p})\}, \text{and } \delta_F(\tilde{q}) = \delta_F(0 \star \tilde{q}) \le \max \{\delta_F(0 \star (\tilde{p} \star \tilde{q})), \delta_F(0 \star \tilde{p})\} = \max \{\delta_F(\tilde{p} \star \tilde{q}), \delta_F(\tilde{p})\}.$ Hence, $F = (\omega_F, \delta_F)$ is an IFUPF of \tilde{M} .

Example 3.2. Consider a UP-algebra $\tilde{M} = \{0, \tilde{r}_1, \tilde{r}_2, \tilde{r}_3, \tilde{r}_4\}$ with the following Cayley table:

Define an IFS $F = (\omega_F, \delta_F)$ in \tilde{M} as follows:

Then $F = (\omega_F, \delta_F)$ is an IFUPF of \tilde{M} , but it is not an IFIUPF of \tilde{M} . Indeed, $\omega_F (0 \star \tilde{r}_3) = 0.3 < 0.4 = \min \{\omega_F (0 \star (\tilde{r}_1 \star \tilde{r}_3)), \omega_F (0 \star \tilde{r}_1)\}.$

Theorem 3.2. If an IFS $F = (\omega_F, \delta_F)$ in \tilde{M} is constant, then $F = (\omega_F, \delta_F)$ is an IFIUPF of \tilde{M} .

Proof: Suppose that $F = (\omega_F, \delta_F)$ is a constant IFS in \tilde{M} . Then there exist elements m, n in [0, 1] such that $\omega_F(\tilde{p}) = m$ and $\delta_F(\tilde{p}) = n$ for all $\tilde{p} \in \tilde{M}$. Thus, $\omega_F(0) = m = \omega_F(\tilde{p})$ and $\delta_F(0) = n = \delta_F(\tilde{p})$ for all $\tilde{p} \in \tilde{M}$. For all $\tilde{p}, \tilde{q}, \tilde{r} \in \tilde{M}, \omega_F(\tilde{p} \star \tilde{r}) = m = \min\{m, m\} = \min\{\omega_F(\tilde{p} \star (\tilde{q} \star \tilde{r})), \omega_F(\tilde{p} \star \tilde{q})\}$ and $\delta_F(\tilde{p} \star \tilde{r}) = n = \max\{n, n\} = \max\{\delta_F(\tilde{p} \star (\tilde{q} \star \tilde{r})), \delta_F(\tilde{p} \star \tilde{q})\}$. Hence, $F = (\omega_F, \delta_F)$ is an IFIUPF of \tilde{M} .

Theorem 3.3. An IFS $F = (\omega_F, \delta_F)$ is an IFIUPF of \tilde{M} if and only if the FSs ω_F and $\overline{\delta_F}$ are FIUPFs of \tilde{M} .

Proof: Suppose that an IFS $F = (\omega_F, \delta_F)$ is an IFIUPF of \tilde{M} . Then $\omega_F(0) \ge \omega_F(\tilde{p})$ and $\omega_F(\tilde{p} \star \tilde{r}) \ge \min \{\omega_F(\tilde{p} \star (\tilde{q} \star \tilde{r})), \omega_F(\tilde{p} \star \tilde{q})\}$ for all $\tilde{p}, \tilde{q}, \tilde{r} \in \tilde{M}$. Thus, ω_F is an FIUPF of \tilde{M} . Let $\tilde{p}, \tilde{q}, \tilde{r} \in \tilde{M}$. Since $\delta_F(0) \le \delta_F(\tilde{p})$ and $\delta_F(\tilde{p} \star \tilde{r}) \le \max\{\delta_F(\tilde{p} \star (\tilde{q} \star \tilde{r})), \delta_F(\tilde{p} \star \tilde{q})\}$, we have $\overline{\delta_F}(0) = 1 - \delta_F(0) \ge 1 - \delta_F(\tilde{p}) = \overline{\delta_F}(\tilde{p})$ and $\overline{\delta_F}(\tilde{p} \star \tilde{r}) = 1 - \delta_F(\tilde{p} \star \tilde{r}) \ge$ $1 - \max\left\{\delta_F\left(\tilde{p} \star \left(\tilde{q} \star \tilde{r}\right)\right), \delta_F\left(\tilde{p} \star \tilde{q}\right)\right\} = \min\left\{1 - \delta_F\left(\tilde{p} \star \left(\tilde{q} \star \tilde{r}\right)\right), 1 - \delta_F\left(\tilde{p} \star \tilde{q}\right)\right\} = \min\left\{\delta_F\left(\tilde{p} \star \left(\tilde{q} \star \tilde{r}\right)\right), \overline{\delta_F}\left(\tilde{p} \star \tilde{q}\right)\right\}.$ Thus, $\overline{\delta_F}$ is an FIUPF of \tilde{M} .

