BI-FUZZY IDEALS OF \boldsymbol{d}-ALGEBRAS

Thanatporn Grace ${ }^{1}$, Cholatis Suanoom ${ }^{2}$, Jirayu Phuto ${ }^{3}$ and Aiyared Iampan ${ }^{4, *}$
${ }^{1}$ Mathematics English Program
Faculty of Education
Valaya Alongkorn Rajabhat University under the Royal Patronage
1 Moo 20, Tambon Klong Neung, Amphur Klong Luang, Pathumthani 13180, Thailand thanatporn.ban@vru.ac.th
${ }^{2}$ Program of Mathematics Faculty of Science and Technology Kamphaeng Phet Rajabhat University
69 Moo 1, Tambon Nakorn Chum, Amphur Mueang, Kamphaeng Phet 62000, Thailand cholatis_s@kpru.ac.th
${ }^{3}$ Department of Mathematics Faculty of Science Naresuan University
99 Moo 9, Tambon Tha Pho, Amphur Mueang, Phitsanulok 65000, Thailand jirayup60@email.nu.ac.th
${ }^{4}$ Fuzzy Algebras and Decision-Making Problems Research Unit Department of Mathematics School of Science University of Phayao
19 Moo 2, Tambon Mae Ka, Amphur Mueang, Phayao 56000, Thailand
*Corresponding author: aiyared.ia@up.ac.th

Received August 2022; accepted November 2022

Abstract. In a d-algebra, the concepts of bi-fuzzy subalgebras and ideals are introduced. It was investigated the relationship between bi-fuzzy subalgebras (ideals) and their upper level subsets. Finally, the homomorphic properties of bi-fuzzy ideals are examined.
Keywords: d-algebra, Ideal, Normal ideal, Bi-fuzzy subalgebra, Bi-fuzzy ideal

1. Introduction. The algebraic structures of BCK-algebras and BCI-algebras were studied by Iséki and his colleague [1-3]. In 1983, Hu and Li [4] generalized a new class of algebras from BCI-algebras, namely, a BCH-algebra. Next, Bandru and Rafi [5] introduced a new algebra, called G-algebra. However, in 2012, G-algebra played an important role and many applications. In 2002, Neggers and Kim [6] combined some properties from two algebra, i.e., $\mathrm{BCI}-\mathrm{algebra}$ and BCH -algebra, and obtained a new algebra, namely, B-algebra. Neggers and Kim [7] introduced the concept of d-algebras in 1999, which is another useful generalization of BCK-algebras, and then investigated several relations between d-algebras and BCK-algebras as well as several other relations between d-algebras and oriented digraphs which got the attention of the author as follows [8].

In 2005, Akram and Dar [9] introduced the concepts of fuzzy subalgebras and ideals in d-algebras, and investigated some of their results. In 2010, Muthuraj et al. [10] studied Q-fuzzy BG-ideal of a BG-algebra. They gave condition for Q-fuzzy subsets to be Q-fuzzy BG-ideals. In 2018, Khalil [11] introduced a new category of fuzzy d-algebra. There is

DOI: 10.24507/icicelb.14.02.133
a relation between fuzzy d-algebras and edge d-algebras. In 2015, Dymek and Walendziak [12] introduced normal ideal and relationship of fuzzy ideals and ideals of BN-algebras. The concept of fuzzy ideals is continually studied in d-algebras, which has inspired us to expand our study to bi-fuzzy ideals by referring to [11,13-19].

We investigate a normal ideal and a congruence of a d-algebra in this paper, and also provide the concept of a bi-fuzzy subalgebra and ideal of a d-algebra. The relationship between bi-fuzzy subalgebras (ideals) and their upper level subsets is given. Finally, the bi-fuzzy ideal's homomorphic properties are discovered.
2. Preliminaries. We will review the concepts, theorems, and understanding needed to explore the main sections in this subject.

