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Abstract. The pulmonary artery wedge pressure (PAWP) is an index used to evaluate
pulmonary congestion caused by heart failure. In a previous study, a convolutional neural
network (CNN) was used to estimate PAWP from chest X-ray images in binary states.
This study is beneficial for medicine; however, there is a need to estimate PAWP in
more detail. Therefore, we developed a CNN that outputs three classes depending on the
PAWP (normal class: less than 12 mmHg; anomaly1 class: between 12 and 18 mmHg;
anomaly2 class: 18 mmHg or more). The experiment used data of 936 patients, which
were divided into training (80%) and test data (20%). Moreover, a validation dataset
(20%) was extracted from the training dataset to tune the hyperparameters (learning rate
and number of epochs). As a result of learning the CNNs, the optimal learning rate and
epochs were 10−5 .5 and 96, respectively. The accuracy of the test data was approximately
63%. The accuracy of the normal class was sufficient; however, those of anomaly1 and
anomaly2 classes were insufficient. Therefore, the estimation accuracy must be improved
in future work.
Keywords: Deep learning, Convolutional neural network, Pulmonary artery wedge pres-
sure

1. Introduction. Heart failure is associated with a high risk of death; therefore, its early
detection is important. Pulmonary artery wedge pressure (PAWP) data obtained by right
heart catheterization (RHC) is essential to evaluate the severity of heart failure. However,
the procedure of obtaining RHC data is invasive and several complications have been
reported [1]. As a safety method, experienced physicians can roughly diagnose PAWP
states from the chest X-ray images of patients. Although this method [2] is commonly
employed, it is subjective and not objective. We presumed that deep learning can be
employed for estimating PAWP objectively.

Recently, there have been many applications of deep learning in the medical field owing
to the growing image recognition capability of artificial intelligence.
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Jain et al. [3] detected COVID-19 from chest X-ray images of COVID-19 infected pa-
tients and healthy patients using deep learning. To do this, they performed data augmen-
tation and developed CNNs. They compared the accuracies of Inception V3, Xception,
and ResNeXt models, and discovered that the Xception model showed the best accuracy
for detecting COVID-19 in infected patients.
Moreover, deep learning models have been used for detecting heart failure [4], hyper-

trophic hearts [5], and cardiac chamber enlargement [6] from chest X-ray images. Novikov
et al. [7] implemented multi-class segmentation using a CNN from chest X-ray images.
Betancur et al. [8] developed a method for predicting obstructive disease from myocar-
dial perfusion imaging using deep learning. Tao et al. [9] developed a deep learning-based
method for fully automatic quantification of the left ventricle function from short-axis
cine MR images. Zhao et al. [10] proposed a new finger vein recognition algorithm based
on an improved CNN and curvature gray feature decomposition. Experimental results
indicated that their method is more effective and better than traditional schemes and the
previous method.
As mentioned above, there have been many cases of deep learning applications in

medicine. Furthermore, there is a review paper on deep learning in medicine (e.g., [11]).
Because machine learning and medicine have a high affinity, we considered applying deep
learning to estimating PAWP; some studies have already employed this principle. For
example, Hirata et al. [12] constructed a CNN to estimate two classes (normal: 18 mmHg
or less; anomaly: more than 18 mmHg) of PAWP. This study is valuable; however, we
consider that PAWP states must be estimated in more detail. Saito et al. [13] developed
a regression CNN to estimate PAWP in the form of a real number. A statistically signifi-
cant correlation coefficient between the ground truth and estimated PAWP was reported;
however, there was a certain level of error. To determine heart states, we consider not
only methods for estimating PAWP by regression but also by multiclass recognition. Al-
though the previous study [12] is important and beneficial, wherein more than 18 mmHg
of PAWP indicated an abnormal condition, we considered that detecting a slightly ab-
normal condition (between 12 and 18 mmHg) can be crucial to provide early treatment.
Therefore, we added a new anomaly class from 12 to 18 mmHg as a detection target and
aimed to construct a CNN that estimates and classifies PAWP states in three classes.
This paper is organized as follows. The proposed method is detailed in Section 2. Par-

ticularly, the dataset used in the experiment is reviewed in Section 2.1 and the structure
of the developed CNN is explained in Section 2.2. The experiment is described in Section
3. Specifically, the experimental objective and outline are presented in Section 3.1, and
the results and discussions are provided in Section 3.2. Section 4 concludes the paper and
offers directions for future research.