Conversely, suppose that the FSs ω_F and $\overline{\delta_F}$ are FIUPFs of \tilde{M} . Then $\omega_F(0) \ge \omega_F(\tilde{p})$ and $\omega_F(\tilde{p} \star \tilde{r}) \ge \min \{\omega_F(\tilde{p} \star (\tilde{q} \star \tilde{r})), \omega_F(\tilde{p} \star \tilde{q})\}$ for all $\tilde{p}, \tilde{q}, \tilde{r} \in \tilde{M}$. Let $\tilde{p}, \tilde{q}, \tilde{r} \in \tilde{M}$. Since $\overline{\delta_F}(0) \ge \overline{\delta_F}(\tilde{p})$ and $\overline{\delta_F}(\tilde{p} \star \tilde{r}) \ge \min \{\overline{\delta_F}(\tilde{p} \star (\tilde{q} \star \tilde{r})), \overline{\delta_F}(\tilde{p} \star \tilde{q})\}$, we have $1 - \delta_F(0) \ge 1 - \delta_F(\tilde{p})$. Thus, $\delta_F(0) \le \delta_F(\tilde{p})$ and $1 - \delta_F(\tilde{p} \star \tilde{r}) \ge \min \{1 - \delta_F(\tilde{p} \star (\tilde{q} \star \tilde{r})), 1 - \delta_F(\tilde{p} \star \tilde{q})\}$ $= 1 - \max \{\delta_F(\tilde{p} \star (\tilde{q} \star \tilde{r})), \delta_F(\tilde{p} \star \tilde{q})\}$, so $\delta_F(\tilde{p} \star \tilde{r}) \le \max \{\delta_F(\tilde{p} \star (\tilde{q} \star \tilde{r})), \delta_F(\tilde{p} \star \tilde{q})\}$. Hence, $F = (\omega_F, \delta_F)$ is an IFIUPF of \tilde{M} .

Theorem 3.4. An IFS $F = (\omega_F, \delta_F)$ is an IFIUPF of \tilde{M} if and only if the IFSs $\Box F = (\omega_F, \overline{\omega_F})$ and $\diamond F = (\overline{\delta_F}, \delta_F)$ are IFIUPFs of \tilde{M} .

Proof: Suppose that an IFS $F = (\omega_F, \delta_F)$ is an IFIUPF of \tilde{M} , then $\omega_F(0) \ge \omega_F(\tilde{p})$ and $\omega_F(\tilde{p} \star \tilde{r}) \ge \min \{\omega_F(\tilde{p} \star (\tilde{q} \star \tilde{r})), \omega_F(\tilde{p} \star \tilde{q})\}$ for all $\tilde{p}, \tilde{q}, \tilde{r} \in \tilde{M}$. Thus, for all $\tilde{p}, \tilde{q}, \tilde{r} \in \tilde{M}$, $\overline{\omega_F(0)} = 1 - \omega_F(0) \le 1 - \omega_F(\tilde{p}) = \overline{\omega_F}(\tilde{p})$ and $\overline{\omega_F}(\tilde{p} \star \tilde{r}) = 1 - \omega_F(\tilde{p} \star \tilde{r}) \le 1 - \min \{\omega_F(\tilde{p} \star (\tilde{q} \star \tilde{r})), \omega_F(\tilde{p} \star \tilde{q})\} = \max \{1 - \omega_F(\tilde{p} \star (\tilde{q} \star \tilde{r})), 1 - \omega_F(\tilde{p} \star \tilde{q})\} = \max \{\overline{\omega_F}(\tilde{p} \star (\tilde{q} \star \tilde{r})), 1 - \omega_F(\tilde{p} \star \tilde{q})\} = \max \{\overline{\omega_F}(\tilde{p} \star (\tilde{q} \star \tilde{r})), 1 - \omega_F(\tilde{p} \star \tilde{q})\} = \max \{\overline{\omega_F}(\tilde{p} \star (\tilde{q} \star \tilde{r})), \overline{\omega_F}(\tilde{p} \star \tilde{q})\}$. Hence, $\Box F = (\omega_F, \overline{\omega_F})$ is an IFIUPF of \tilde{M} . Let $\tilde{p}, \tilde{q}, \tilde{r} \in \tilde{M}$. Then $\delta_F(0) \le \delta_F(\tilde{p})$ and $\delta_F(\tilde{p} \star \tilde{r}) \le \max \{\delta_F(\tilde{p} \star (\tilde{q} \star \tilde{r})), \delta_F(\tilde{p} \star \tilde{q})\}$. Thus, for all $\tilde{p}, \tilde{q}, \tilde{r} \in \tilde{M}$, $\tilde{M}, \ \overline{\delta_F}(0) = 1 - \delta_F(0) \ge 1 - \delta_F(\tilde{p}) = \overline{\delta_F}(\tilde{p})$ and $\overline{\delta_F}(\tilde{p} \star \tilde{r}) = 1 - \delta_F(\tilde{p} \star \tilde{r}) \ge 1 - \max \{\delta_F(\tilde{p} \star (\tilde{q} \star \tilde{r})), \delta_F(\tilde{p} \star \tilde{q})\} = \min \{1 - \delta_F(\tilde{p} \star (\tilde{q} \star \tilde{r})), 1 - \delta_F(\tilde{p} \star \tilde{q})\} = \min \{\overline{\delta_F}(\tilde{p} \star (\tilde{q} \star \tilde{r})), \overline{\delta_F}(\tilde{p} \star \tilde{q})\}$. Hence, $\Diamond F = (\overline{\delta_F}, \delta_F)$ is an IFIUPF of \tilde{M} .