Definition 2.1. [7] A-algebra $X=(X, *, 0)$ is a nonempty set X with an element 0 and a binary operation $*$ satisfying the following axioms:
(d1) $(\forall x \in X)(x * x=0)$,
(d2) $(\forall x \in X)(0 * x=0)$,
(d3) $(\forall x, y \in X)(x * y=0, y * x=0 \Rightarrow x=y)$.
On a d-algebra $X=(X, *, 0)$, the binary relation \leq is defined as follows:

$$
(\forall x, y \in X)(x \leq y \Leftrightarrow x * y=0)
$$

Example 2.1. Let $X=\{0, a, b, c\}$ with the following Cayley table as follows:

$*$	0	a	b	c
0	0	0	0	0
a	c	0	a	a
b	b	c	0	0
c	c	b	a	0

Then $X=(X, *, 0)$ is a d-algebra.
After this we will use X instead of a d-algebra $(X, *, 0)$.
Definition 2.2. [8] A nonempty subset S of X is called
(1) a subalgebra of X if $(\forall x, y \in S)(x * y \in S)$,
(2) an ideal of X if
(I1) $(\forall x, y \in X)(x * y \in S, y \in S \Rightarrow x \in S)$,
(I2) $(\forall x \in S, \forall y \in X)(x * y \in S)$.
It is easy to check that $\{0\}$ and X are ideals of X.
We know that if I is an ideal of X, then $0 \in I$, and every ideal of X is a subalgebra.
Definition 2.3. A nonempty subset N of X is said to be normal in X if

$$
(\forall x, y, a, b \in X)(x * y, a * b \in N \Rightarrow(x * a) *(y * b) \in N)
$$

An ideal I of X is called a normal ideal of X if I is normal. In addition, $\mathcal{N}_{i d}(X)$ denotes the set of all normal ideals of X.

We know that $X \in \mathcal{N}_{i d}(X)$ but $\{0\} \notin \mathcal{N}_{i d}(X)$ because $b * c, 0 * b \in\{0\}$ but $(b * 0) *$ $(c * b)=b * a=c \notin\{0\}$ (see Example 2.1), and every normal ideal of X is a subalgebra.

Proposition 2.1. If $I \in \mathcal{N}_{i d}(X)$, then
(NI1) $(\forall x, y \in X)(x * y \in I \Rightarrow(x * 0) *(y * 0) \in I)$,
(NI2) $(\forall x, y \in X)((x * 0) *(x * y) \in I)$,
(NI3) $(\forall x, y \in X)(x * y \in I \Leftrightarrow x * 0 \in I)$.

Proof: (NI1) Suppose that $x * y \in I$. Since $0 * 0=0 \in I$ (by (d2)), we have $(x * 0) *$ $(y * 0) \in I$.
(NI2) By (d1) and (d2), we have $x * x=0,0 * y=0 \in I$. Thus, $(x * 0) *(x * y) \in I$.
(NI3) The proof of sufficient condition is straightforward by (NI2) and (I1).
Conversely, let $x, y \in X$ be such that $x * 0 \in I$. Since $y * y=0 \in I$ (by (d1)) and by (d2), we obtain $(x * y) * 0=(x * y) *(0 * y) \in I$. Since $0 \in I$ and by (I1), we have $x * y \in I$.

Definition 2.4. [7] A d-algebra X is said to be
(1) edge if $(\forall x \in X)(x * X=\{x, 0\})$,
(2) skew-edge if $(\forall x \in X)(x * 0=x)$.

It is known that if X is edge, then it is skew-edge.
Example 2.2. Let $X=\{0, a, b, c\}$ with the following Cayley table as follows:

$*$	0	a	b	c
0	0	0	0	0
a	a	0	b	a
b	b	c	0	a
c	c	0	c	0

Then X is a skew-edge d-algebra but it is not edge because $a * X=\{0, a, b\} \neq\{0, a\}$.
Proposition 2.2. Let X be a skew-edge d-algebra and S be a nonempty subset of X. Then S is a normal subalgebra of X if and only if $S \in \mathcal{N}_{i d}(X)$.

Proof: The proof of sufficient condition is obvious.
Conversely, suppose that S is a normal subalgebra of X.
(I1) Suppose that $x * y \in S$ and $y \in S$. By (d2), we have $0 * y=0 \in S$. By (d1), we have $x=(x * 0) * 0=(x * 0) *(y * y) \in S$.
(I2) Suppose that $x \in S$ and $y \in X$. Then $x * 0=x \in S$ and $y * y=0 \in S$. By (d2), we have $x * y=(x * y) * 0=(x * y) *(0 * y) \in S$.