2. Method.

2.1. Dataset. In this study, we used a dataset from a previous study [12]. The chest
X-ray image size was 256× 256. The structure of the split data is shown in Figure 1. All
the data were split into training (80%) and test data (20%). Moreover, for tuning the
hyperparameters, 20% of the training data were used as the validation data.
In this study, we denote the three classes as

C = {Cnorm,Cano1,Cano2} . (1)

Let us denote the class the ck of the kth patient’s chest radiograph as

ck =


Cnorm

(
yrhc < 12

)
Cano1

(
12 ≤ yrhc < 18

)
,

Cano2

(
18 ≤ yrhc

) (2)
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where yrhc represents the ground truth PAWP measured by RHC in [mmHg]. Cnorm rep-
resents the normal class and Cano1 and Cano2 indicate high PAWP, that is, a high risk of
the heart failure. In the main training data, the numbers of Cnorm, Cano1, and Cano2 were
331, 161, and 106 patients, respectively. In the validation data, the numbers of Cnorm,
Cano1, and Cano2 were 90, 40, and 20 patients, respectively. In the test data, the numbers
of Cnorm, Cano1, and Cano2 were 107, 52, and 29 patients, respectively. There are features
in which the number of normal classes is large; in contrast, the number of anomaly classes
is small.

Figure 1. Tree of splitting data

2.2. Structure of CNN. The structure of the CNN is illustrated in Figure 2. The CNN
consists of three convolutional layers, two pooling layers, and a fully connected layer. The
size of the input image for the input layer was 256 × 256. Using the first convolutional
layer, the input image is convolved by 3 × 3 kernel filters. The number of filters used
for convolution was 32 in the second layer and 64 in the fourth and sixth layers. The
pooling layers extract the maximum value via a 2 × 2 kernel filter. The rectified linear
unit (ReLU) was adopted as the activation function for all layers, except for the output
layer.

The ReLU function outputs zero when the input value is zero or less. In contrast, when
the input value is greater than zero, the ReLU is the identity map. Therefore, the ReLU

Figure 2. Structure of CNN
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function is defined as follows:

fReLU(z) =

{
0 (z < 0)

z (z ≥ 0)
, i.e., fReLU : (−∞,∞) → [0,∞). (3)

Compared with other activation functions, such as the sigmoid function, this function has
the effect of reducing the vanishing gradient problem during backpropagation. Backprop-
agation is a method for updating the weights and bias parameters from the output layer
to the input layer.
Next, we explain the transformation of the feature vector during classification. When

inputting chest X-ray images into the CNN,

xfcl =
[
xfcl
1 xfcl

2 · · · xfcl
64

]⊤
(4)

is generated from the fully connected layer shown in Figure 2, which is a 64-dimensional
feature vector. This is compressed as a three-dimensional vector by

x = [x1 x2 x3]
⊤ = fReLU

(
wxfcl + b

)
, (5)

where

w =

w1,1 w1,2 w1,3
...

...
...

w64,1 w64,2 w64,3

 , b = [b1 b2 b3]
⊤ (6)

are the parameters learned by backpropagation. By inputting the vector x into the Soft-
max function, we obtain the discrete probability distribution of the output classes. In
other words,

y = [y(Cnorm) y(Cano1) y(Cano2)]
⊤ =

1∑
i∈C exp(xi)

[exp(x1) exp(x2) exp(x3)]
⊤ ,

i.e., y(Cnorm) + y(Cano1) + y(Cano2) = 1, (7)

where y(i ∈ C) is the probability of class i ∈ C. The classification results are defined as
follows:

max(y) = y(Cnorm) ⇒ Estimation class: Cnorm,

max(y) = y(Cano1) ⇒ Estimation class: Cano1,

max(y) = y(Cano2) ⇒ Estimation class: Cano2. (8)

Next, we explain the cost function and the method of adding labels. In this study, we
adopted cross-entropy as the loss function [14], which is defined as

H = −
∑
i∈C

p(i) log y(i), (9)

where y(i) is the estimated probability of class i ∈ C calculated using Equation (7). p(i)
is the ground-truth one-hot vector of the actual class i ∈ C, which is defined as