Conversely, suppose that the IFSs $\Box F = (\omega_F, \overline{\omega_F})$ and $\diamond F = (\overline{\delta_F}, \delta_F)$ are IFIUPFs of \tilde{M} . Then for any $\tilde{p}, \tilde{q}, \tilde{r} \in \tilde{M}, \omega_F(0) \ge \omega_F(\tilde{p}), \omega_F(\tilde{p} \star \tilde{r}) \ge \min\{\omega_F(\tilde{p} \star (\tilde{q} \star \tilde{r})), \omega_F(\tilde{p} \star \tilde{q})\}, \delta_F(0) \le \delta_F(\tilde{p}), \text{ and } \delta_F(\tilde{p} \star \tilde{r}) \le \max\{\delta_F(\tilde{p} \star (\tilde{q} \star \tilde{r})), \delta_F(\tilde{p} \star \tilde{q})\}.$ Hence, $F = (\omega_F, \delta_F)$ is an IFIUPF of \tilde{M} .

Theorem 3.5. An IFS $F = (\omega_F, \delta_F)$ is an IFIUPF of \tilde{M} if and only if the IFS $\Delta F = (\overline{\delta_F}, \overline{\omega_F})$ is an IFIUPF of \tilde{M} .

Proof: Suppose that an IFS $F = (\omega_F, \delta_F)$ is an IFIUPF of \tilde{M} . Then for any $\tilde{p}, \tilde{q}, \tilde{r} \in \tilde{M}, \omega_F(0) \leq \omega_F(\tilde{p})$ and $\omega_F(\tilde{p} \star \tilde{r}) \geq \min \{\omega_F(\tilde{p} \star (\tilde{q} \star \tilde{r})), \omega_F(\tilde{p} \star \tilde{q})\}$. Thus, for any $\tilde{p}, \tilde{q}, \tilde{r} \in \tilde{M}, \overline{\omega_F(0)} = 1 - \omega_F(0) \geq 1 - \omega_F(\tilde{p}) = \overline{\omega_F(\tilde{p})}$ and $\overline{\omega_F(\tilde{p} \star \tilde{r})} = 1 - \omega_F(\tilde{p} \star \tilde{r}) \leq 1 - \min \{\omega_F(\tilde{p} \star (\tilde{q} \star \tilde{r})), \omega_F(\tilde{p} \star \tilde{q})\} = \max \{1 - \omega_F(\tilde{p} \star (\tilde{q} \star \tilde{r})), 1 - \omega_F(\tilde{p} \star \tilde{q})\} = \max \{\overline{\omega_F}(\tilde{p} \star (\tilde{q} \star \tilde{r})), 1 - \omega_F(\tilde{p} \star \tilde{q})\} = \max \{\overline{\omega_F}(\tilde{p} \star (\tilde{q} \star \tilde{r})), \overline{\omega_F(\tilde{p} \star \tilde{q})}\}$. Now, for any $\tilde{p}, \tilde{q}, \tilde{r} \in \tilde{M}, \delta_F(0) \leq \delta_F(\tilde{p})$ and $\delta_F(\tilde{p} \star (\tilde{q} \star \tilde{r})) \leq \max \{\delta_F(\tilde{p} \star (\tilde{q} \star \tilde{r})), \delta_F(\tilde{p} \star \tilde{q})\}$. Thus, for any $\tilde{p}, \tilde{q}, \tilde{r} \in \tilde{M}, \delta_F(0) = 1 - \delta_F(0) \geq 1 - \delta_F(\tilde{p}) = \overline{\delta_F}(\tilde{p})$ and $\overline{\delta_F}(\tilde{p} \star \tilde{r}) = 1 - \delta_F(\tilde{p} \star \tilde{r}) \geq 1 - \max \{\delta_F(\tilde{p} \star (\tilde{q} \star \tilde{r})), \delta_F(\tilde{p} \star \tilde{q})\} = \min \{1 - \delta_F(\tilde{p} \star (\tilde{q} \star \tilde{r})), 1 - \delta_F(\tilde{p} \star \tilde{q})\} = \min \{\delta_F(\tilde{p} \star (\tilde{q} \star \tilde{r})), \delta_F(\tilde{p} \star \tilde{q})\}$. Hence, $\Delta F = (\overline{\delta_F}, \overline{\omega_F})$ is an IFIUPF of \tilde{M} .