Hence, $S \in \mathcal{N}_{\text {id }}(X)$.
Let X be a skew-edge d-algebra and $I \in \mathcal{N}_{i d}(X)$. We define a binary relation \smile_{I} on X as follows:

$$
(\forall x, y \in X)\left(x \smile_{I} y \Leftrightarrow x * y \in I\right)
$$

(reflexivity) Let $x \in X$. By (d1), we have $x * x=0 \in I$. Thus, $x \smile_{I} x$.
(symmetry) Let $x, y \in X$ be such that $x \smile_{I} y$. Then $x * y \in I$. Since $y * y=0 \in I$ (by (d1)) and by (d1), we have $y * x=(y * x) * 0=(y * x) *(y * y) \in I$. Thus, $y \smile_{I} x$.
(transitivity) Let $x, y, z \in X$ be such that $x \smile_{I} y$ and $y \smile_{I} z$. By symmetry, we have $z \smile_{I} y$. Thus, $x * y, z * y \in I$. By (d1), we have $x * z=(x * z) * 0=(x * z) *(y * y) \in I$. Thus, $x \smile_{I} z$.
(compatible) Let $x, y, z \in X$ be such that $x \smile_{I} y$. Then $x * y \in I$. Since $z * z=0 \in I$ (by (d1)), we have $(x * z) *(y * z) \in I$ and $(z * x) *(z * y) \in I$. Thus, $x * z \smile_{I} y * z$ and $z * x \smile_{I} z * y$.
Therefore, \smile_{I} is a congruence on a skew-edge d-algebra X.
Denote the equivalence class containing X by $[x]_{I}$, i.e., $[x]_{I}=\left\{y \in X \mid x \smile_{I} y\right\}$ and let $X / I=\left\{[x]_{I} \mid x \in X\right\}$.

We define a binary operation \star on X / I as follows:

$$
(\forall x, y \in X)\left([x]_{I} \star[y]_{I}=[x * y]_{I}\right) .
$$

The following theorem is obtained.
Theorem 2.1. Let X be a skew-edge d-algebra and $I \in \mathcal{N}_{i d}(X)$. Then $\left(X / I, \star,[0]_{I}\right)$ is also a skew-edge d-algebra.

Proof: (d1) Let $[x]_{I} \in X / I$. Then $[x]_{I} \star[x]_{I}=[x * x]_{I}=[0]_{I}$.
(d2) Let $[x]_{I} \in X / I$. Then $[0]_{I} \star[x]_{I}=[0 * x]_{I}=[0]_{I}$.
(d3) Let $[x]_{I},[y]_{I} \in X / I$ be such that $[x]_{I} \star[y]_{I}=[0]_{I}$ and $[y]_{I} \star[x]_{I}=[0]_{I}$. Then $[x * y]_{I}=[y * x]_{I}=[0]_{I}$. Thus, $x * y \smile_{I} 0$, so $x * y=(x * y) * 0 \in I$. Thus, $x \smile_{I} y$, so $[x]_{I}=[y]_{I}$.
(skew-edge) Let $[x]_{I} \in X / I$. Then $[x]_{I} \star[0]_{I}=[x * 0]_{I}=[x]_{I}$.
Hence, $\left(X / I, \star,[0]_{I}\right)$ is a skew-edge d-algebra and it is called a quotient d-algebra.
Definition 2.5. [21] A d-algebra $X=(X, *, 0)$ is said to be medial if $(\forall x, y, z \in X)((x *$ $y) *(z * u)=(x * z) *(y * u))$.

The binary operation \sqcap on X is defined by

$$
(\forall x, y \in X)(x \sqcap y=(y * x) * x)
$$

3. Main Results. In this section, we introduce the concepts of bi-fuzzy subalgebras and ideals of d-algebras and study the relationship between bi-fuzzy subalgebras (ideals) and subalgebras (ideals).

3.1. Bi-fuzzy subalgebras and ideals.

Definition 3.1. A bi-fuzzy set δ of a nonempty set A is a mapping $\delta: A \times A \rightarrow[0,1]$. In particular, a fuzzy set ν of a nonempty set A is a mapping $\nu: A \rightarrow[0,1]$.
Definition 3.2. Let δ be a bi-fuzzy set of a nonempty set A. For $t \in[0,1]$, the set $\delta_{t}=\{(x, y) \in A \times A \mid \delta(x, y) \geq t\}$ is called an upper level subset of δ.
Definition 3.3. A bi-fuzzy set δ of X is called a bi-fuzzy subalgebra of X if it satisfies

$$
(\forall(x, u),(y, v) \in X \times X)(\delta(x * y, u * v) \geq \min \{\delta(x, u), \delta(y, v)\})
$$

Example 3.1. In Example 2.1, we define a bi-fuzzy set δ of X by

$$
(\forall(x, y) \in X \times X)\left(\delta(x, y)=\left\{\begin{array}{ll}
0.58 & \text { if } x=y=0 \\
0 & \text { otherwise }
\end{array}\right)\right.
$$