True class: Cnorm ⇒ [p(Cnorm) p(Cano1) p(Cano2)]
⊤ = [1 0 0]⊤,

True class: Cano1 ⇒ [p(Cnorm) p(Cano1) p(Cano2)]
⊤ = [0 1 0]⊤,

True class: Cano2 ⇒ [p(Cnorm) p(Cano1) p(Cano2)]
⊤ = [0 0 1]⊤. (10)

A large cross-entropy H indicates large errors. Therefore, the machine learning method
employed in this study aims to obtain parameters that result in a low H. We adopted
Adam as the optimization algorithm [15].
To search for a desirable model, multiple values of learning rates and epochs were

verified. In particular, 10−5.5, 10−6.0 and 10−6.5 were adopted as the learning rates, and the
number of epochs was ranged from 1 to 200. We used the method of choosing the learning
rate and epochs, which resulted in the highest validation accuracy of the developed models.
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3. Experiment.

3.1. Objective and outline. We constructed a CNN to classify PAWP from chest X-ray
images into one of three classes, and conducted an experiment to evaluate the generaliza-
tion of the model. We used the dataset presented in Section 2.1, and structure of CNN and
learning condition presented in Section 2.2. The following software environment was used
for machine learning: Ubuntu 20.04.3 LTS, Python 3.9.4, and Keras 2.7.0. The hardware
environment was as follows: 12 GB RAM, Intel Core i7-9750H CPU (base frequency: 2.6
GHz, max turbo frequency: 4.50 GHz), and NVIDIA GeForce GTX 1660 Ti GPU (clock
speed: 1770 MHz, Memory: 6 GB). To avoid overflow, we conducted minibatch learning
using a batch size of 32.

3.2. Results and discussions. Among all CNNs, we adopted the one which had a learn-
ing rate of 10−5.5 and 96 epochs that obtained the highest accuracy using the validation
dataset. Estimation and reliability scores were calculated using the main training, vali-
dation, and test data. The values are listed in Table 1. When comparing the reliability
scores among the three datasets, the differences were small. Therefore, we concluded that
the adopted CNN did not overfit.

Table 1. Reliability of each dataset (learning rate: 10−5.5, epochs: 96)

Main training data Validation data Test data
Accuracy 0.699 0.687 0.633
Precision 0.694 0.666 0.544
Recall 0.598 0.544 0.536

The confusion matrices for each dataset are shown in Figure 3. First, we describe the
confusion matrix of the main training data, which is shown in Figure 3(a). The number of
correct answers for Cnorm was 312 out of 331. The recall of Cnorm was 312/(312+7+12) ≃
0.943, which is high. In the case of Cano1, recall was 46/(99+ 46+16) ≃ 0.286. Although
the true class is Cano1, the cases of estimating it as Cnorm include many misclassifications.
In the case of Cano2, recall was 60/(33 + 13 + 60) ≃ 0.566. We consider this to be a high
value compared with Cano1.

Figure 3. Confusion matrices
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The estimation tendencies of the validation and test datasets (Figures 3(b) and 3(c)) are
similar to those of the main training dataset. It is characteristic that the CNN estimates
Cano1 as Cnorm for all datasets. Based on the results obtained in this study, we consider
that the detection of the slightly cardiac anomaly state should be improved. We consider
that data augmentation can improve performance. Data augmentation involves adding
new processed data to enable effective machine learning using few data [16]. A survey of
this paper indicated that accuracy could be improved via data augmentation. Therefore,
we will employ this method in a future work.

4. Conclusion. In this study, we constructed a CNN that classifies PAWP states in
three classes (Cnorm, Cano1, and Cano2). Although PAWP is measured using RHC, this
method has some risk of complications [1]. Hence, objective and noninvasive methods
for measuring PAWP are required. Therefore, we developed a CNN for the three-state
classification of PAWP from chest X-ray images. Consequently, the accuracy of the test
data that was not used for parameter learning was 63.3%. However, the detection of the
slightly anomalous state Cano1 must be improved. We consider that the low accuracy of
Cano1 is caused by the small sample size. Therefore, we aim to improve the accuracy of
Cano1 using data augmentation in the future.
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