Conversely, suppose that the $\Delta F = (\overline{\delta_F}, \overline{\omega_F})$ is an IFIUPF of \tilde{M} . Then for any $\tilde{p}, \tilde{q}, \tilde{r} \in \tilde{M}, \overline{\delta_F}(0) \geq \overline{\delta_F}(\tilde{p})$ and $\overline{\delta_F}(\tilde{p} \star \tilde{r}) \geq \min \{\overline{\delta_F}(\tilde{p} \star (\tilde{q} \star \tilde{r})), \overline{\delta_F}(\tilde{p} \star \tilde{q})\}$. Thus, for any $\tilde{p}, \tilde{q}, \tilde{r} \in \tilde{M}, 1 - \delta_F(0) \geq 1 - \delta_F(\tilde{p})$ and $1 - \delta_F(\tilde{p} \star \tilde{r}) \geq 1 - \max \{\delta(\tilde{p} \star (\tilde{q} \star \tilde{r})), \delta(\tilde{p} \star \tilde{q})\}$, so $\delta_F(0) \leq \delta_F(\tilde{p})$ and $\delta_F(\tilde{p} \star \tilde{r}) \leq \max \{\delta_F(\tilde{p} \star (\tilde{q} \star \tilde{r})), \delta_F(\tilde{p} \star \tilde{q})\}$. Now, for any $\tilde{p}, \tilde{q}, \tilde{r} \in \tilde{M}, \overline{\omega_F}(0) \leq \overline{\omega_F}(\tilde{p})$ and $\overline{\omega_F}(\tilde{p} \star \tilde{r}) \leq \max \{\overline{\omega_F}(\tilde{p} \star (\tilde{q} \star \tilde{r})), \overline{\omega_F}(\tilde{p} \star \tilde{q})\}$. Now, for any $\tilde{p}, \tilde{q}, \tilde{r} \in \tilde{M}, \overline{\omega_F}(0) \leq \overline{\omega_F}(\tilde{p})$ and $\overline{\omega_F}(\tilde{p} \star \tilde{r}) \leq \max \{\overline{\omega_F}(\tilde{p} \star (\tilde{q} \star \tilde{r})), \overline{\omega_F}(\tilde{p} \star \tilde{q})\}$. Thus, for any $\tilde{p}, \tilde{q}, \tilde{r} \in \tilde{M}, 1 - \omega_F(0) \geq 1 - \omega_F(\tilde{p})$ and $1 - \omega_F(\tilde{p} \star \tilde{r}) \leq 1 - \min \{\omega_F(\tilde{p} \star (\tilde{q} \star \tilde{r})), \omega_F(\tilde{p} \star \tilde{q})\}$, so $\omega_F(0) \geq \omega_F(\tilde{p})$ and $\omega_F(\tilde{p} \star \tilde{r}) \geq \min \{\omega_F(\tilde{p} \star (\tilde{q} \star \tilde{r})), \omega_F(\tilde{p} \star \tilde{q})\}$. Hence, $F = (\omega_F, \delta_F)$ is an IFIUPF of \tilde{M} .

For a nonempty subset \tilde{S} of a nonempty set \tilde{M} , the characteristic function $f_{\tilde{S}}$ of \tilde{M} is a function of \tilde{M} into $\{0,1\}$ defined as follows: for all $\tilde{p} \in \tilde{M}$, $f_{\tilde{S}}(\tilde{p}) = \begin{cases} 1 & \text{if } \tilde{p} \in \tilde{S} \\ 0 & \text{if } \tilde{p} \notin \tilde{S} \end{cases}$

Then for all $\tilde{p} \in \tilde{M}$, $\overline{f_{\tilde{S}}}(\tilde{p}) = \begin{cases} 1 & \text{if } \tilde{p} \notin \tilde{S} \\ 0 & \text{if } \tilde{p} \in \tilde{S} \end{cases}$. We denote the IFS in \tilde{M} with the degree of membership $f_{\tilde{S}}$ and the degree of nonmembership $\overline{f_{\tilde{S}}}$ by $F_{\tilde{S}}$, that is, $F_{\tilde{S}} = (f_{\tilde{S}}, \overline{f_{\tilde{S}}})$.

Theorem 3.6. A nonempty subset \tilde{S} of \tilde{M} is an IUPF of \tilde{M} if and only if the IFS $F_{\tilde{S}} = (f_{\tilde{S}}, \overline{f_{\tilde{S}}})$ is an IFIUPF of \tilde{M} .

Proof: Assume that \tilde{S} is an IUPF of \tilde{M} . Since $0 \in \tilde{S}$, we have $f_{\tilde{S}}(0) = 1 \ge f_{\tilde{S}}(\tilde{p})$ and $\overline{f_{\tilde{S}}}(0) = 0 \le \overline{f_{\tilde{S}}}(\tilde{p})$ for all $\tilde{p} \in \tilde{M}$. Let $\tilde{p}, \tilde{q}, \tilde{r} \in \tilde{S}$. In the case that $\tilde{p} \star (\tilde{q} \star \tilde{r}) \notin \tilde{S}$ or $\tilde{p} \star \tilde{q} \notin \tilde{S}$, we have $f_{\tilde{S}}(\tilde{p} \star \tilde{r}) \ge 0 = \min\{f_{\tilde{S}}(\tilde{p} \star (\tilde{q} \star \tilde{r})), f_{\tilde{S}}(\tilde{p} \star \tilde{q})\}$ and $\overline{f_{\tilde{S}}}(\tilde{p} \star \tilde{r}) \le 1 =$ $\max\{\overline{f_{\tilde{S}}}(\tilde{p} \star (\tilde{q} \star \tilde{r})), \overline{f_{\tilde{S}}}(\tilde{p} \star \tilde{q})\}$. On the other hand, $\tilde{p} \star (\tilde{q} \star \tilde{r}) \in \tilde{S}$ and $\tilde{p} \star \tilde{q} \in \tilde{S}$. By the assumption, we have $\tilde{p} \star \tilde{r} \in \tilde{S}$. Hence, $f_{\tilde{S}}(\tilde{p} \star \tilde{r}) = 1 = \min\{f_{\tilde{S}}(\tilde{p} \star (\tilde{q} \star \tilde{r})), f_{\tilde{S}}(\tilde{p} \star \tilde{q})\}$ and $\overline{f_{\tilde{S}}}(\tilde{p} \star \tilde{r}) = 0 = \max\{\overline{f_{\tilde{S}}}(\tilde{p} \star (\tilde{q} \star \tilde{r})), \overline{f_{\tilde{S}}}(\tilde{p} \star \tilde{q})\}$. Therefore, $F_{\tilde{S}} = (f_{\tilde{S}}, \overline{f_{\tilde{S}}})$ is an IFIUPF of \tilde{M} .