Then δ is a bi-fuzzy subalgebra of X. In addition, $\delta_{0.58}=\{(0,0)\}$ and $\delta_{0}=X \times X$.
For a d-algebra X, we define a binary operation \circledast on $X \times X$ by

$$
(\forall x, y, u, v \in X)((x, u) \circledast(y, v)=(x * y, u * v))
$$

(d1) Let $(x, y) \in X \times X$. Then $(x, y) \circledast(x, y)=(x * x, y * y)=(0,0)$.
(d2) Let $(x, y) \in X \times X$. Then $(0,0) \circledast(x, y)=(0 * x, 0 * y)=(0,0)$.
(d3) Let $(x, y),(u, v) \in X \times X$ be such that $(x, y) \circledast(u, v)=(0,0)$ and $(u, v) \circledast(x, y)=$ $(0,0)$. Then $x * u=0=u * x$ and $y * v=0=v * y$. This means that $(x, y)=(u, v)$.

Hence, $(X \times X, \circledast,(0,0))$ is a d-algebra.
Proposition 3.1. A bi-fuzzy set δ of X is a bi-fuzzy subalgebra if and only if for every $t \in[0,1]$, the upper level subset δ_{t} is either empty or a subalgebra of $X \times X$.

Proof: Suppose that δ is a bi-fuzzy subalgebra of X. Let $t \in[0,1]$ be such that $\delta_{t} \neq \emptyset$. Then $\delta(x * y, u * v) \geq \min \{\delta(x, u), \delta(y, v)\} \geq t$ for all $(x, u),(y, v) \in \delta_{t}$. This implies that $(x, u) \circledast(y, v)=(x * y, u * v) \in \delta_{t}$ for all $(x, u),(y, v) \in \delta_{t}$. Hence, δ_{t} is a subalgebra of $X \times X$.

Conversely, suppose that for every $t \in[0,1]$, the upper level subset δ_{t} is either empty or a subalgebra of $X \times X$. Let $(x, u),(y, v) \in X \times X$. Choose $t=\min \{\delta(x, u), \delta(y, v)\}$. Then $(x, u),(y, v) \in \delta_{t} \neq \emptyset$. By assumption, δ_{t} is a subalgebra of X. This implies that $(x * y, u * v)=(x, u) \circledast(y, v) \in \delta_{t}$. Thus, $\delta(x * y, u * v) \geq t=\min \{\delta(x, u), \delta(y, v)\}$. Hence, δ is a bi-fuzzy subalgebra of X.

Theorem 3.1. Any subalgebra of a d-algebra $X \times X$ can be (realized as) a level subalgebra of some bi-fuzzy subalgebra of X.

Proof: Let S be a subalgebra of a d-algebra $X \times X$. We define a bi-fuzzy set δ of X by

$$
(\forall(x, y) \in X \times X)\left(\delta(x, y)=\left\{\begin{array}{ll}
c & \text { if }(x, y) \in S, \\
0 & \text { otherwise }
\end{array}\right)\right.
$$

where $c \in(0,1)$. Then $\delta_{c}=S$. Let $(x, u),(y, v) \in X \times X$.
Case 1: $(x, u),(y, v) \in S$. Then $(x * y, u * v)=(x, u) \circledast(y, v) \in S$. This implies that $\delta(x, u)=\delta(y, v)=\delta(x * y, u * v)=c$. Thus, $\delta(x * y, u * v) \geq \min \{\delta(x, u), \delta(y, v)\}$.

Case 2: $(x, u) \notin S$ or $(y, v) \notin S$. Then $\delta(x, u)=0$ or $\delta(y, v)=0$. This implies that $\delta(x * y, u * v) \geq 0=\min \{\delta(x, u), \delta(y, v)\}$.

Hence, δ is a bi-fuzzy subalgebra of X.
Definition 3.4. For any bi-fuzzy sets δ and γ in a nonempty set A, we define a binary relation \leq as follows:

$$
\delta \leq \gamma \Leftrightarrow \delta(x, y) \leq \gamma(x, y) \quad \forall(x, y) \in A \times A
$$

Let A and B be nonempty sets, a function $f: A \times A \rightarrow B$, and a bi-fuzzy set δ of A. Set $f^{+--}(z)=\{(x, y) \in A \times A \mid f(x, y)=z\}$ for $z \in B$. The fuzzy set γ of B is defined by

$$
(\forall z \in B)\left(\gamma(z)=\left\{\begin{array}{ll}
\sup \left\{\delta(x, y) \mid(x, y) \in f^{+--}(z)\right\} & \text { if } f^{+--}(z) \neq \emptyset \\
0 & \text { otherwise }
\end{array}\right)\right.
$$

