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ABSTRACT. In this paper, the strong coupling greenhouse temperature system is modeled
as a second-order nonlinear system, and the disturbance enters the system with a different
channel from the control input. The non-singular terminal sliding mode controller is
proposed to address the problem. The nonlinear dynamic sliding mode surface is designed
based on a disturbance observer. The observer’s error system is proved to be finite-time
stable. The simulation shows that the proposed control method can shift any initial state
to the equilibrium point in finite time with a smoother control.
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1. Introduction. The greenhouse temperature control is concerning the creation of ad-
equate environment for the crop in order to reach predetermined results for high yield
quality. However, the greenhouse temperature system control has always been a challeng-
ing task in the system control field because the greenhouse is a multi-variable coupling,
time varying and nonlinear complicated system [1].

In recent years, the most popular greenhouse temperature controller is PID [2,3], this
method guarantees simple implementation and good performance, but it exhibits high
overshoot which is undesirable [3]. The other main greenhouse temperature controller is
the MPC controller [4,5], but MPC needs to iteratively solve the optimization problem
at each time step, and the response speed is hard to guarantee. The greenhouse tem-
perature controller needs to maintain response speed while ensuring control accuracy.
To pursue the stability and the response speed of the nonlinear greenhouse temperature,
many achievements have been accomplished. However, the performance has not been fully
researched.

In this paper, we establish an equivalent model based on heat transfer and thermo-
electric similarity theory, the system is modeled as a network of resistors and capacitors,
where temperature corresponds to potential and heat flow corresponds to current. So we
can simplify complex greenhouse system into a second-order plant to control. To deal
with the disturbances widely existing in the system, we use a finite-time disturbance ob-
server (FTDO) to estimate the matched and mismatched disturbance [6] in this plant.
The FTDO retains the nominal performance since it serves like a patch to the baseline
control and does not cause any adverse affects on the greenhouse system. Then we select
the sliding-mode control to address the coupling greenhouse states. In this paper, we
design a novel nonsingular terminal sliding-mode control method; the nonlinear surface is
based on the FTDO estimation. It can achieve the fast finite-time convergence without
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causing any singularity problem encountered in the traditional terminal SMC (TSMC)
[7]. Via this method, the greenhouse temperature states are driven to the desired setpoint
in finite-time.

The remainder of this paper is organized as follows. In Section 2, we describe the
problem and preliminaries. In Section 3, the main results are given: The FTDO form
and the finite-time convergence proof is introduced in the first part; the greenhouse non-
singular terminal sliding-mode controller based on the FTDO has been proposed in the
second part. The simulation is given in Section 4. In Section 5, we give the conclusion of
the paper.

2. Problem Statement and Preliminaries. We use the thermoelectric similarity the-
ory to regard the model as a grid of resistances and capacitors. The basic heat flow of
the system has following four pathways [8]:

1) Heat is exchanged between the interior air and the walls by means of the heat convec-
tion. This way will affect both the interior air and the wall simultaneously;

2) Heat is exchanged between the interior air and the outside air through the window by
means of the heat convection;

3) The heat can lose through the heat exchange between the wall and the outside air.
The form of that heat transfer is heat convection;

4) The thermal control equipment will transfer heat to the wall by means of the heat
conduction. The heat time-varying transfer function is expressed as u(t).

As shown in Figure 1, the differential equations describing the dynamic behavior of the
greenhouse temperature system can be derived from the above principles and are given
by

dT; 1 1
C’i% =R (T = T;) + R (T, = T7)
dT, 1
“Tat T Ry (Ti = T) + R.. (To — Tow) + u(?t) (1)

where i, w, o respectively represent the interior air, the wall and the outside air; C, T are
the specific heat capacity and the temperature of the object; R is the thermal resistance
between the two media. The atmosphere temperature T, is a complex function related
to the real time, referred to [9], it can generally be expressed as T, = asinw; + 3, where
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FiGUuRrRE 1. Model of the greenhouse heat flow
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« denotes the maximum of the atmosphere temperature difference and 5 denotes the
average value of the atmosphere, w; is the current time angle. We can see that T, is a
variable with a high frequency of change, so we treat T, as an external disturbance.

Define the control system state as x1 = T;, o = mTw. Then, the following dynamic
state-space equation for the integral chain of the temperature can be obtained from (1)
as

) 1 /1 1 1

=R a (Eo * sz) o * RoCiTO

:tQ B mxl B Oiw (Riw * Rlzw) v Rojcw RziCzTo * Rzicz CLOU(t) (2>

Next, consider the disturbance and some system variables of x; channel as d;, the

disturbance of x5 channel as dy. We can see that d; = —% (Ri + %) T+ ﬁTG and

dy = ﬁﬁTo denote the mismatched and matched disturbances, respectively.
The greenhouse temperature model can be simplified to a second-order system with
coupled states and various disturbances, which will be stabilized via a novel non-singular

terminal sliding mode control in Section 3.