Conversely, $F_{\tilde{S}} = (f_{\tilde{S}}, \overline{f_{\tilde{S}}})$ is an IFIUPF of \tilde{M} . Then $f_{\tilde{S}}(0) \ge f_{\tilde{S}}(\tilde{p}) = 1$ when $\tilde{p} \in \tilde{S}$. Thus, $0 \in \tilde{S}$. Let $\tilde{p}, \tilde{q}, \tilde{r} \in \tilde{S}$ be such that $\tilde{p} \star (\tilde{q} \star \tilde{r}) \in \tilde{S}$ and $\tilde{p} \star \tilde{q} \in \tilde{S}$. By the assumption, we have $f_{\tilde{S}}(\tilde{p} \star \tilde{r}) = \min \{f_{\tilde{S}}(\tilde{p} \star (\tilde{q} \star \tilde{r})), f_{\tilde{S}}(\tilde{p} \star \tilde{q})\} = 1$. Hence, $\tilde{p} \star \tilde{r} \in \tilde{S}$. Therefore, \tilde{S} is an IUPF of \tilde{M} .

Definition 3.2. Let ω and δ be FSs in a nonempty set \tilde{M} . For $s, t \in [0,1]$, the set $\ddot{\mathfrak{U}}(\omega;t) = \left\{\tilde{p} \in \tilde{M} \middle| \omega(\tilde{p}) \geq t\right\}$ and $\ddot{\mathfrak{U}}^+(\omega;t) = \left\{\tilde{p} \in \tilde{M} \middle| \omega(\tilde{p}) > t\right\}$ are called an upper t-level subset and an upper t-strong level subset of ω , respectively. The set $\ddot{\mathfrak{L}}(\omega;s) = \left\{\tilde{p} \in \tilde{M} \middle| \omega(\tilde{p}) \leq s\right\}$ and $\ddot{\mathfrak{L}}^-(\omega;s) = \left\{\tilde{p} \in \tilde{M} \middle| \omega(\tilde{p}) < s\right\}$ are called a lower s-level subset of ω , respectively. The set $\ddot{\mathfrak{C}}(\omega;t) \cap \ddot{\mathfrak{L}}(\delta;s)$ is called the (t,s)-cut of ω and δ .

Theorem 3.7. An IFS $F = (\omega_F, \delta_F)$ is an IFIUPF of $\tilde{M} = (\tilde{M}, \star, 0)$ if and only if the sets $\ddot{\mathfrak{U}}(\omega_F; t)$ and $\ddot{\mathfrak{L}}(\delta_F; s)$ are IUPFs of \tilde{M} for each $s, t \in [0, 1]$ such that $\ddot{\mathfrak{U}}(\omega_F; t) \neq \emptyset$ and $\ddot{\mathfrak{L}}(\delta_F; s) \neq \emptyset$.

Proof: Suppose that an IFS $F = (\omega_F, \delta_F)$ is an IFIUPF of \tilde{M} , let $s, t \in [0, 1]$ be such that $\ddot{\mathfrak{U}}(\omega_F; t)$ and $\ddot{\mathfrak{E}}(\delta_F, s)$ are nonempty subset of \tilde{M} . Then there exist $\tilde{a} \in \ddot{\mathfrak{U}}(\omega_F; t)$ and $\tilde{b} \in \ddot{\mathfrak{E}}(\delta; s)$. Then $\omega(\tilde{a}) \ge t$ and $\delta_F(\tilde{b}) \le s$. By assumption, we have $\omega_F(0) \ge \omega_F(\tilde{a}) \ge t$ and $\delta_F(0) \le \delta_F(\tilde{b}) \le s$, so $0 \in \ddot{\mathfrak{U}}(\omega_F; t)$ and $0 \in \ddot{\mathfrak{E}}(\delta_F; s)$. Let $\tilde{p}, \tilde{q}, \tilde{r} \in \tilde{M}$ be such that $\tilde{p} \star (\tilde{q} \star \tilde{r}) \in \ddot{\mathfrak{U}}(\omega; t)$ and $\tilde{p} \star \tilde{q} \in \ddot{\mathfrak{U}}(\omega; t)$. Then $\omega_F(\tilde{p} \star (\tilde{q} \star \tilde{r})) \ge t$ and $\omega(\tilde{p} \star \tilde{q}) \ge t$. Thus, $\omega_F(\tilde{p} \star \tilde{r}) \ge \min \{\omega_F(\tilde{p} \star (\tilde{q} \star \tilde{r})), \omega_F(\tilde{p} \star \tilde{q})\} \ge t$. So, $\tilde{p} \star \tilde{r} \in \ddot{\mathfrak{U}}(\omega_F; t)$. Hence, $\ddot{\mathfrak{U}}(\omega; t)$ is an IUPF of \tilde{M} . Finally, let $\tilde{p}, \tilde{q}, \tilde{r} \in \tilde{M}$ be such that $\tilde{p} \star (\tilde{q} \star \tilde{r}) \in \ddot{\mathfrak{L}}(\delta_F; s)$. Then $\delta_F(\tilde{p} \star (\tilde{q} \star \tilde{r})) \le s$ and $\delta_F(\tilde{p} \star \tilde{q}) \le s$. Thus, $\delta_F(\tilde{p} \star \tilde{r}) \in \mathcal{L}(\delta_F; s)$. Then $\delta_F(\tilde{p} \star (\tilde{q} \star \tilde{r})) \le s$ and $\delta_F(\tilde{p} \star \tilde{q}) \le s$. Thus, $\delta_F(\tilde{p} \star \tilde{r}) \in \mathcal{L}(\delta_F; s)$. Then $\delta_F(\tilde{p} \star (\tilde{q} \star \tilde{r})) \le s$ and $\delta_F(\tilde{p} \star \tilde{q}) \le s$. Thus, $\delta_F(\tilde{p} \star \tilde{r}) \le \mathfrak{L}(\delta_F; s)$. Then $\delta_F(\tilde{p} \star (\tilde{q} \star \tilde{r})) \le s$ and $\delta_F(\tilde{p} \star \tilde{q}) \le s$. Thus, $\delta_F(\tilde{p} \star \tilde{r}) \le \mathfrak{L}(\delta_F; s)$. Then $\delta_F(\tilde{p} \star \tilde{q}) \le s$. So $\tilde{p} \star \tilde{r} \in \ddot{\mathfrak{L}(\delta_F; s)$. Hence, $\ddot{\mathfrak{L}}(\delta_F; s)$ is an IUPF of \tilde{M} .

For the converse, suppose that, $\hat{\mathfrak{U}}(\omega_F;t)$ and $\hat{\mathfrak{L}}(\delta_F;s)$ are IUPF of \tilde{M} for each $t, s \in [0,1]$ such that $\ddot{\mathfrak{U}}(\omega_F;t) \neq \emptyset$ and $\ddot{\mathfrak{L}}(\delta_F;s) \neq \emptyset$. Let $\tilde{p} \in \tilde{M}$. Then we have $\tilde{p} \in \ddot{\mathfrak{U}}(\omega_F;\omega_F(\tilde{p}))$ and $\tilde{p} \in \ddot{\mathfrak{L}}(\delta_F;\delta_F(\tilde{p}))$. By assumption, we have $\ddot{\mathfrak{U}}(\omega;\omega_F(\tilde{p}))$ and $\ddot{\mathfrak{L}}(\delta_F;\delta_F(\tilde{p}))$ are IU-PFs of \tilde{M} . Thus, $0 \in \ddot{\mathfrak{U}}(\omega_F;\omega_F(\tilde{p}))$ and $0 \in \ddot{\mathfrak{L}}(\delta_F;\delta_F(\tilde{p}))$ which imply $\omega_F(0) \geq \omega_F(\tilde{p})$ and $\delta_F(0) \leq \delta_F(\tilde{p})$. Suppose that there exist $\tilde{p}, \tilde{q}, \tilde{r} \in \tilde{M}$ such that $\omega_F(\tilde{p} \star \tilde{r}) < \min \{\omega_F(\tilde{p} \star (\tilde{q} \star \tilde{r})), \omega_F(\tilde{p} \star \tilde{q})\}$. Choose $t_0 = \frac{1}{2}[\omega_F(\tilde{p} \star \tilde{r}) + \min \{\omega_F(\tilde{p} \star (\tilde{q} \star \tilde{r})), \omega_F(\tilde{p} \star \tilde{q})\}]$. Thus, $t_0 \in [0, 1]$ and $\omega_F(\tilde{p} \star \tilde{r}) < t_0 < \min \{\omega_F(\tilde{p} \star (\tilde{q} \star \tilde{r})), \omega_F(\tilde{p} \star \tilde{q})\}$. It implies that $\tilde{p} \star \tilde{r} \notin \ddot{\mathfrak{U}}(\omega_F; t_0)$ but $\tilde{p}\star(\tilde{q}\star\tilde{r}), \, \tilde{p}\star\tilde{q}\in \ddot{\mathfrak{U}}(\omega_F;t_0).$ Thus, $\ddot{\mathfrak{U}}(\omega_F;t_0)$ is not an IUPF of \tilde{M} , which is a contradiction. Hence, $\omega_F(\tilde{p}\star\tilde{r})\geq \min\{\omega_F(\tilde{p}\star(\tilde{q}\star\tilde{r})),\omega_F(\tilde{p}\star\tilde{q})\}\$ for all $\tilde{p},\tilde{q},\tilde{r}\in\tilde{M}.$

Similarly, there exist $\tilde{l}, \tilde{m}, \tilde{n} \in \tilde{M}$ such that $\delta_F\left(\tilde{l} \star \tilde{n}\right) > \max\left\{\delta_F\left(\tilde{l} \star (\tilde{m} \star \tilde{n})\right), \delta_F\left(\tilde{l} \star \tilde{m}\right)\right\}$. Choose $s_0 = \frac{1}{2}\left[\delta_F\left(\tilde{l} \star \tilde{n}\right) + \max\left\{\delta_F\left(\tilde{l} \star (\tilde{m} \star \tilde{n})\right), \delta_F\left(\tilde{l} \star \tilde{m}\right)\right\}\right]$. Thus, $s_0 \in [0, 1]$ and $\max\left\{\delta_F\left(\tilde{l} \star (\tilde{m} \star \tilde{n})\right), \delta_F\left(\tilde{l} \star \tilde{m}\right)\right\} < s_0 < \delta_F\left(\tilde{l} \star \tilde{n}\right)$. It implies that $\tilde{l} \star \tilde{n} \notin \mathfrak{L}(\delta_F; s_0)$, but $\tilde{l} \star (\tilde{m} \star \tilde{n}), \tilde{l} \star \tilde{m} \in \mathfrak{L}(\delta_F; s_0)$. Thus, $\mathfrak{L}(\delta_F; s_0)$ is not an IUPF of \tilde{M} , which is a contradiction. Therefore, $\delta_F\left(\tilde{l} \star \tilde{n}\right) \leq \max\left\{\delta_F\left(\tilde{l} \star (\tilde{m} \star \tilde{n})\right), \delta_F\left(\tilde{l} \star \tilde{m}\right)\right\}$ for all $\tilde{l}, \tilde{m}, \tilde{n} \in \tilde{M}$. Therefore, $F = (\omega_F, \delta_F)$ is an IFIUPF of \tilde{M} . \Box