3. Main Results.

3.1. The finite time disturbance observer design. It is assumed that the disturbance
d; in (2) is (n —i+1) the order differentiable and d; has a Lipschitz constant L; (i = 1,2),
L; > 0. All the states of system (1) are measurable, and the controller output is variable
in real time. Then the second order FTDO [10] for the mismatched disturbance in system
(1) is given by

20 = vy + T2, Vg = —)\OL%sgng(zo —11)+ 2

21 =V, U1 = —AlL%SgD% (Zl — ’Uo) + 29

Zy = Vg, Vg = —AoLsgn(zg — vy)

@1 = 20, cil = Z1, dl = 29 (3)

Ao, A1, A2 > 0 are the observer coefficients to be designed respectively, we define oy =
20 — X1, 01 = 21 — di, 03 = z3 — dg; combining (2) with (3), the observer estimation error
is governed by

oo = —)\OL%Sgng(Uo) +o1
&1 = —AlL%Sgn% (0'1 - Uo) + o2
0'2 € —/\QLSgIl (0'2 — 0'1) + [—L, L] (4)

Remark 3.1. The form of the disturbance observer in (3) is used to estimate dy and d;.
After changing the latter form of the first equation, we can observe dy in a similar way.

Lemma 3.1. Suppose that the states x1, xo and u(t) are measured with no noise. The
parameters Ao, A1, Ay being chosen sufficiently large in the reverse order [10], the observer
error system (4) is finite-time stable, that is there is a finite time such that the error
converges to zero, while the state of FTDO can estimate the disturbance accurately.

Proof: The differential equation of the error system (4) is invariant with respect to the
combined time-coordinate transformation [11]. Gg: (t,0;)| — (kt,dxo;), the dyo; is the
dilation of oy, that is (k*cg, k*01, kaa). So system (4) is homogeneous of the degree —1.

Consider the first item of the gy equation, a —)\OL%SgH§<UO) always has the effect of
making o converge to 0. We can consider the oy as a disturbance, for a given ||, there
is always some |og| for &y to zero, and the value of |og] is called the k;th amplitude. We
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can easily prove that the amplitude decreases as the number of oscillations increases by
contradiction. Similar results can be obtained for other equations in this way: oscillation
attenuation in each state of the system, the trajectory of |o;| < |S}| will converge to a
circle with a smaller radius. We can obtain the observer error system (4) is finite-time
stable [9].

3.2. Design of non-singular terminal sliding mode controller based on FTDO.
The novel nonlinear dynamic sliding mode surface [6] is selected for the second-order
system (2):

p

S:xl—k%(xg—l—(jl)q (5)

where 3, p, q are well defined, 5 > 0 is a designed constant, and p, ¢ are positive odd
integers which satisfy the condition that 1 < p/q < 2 [10], d; is the observer (3) estimation.

Lemma 3.2. For the greenhouse temperature system with the proposed nonlinear sliding
mode surface, if the non-singular terminal sliding mode controller is designed as (6):
1 .

q 2-p/q A A a
u=—ya(z)+ 5{9 <a:2 + d1> + dy + dy + k15 + kasgn(s)|s] (6)

where ko > k1 >0, 0 < a < 1 is the parameters to be designed, and the dl, dy have been
gwen in the FTDO mentioned above, then the system output y = x1 will converge to zero
i finite time, that is the system can converge to equilibrium point under the control law.

Proof: For the proposed sliding surface, its derivatives along the system dynamics is

) . 1 ~\P/a—1 /. .
S = Sl?l—i‘—]—? <$2+d1) ($2+d1>

Byq
_ 1y Ty +d; vt kis + kosgn(s)|s|® + (dy — do) | — (dy — dy (7)
q
Define Zo = zo + ch, e1 = dl —dy, e9 = cZ2 — ds, and then we can obtain
. 1 _
S = Bgig/q Hkys + kosgn(s)|s|® + ea] — e (8)
Ty = —B%jg_p/q — k1s — kosgn(s)|s|* — eq (9)

We assume that the convergence time of finite-time disturbance observer is t; (t; > 0).