Corollary 3.1. An IFS $F = (\omega_F, \delta_F)$ is an IFIUPF of \tilde{M} if and only if for all $s, t \in [0, 1]$, the $\mathcal{C}(\omega_F, \delta_F; t, s)$ is either empty or an IUPF.

Proof: The necessary condition is straightforward from Theorems 2.1 and 3.7.

Conversely, assume that the set $\dot{\mathfrak{C}}(\omega_F, \delta_F; t, s)$ is either empty or an IUPF of \tilde{M} for all $s, t \in [0, 1]$. Let $t \in [0, 1]$ be such that $\ddot{\mathfrak{U}}(\omega_F; t) \neq \emptyset$. Then $\emptyset \neq \ddot{\mathfrak{U}}(\omega_F; t) = \ddot{\mathfrak{U}}(\omega_F; t) \cap \tilde{M} =$ $\ddot{\mathfrak{U}}(\omega_F; t) \cap \ddot{\mathfrak{C}}(\delta_F; 1) = \dot{\mathfrak{C}}(\omega_F, \delta_F; t, 1)$. By assumption, we have $\ddot{\mathfrak{U}}(\omega_F; t) = \dot{\mathfrak{C}}(\omega_F, \delta_F; t, 1)$ is an IUPF of \tilde{M} . Let $s \in [0, 1]$ be such that $\ddot{\mathfrak{L}}(\delta_F; s) \neq \emptyset$. Then $\emptyset \neq \ddot{\mathfrak{L}}(\delta_F; s) =$ $\tilde{M} \cap \ddot{\mathfrak{L}}(\delta_F; s) = \ddot{\mathfrak{U}}(\omega_F; 0) \cap \ddot{\mathfrak{L}}(\delta_F; s) = \ddot{\mathfrak{C}}(\omega_F, \delta_F; 0, s)$. By assumption, $\ddot{\mathfrak{L}}(\delta_F; s) =$ $\ddot{\mathfrak{C}}(\omega_F, \delta_F; 0, s)$ is an IUPF of \tilde{M} . Hence, by Theorem 3.7, $F = (\omega_F, \delta_F)$ is an IFIUPF of \tilde{M} .

Theorem 3.8. If an IFS $F = (\omega_F, \delta_F)$ is an IFIUPF of \tilde{M} , then for all $s, t \in [0, 1]$, the sets $\ddot{\mathfrak{U}}^+(\omega_F; t)$ and $\ddot{\mathfrak{L}}^-(\delta_F; s)$ are either empty or IUPFs of \tilde{M} .

Proof: Suppose that an IFS $F = (\omega_F, \delta_F)$ is an IFIUPF of \tilde{M} . Let $s, t \in [0, 1]$ be such that $\mathfrak{U}^+(\omega_F;t)$ and $\mathfrak{L}^-(\delta_F;s)$ are nonempty subsets of \tilde{M} . Then there exist $\tilde{a} \in \mathfrak{U}^+(\omega_F;t)$ and $\tilde{b} \in \mathfrak{L}^-(\delta_F;s)$ with $\omega_F(\tilde{a}) > t$ and $\delta_F(\tilde{b}) < s$. By assumption, we have $\omega_F(0) \ge \omega_F(\tilde{a}) > t$ and $\delta_F(0) \le \delta_F(\tilde{b}) < s$, so $0 \in \mathfrak{U}^+(\omega_F;t)$ and $0 \in \mathfrak{L}(\delta_F;s)$. Let $\tilde{p}, \tilde{q}, \tilde{r} \in \tilde{M}$ be such that $\tilde{p} \star (\tilde{q} \star \tilde{r}), \tilde{p} \star \tilde{q} \in \mathfrak{U}^+(\omega_F;t)$. Then $\omega_F(\tilde{p} \star (\tilde{q} \star \tilde{r})) > t$ and $\omega_F(\tilde{p} \star \tilde{q}) > t$. Thus, $\omega_F(\tilde{p} \star \tilde{r}) \ge \min \{\omega_F(\tilde{p} \star (\tilde{q} \star \tilde{r})), \omega_F(\tilde{p} \star \tilde{q})\} > t$, so $\tilde{p} \star \tilde{r} \in \mathfrak{U}^+(\omega_F;t)$. Hence, $\mathfrak{U}^+(\omega_F;t)$ is an IUPF of \tilde{M} . Finally, let $\tilde{p}, \tilde{q}, \tilde{r} \in \tilde{M}$ be such that $\tilde{p} \star (\tilde{q} \star \tilde{r}), \tilde{p} \star \tilde{q} \in \mathfrak{L}^-(\delta_F;s)$. Then $\delta_F(\tilde{p} \star (\tilde{q} \star \tilde{r})) < s$ and $\delta_F(\tilde{p} \star \tilde{q}) < s$. Thus, $\delta_F(\tilde{p} \star \tilde{r}) \le \max \{\delta_F(\tilde{p} \star (\tilde{q} \star \tilde{r})), \delta_F(\tilde{p} \star \tilde{q})\} < s$, so $\tilde{p} \star \tilde{r} \in \mathfrak{L}^-(\delta_F;s)$. Hence, $\mathfrak{L}^-(\delta_F;s)$ is an IUPF of \tilde{M} .

4. **Conclusion.** In this paper, we have introduced the concept of IFIUPFs of UP-algebras and provided some properties of IFIUPFs and together studied the relation of IFIUPFs and IFUPFs in UP-algebras. We will further extend intuitionistic fuzzy comparative UP-filters in UP-algebras and study properties of intuitionistic fuzzy comparative UP-filters in UP-algebras.

In the near future, we will broaden the scope of the research covered in this work to include investigation into essential implicative UP-filters and t-essential intuitionistic fuzzy implicative UP-filters, in accordance with [22, 23].

Acknowledgment. The authors would like to thank the anonymous referee who provided useful and detailed comments on a previous/earlier version of the manuscript.

REFERENCES

 K. Iséki, An algebra related with a propositional calculus, Proc. of Japan Acad., vol.42, no.1, pp.26-29, 1966.

- [2] Y. Imai and K. Iséki, On axiom systems of propositional calculi, Proc. of Japan Acad., vol.42, no.1, pp.19-22, 1966.
- [3] Q. P. Hu and X. Li, On BCH-algebras, *Mathematics Seminar Notes (Kobe University)*, vol.11, no.2, pp.313-320, 1983.
- [4] C. Prabpayak and U. Leerawat, On ideals and congruences in KU-algebras, Sci. Magna., vol.5, no.1, pp.54-57, 2009.
- [5] A. Iampan, A new branch of the logical algebra: UP-algebras, J. Algebra Relat. Top., vol.5, no.1, pp.35-54, 2017.
- [6] J. Somjanta, N. Thuekaew, P. Kumpeangkeaw and A. Iampan, Fuzzy sets in UP-algebras, Ann. Fuzzy Math. Inform., vol.12, pp.739-756, 2016.
- [7] Y. B. Jun and A. Iampan, Comparative and allied UP-filters, *Lobachevskii J. Math.*, vol.40, no.1, pp.60-66, 2019.
- [8] L. A. Zadeh, Fuzzy sets, Inf. Control, vol.8, no.3, pp.338-353, 1965.
- [9] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., vol.35, pp.87-96, 1986.
- [10] B. Kesorn, K. Maimum, W. Ratbandan and A. Iampan, Intuitionistic fuzzy sets in UP-algebra, *Ital. J. Pure Appl. Math.*, vol.34, pp.339-364, 2015.
- [11] N. Thongngam and A. Iampan, A novel approach to intuitionistic fuzzy sets in UP-algebras, Korean J. Math., vol.27, no.4, pp.1077-1108, 2019.
- [12] H. K. Abdullah and M. T. Shadhan, Intuitionistic fuzzy pseudo ideals in Q-algebra, J. Phys.: Conf. Ser., vol.1591, 012095, 2020.
- [13] M. Songsaeng, K. P. Shum, R. Chinram and A. Iampan, Neutrosophic implicative UP-filters, neutrosophic comparative UP-filters, and neutrosophic shift UP-filters of UP-algebras, *Neutrosophic Sets* Syst., vol.47, pp.620-643, 2021.
- [14] A. Iampan, Introducing fully UP-semigroups, Discuss. Math., Gen. Algebra Appl., vol.38, no.2, pp.297-306, 2018.
- [15] M. A. Ansari, A. N. A. Koam and A. Haider, Rough set theory applied to UP-algebras, *Ital. J. Pure Appl. Math.*, vol.42, pp.388-402, 2019.
- [16] M. A. Ansari, A. Haidar and A. N. A. Koam, On a graph associated to UP-algebras, Math. Comput. Appl., vol.23, no.4, 2018.
- [17] N. Dokkhamdang, A. Kesorn and A. Iampan, Generalized fuzzy sets in UP-algebras, Ann. Fuzzy Math. Inform., vol.16, no.2, pp.171-190, 2018.
- [18] M. A. Ansari, A. N. A. Koam and A. Haider, On binary block codes associated to UP-algebras, *Ital. J. Pure Appl. Math.*, vol.47, pp.205-220, 2022.
- [19] A. Satirad, P. Mosrijai and A. Iampan, Formulas for finding UP-algebras, Int. J. Math. Comput. Sci., vol.14, no.2, pp.403-409, 2019.
- [20] A. Satirad, P. Mosrijai and A. Iampan, Generalized power UP-algebras, Int. J. Math. Comput. Sci., vol.14, no.1, pp.17-25, 2019.
- [21] Y. B. Jun and A. Iampan, Implicative UP-filters, Afr. Mat., vol.30, pp.1093-1101, 2019.
- [22] T. Gaketem and A. Iampan, Essential UP-ideals and t-essential fuzzy UP-ideals of UP-algebras, ICIC Express Letters, vol.15, no.12, pp.1283-1289, 2021.
- [23] T. Gaketem, P. Khamrot and A. Iampan, Essential UP-filters and t-essential fuzzy UP-filters of UP-algebras, *ICIC Express Letters*, vol.16, no.10, pp.1057-1062, 2022.