When ¢ < ty, define a finite-time bounded function [11] v = £(s? + 2% + 23) for the
sliding mode (8) and the state dynamics (9). Note that |s|* < 1+s. Taking the derivative
of V, we can obtain that

. 19 . B
V= —ngg/q b (kys® 4 Kals|oT 4 egs) — ers + 11 (Z9 — e1)
+ Ty (—6%%3_7’/‘1 — k1s — kosgn(s)|s|* — 62)
1 - - - -
< Bg (1+ [Z2]) e2s] + lers| + [2122] + |w1ea| + [Zo| [Fa]s| + k2(1 + [s[)] + [Z2] |ez]
2 2 ~ 2 2, 2 2 | ~2 2, 2
Slg e+ s +|62’ZL’2—|—62 +s +€1+JI1+I‘2+1’1+€1
Bq\ 2 2 2 2 2
s* + 23 1+72 e+ a3
k k 2 k' 2 2 2
+( 1+ 2) 5 + Ko 5 5
< MazxV + Mazs (10)
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where Maz, = max{1+k1+k2+%,2+k:1+2k2+%]62]}, Mazy = max{e% + %2

+ % <1 + %) + ﬁ]eg}, because of the boundness of the ey, e;, we can easily obtain that

Maz, Maxy are bounded constants. Then the s, x1, x5 satisfied the uniform forward
completeness. We can conclude the sliding mode surface and the system state x;, Zo will
not escape in finite time, that is sufficient to guarantee the finite-time convergence [14].

When ¢ > 4, referred to Lemma 3.1, the disturbance estimation error e; and ey will
converge to zero; the sliding mode dynamics (9) is then reduced to

Ip
Bq

We define a Lyapunov function V5 =

§=——— a5 [kys + kosgn(s)|s|] (11)

1%, combined with Equation (11) yields

Vo = 8§ = ——2 [ky8% + kols]T!
Baq [ ™)
1p e 1p _pig— 1
< i Thals| 4+ Ralsl] | < — 523 [hals| + kals?] V2VE (12)
Baq Byq
For the case of T3 # 0 we can get %’g:ﬁg/ s 0, the system state can reach the sliding
mode s = 0 within finite time [15]. For 3 = 0, Equation (9) is reduced to

Ty = —kys — kosgn(s)|s|® (13)

For s > 0, it is obtained 2y < —kis — ky|s|®, and for s < 0, 25 > (ky — k1)s + kg,
showing that T = 0 is not an attractor [13]. The phase plot of the system is shown in
Figure 2. We can see that there exists a vicinity of x5 = 0 such that for a small § > 0 such
that |z5] < 0, the crossing of the trajectory from the boundary of the vicinity z5 = ¢ to
To = —0 for s > 0, and from x5 = —¢ to x5 = 0 for s < 0. Therefore, it can be concluded
that the sliding mode s = 0 can be reached from anywhere in the phase plane in finite
time.

tx
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F1GURE 2. The phase plot of the system

After the system state reaches the sliding surface, there is s = 0, and we can obtain
from the sliding surface (5) and the system dynamics (2) that

1 ~\P/q 1.
8:$1+E<$2+d1> :$1+Ele)/q:(] (14)

With the chosen parameters, system (3) is finite-time stable, which completes the proof.
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4. Simulation. The intrinsic parameters of the greenhouse temperature system are C; =
49.618 kwh/°C, C,, = 323.732 kwh/°C, R, = 5.057°C/kw, R,, = 4.811°C/kw, R;, =
0.409°C/kw, which are estimated by the maximum likelihood method for experimental
data collected [16].

The atmosphere temperature disturbance imposed on the greenhouse is represented as
(2) with T, = sin(207t). The parameters of the sliding mode controller (6) are designed
as =050, ky =5, ks =50, « = 0.5, p=15, ¢ = 3; the FTDO parameter used to estimate
di is Ay = 2, Ay = 1.5, A3 = 0.01, L = 100; the one estimates dy is \y = 3, Ay = 2

T he dlsturbance dl, ds, the disturbance observation dl, dg and the disturbance ob-
servation error dy, dy of the finite-time disturbance observer (5) are shown in Figure 3
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and Figure 4, respectively. It can be seen that the observation error of the disturbance
observer is small and converges to zero gradually over a period of time for both dy, ds.
It is proposed that whatever the matched and mismatched disturbance, the proposed
finite-time disturbance observer has a high accuracy performance.

Then the response curves of the system state variables under the FTDO-NTSMC and
the traditional NTSMC are shown in Figure 5. The NTSMC method can only attenuate
the disturbance to a specified small region while the proposed method has nearly removed
such disturbance. Meanwhile, the FTDO-NTSMC takes less time to reach the desired
setpoint from the initial states. The corresponding control signals of two methods are
shown in Figure 6; we can stabilize the system with a smaller amount of control. In other
words, we can achieve the aim with a smaller amount of control.
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FIGURE 5. x; response curve of the greenhouse under two methods
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FIGURE 6. The control signal of the greenhouse under two methods
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5. Conclusions. In this paper, the greenhouse temperature system is modeled as a
second-order system with coupled states, matched disturbance and mismatched distur-
bance. The disturbance source considered in this paper is the atmosphere temperature.
Two finite-time disturbance observers are used to estimate the matched and mismatched
disturbance respectively. The finite time stability of the observer error system has been
proved rigorously in the article. Then the non-singular terminal sliding mode control
law including the estimations of the FTDO has been proposed to address the problem.
Compared with the traditional NTSMC without the disturbance observer, the proposed
method largely alleviates the chattering problem, and the control quantity is more smooth.
Lastly, the simulation results on the obtained model have illustrated the efficiency of the
proposed method.

However, the influence of model parameter perturbation is not considered in this paper,
so the model can be further improved and the problem will become more tricky and
interesting.

REFERENCES

[1] Y. Su, L. Xu and D. Li, Adaptive fuzzy control of a class of MIMO nonlinear system with actuator
saturation for greenhouse climate control problem, IEEE Trans. Automation Science and Engineer-
ing, vol.13, no.2, pp.772-788, 2016.

[2] F. Gouadria, L. Sbita and N. Sigrimis, Comparison between self-tuning fuzzy PID and classic PID
controllers for greenhouse system, 2017 International Conference on Green Energy Conversion Sys-
tems, pp.1-6, 2017.

3] Z. Q. Gao, T. A. Trautzsch and J. G. Dawson, A stable self-tuning fuzzy logic control system
for industrial temperature regulation, IEEE Trans. Industry Applications, vol.38, no.2, pp.414-424,
2002.

[4] M. Y. Ghoumari, H. J. Tantau and J. Serrano, Non-linear constrained MPC: Real-time implementa-
tion of greenhouse air temperature control, Computers and FElectronics in Agriculture, vol.49, no.3,
pp-345-356, 2020.

[5] L. Chen, S. Du, Y. He, M. Liang and D. Xu, Robust model predictive control for greenhouse
temperature based on particle swarm optimization, Information Processing in Agriculture, vol.5,
no.3, pp.329-338, 2018.

[6] J. Yang, S. H. Li, J. Y. Su and X. H. Yu, Continuous nonsingular terminal sliding mode control for
systems with mismatched disturbances, Automatica, vol.49, no.7, pp.2287-2291, 2013.

[7] S. Yu, X. Yu, B. Shirinzadeh and Z. Man, Continuous finite-time control for robotic manipulators
with terminal sliding mode, Automatica, vol.41, no.11, pp.1957-1964, 2005.

[8] W. Luo, H. F. de Zwart, J. Dail et al., Simulation of greenhouse management in the subtropics, Part
I: Model validation and scenario study for the winter season, Biosystems Engineering, vol.90, no.3,
pp-307-318, 2005.

[9] D. C. Reicosky, L. J. Winkelman and J. M. Baker, Accuracy of hourly air temperatures calculated
from daily minima and maxima, Agricultural and Forest Meteorology, vol.46, no.3, pp.193-209, 1989.

[10] Y. B. Shtessel, I. A. Shkolnikov and A. Levant, Smooth second-order sliding modes: Missile guidance
application, Automatica, vol.43, no.8, pp.1470-1476, 2007.

[11] A. Levant, Higher-order sliding modes, differentiation and output-feedback control, International
Journal of Control, vol.76, n0s.9-10, pp.924-941, 2003.

[12] A. Levant, Homogeneity approach to high-order sliding mode design, Automatica, vol.41l, no.5,
pp-823-830, 2005.

[13] Y. Feng, X. Yu and Z. Man, Non-singular terminal sliding mode control of rigid manipulators,
Automatica, vol.38, no.12, pp.2159-2167, 2002.

[14] S. Li and Y. P. Tian, Finite-time stability of cascaded time-varying systems, International Journal
of Control, vol.80, no.4, pp.646-657, 2007.

[15] S. P. Bhat and D. S. Bernstein, Finite-time stability of continuous autonomous systems, SIAM J.
Contr. Opti, vol.38, no.3, pp.751-766, 2000.

[16] F. Hao, H. Zhao and Y. Zhao, Temperature change prediction model of power distribution room
based on grey box theory, Electric Power Engineering Technology, 2019.