Then γ is called the image of δ under f and is denoted by $f(\delta)$.
Let A and B be nonempty sets, a function $f: A \times A \rightarrow B$, and a fuzzy set γ of $f(A \times A)$. The bi-fuzzy set δ of $A \times A$ is defined by

$$
(\forall(x, y) \in A \times A)(\delta(x, y)=\gamma(f(x, y)))
$$

Then δ is called the preimage of γ under f and is denoted by $f^{+--}(\gamma)$.
Now, we give the concept of a bi-fuzzy ideal in a d-algebra.
Definition 3.5. A bi-fuzzy set δ of X is called a bi-fuzzy ideal of X if
$(f d 1)(\forall(x, y) \in X \times X)(\delta(0,0) \geq \delta(x, y))$,
$(f d 2)(\forall(x, y),(u, v) \in X \times X)(\delta(x, y) \geq \min \{\delta((x, y) \circledast(u, v)), \delta(u, v)\})$.
Definition 3.6. A fuzzy set γ of X is called a fuzzy ideal of X if
(fi1) $(\forall x \in X)(\gamma(0) \geq \gamma(x))$,
(fi2) $(\forall x \in X)(\gamma(x) \geq \min \{\gamma(x * y), \gamma(y)\})$.
Example 3.2. From Example 3.1, we have δ is a bi-fuzzy ideal of X.
Proposition 3.2. Let δ be a bi-fuzzy ideal of X. Then

$$
(\forall(x, y),(u, v) \in X \times X)((x, y) \leq(u, v) \Rightarrow \delta(x, y) \geq \delta(u, v))
$$

Proof: Let $(x, y),(u, v) \in X \times X$ be such that $(x, y) \leq(u, v)$. Then $(0,0)=(x, y) \circledast$ $(u, v)=(x * u, y * v)$. Thus, $\delta(x, y) \geq \min \{\delta((x, y) \circledast(u, v)), \delta(u, v)\}=\min \{\delta(0,0), \delta(u, v)\}$ $=\delta(u, v)$.

Denote by $\mathcal{B} \mathcal{F}_{i d}(X)$ the set of all bi-fuzzy ideals of X.
Proposition 3.3. A bi-fuzzy set δ of X is a bi-fuzzy ideal of X if and only if it satisfies (fd1) $(\forall(x, y) \in X \times X)(\delta(0,0) \geq \delta(x, y))$,
$(f d 3)(\forall(x, y),(u, v),(w, z) \in X \times X)(((x, y) \circledast(u, v)) \circledast(w, z)=(0,0) \Rightarrow \delta(x, y) \geq$ $\min \{\delta(w, z), \delta(u, v)\})$.

Proof: Suppose that δ is a bi-fuzzy ideal of X. Then it satisfies (fd1). Let $(x, y),(u, v)$, $(w, z) \in X \times X$ be such that $((x, y) \circledast(u, v)) \circledast(w, z)=(0,0)$. Using $(\mathrm{fd} 2)$, we have $\delta(x * u, y * v) \geq \min \{\delta((x * u) * w,(y * v) * z), \delta(w, z)\}=\min \{\delta(0,0), \delta(w, z)\}=\delta(w, z)$ and $\delta(x, y) \geq \min \{\delta(x * u, y * v), \delta(u, v)\}$. This implies that $\delta(x, y) \geq \min \{\delta(w, z), \delta(u, v)\}$.

Conversely, let $(x, y),(u, v) \in X \times X$. Note that $((x, y) \circledast(u, v)) \circledast(x * u, y * v)=(0,0)$. By (fd3), we have $\delta(x, y) \geq \min \{\delta(x * u, y * v), \delta(u, v)\}=\min \{\delta((x, y) \circledast(u, v)), \delta(u, v)\}$. Hence, δ is a bi-fuzzy ideal of X.
Theorem 3.2. Let δ be a bi-fuzzy set of X. Assume that δ_{t} satisfies (I2) for all $t \in[0,1]$. Then δ is a bi-fuzzy ideal of X and if and only if for any $t \in[0,1], \delta_{t}$ is an ideal of $X \times X$ if δ_{t} is nonempty.

Proof: Suppose that δ is a bi-fuzzy ideal of X and δ_{t} satisfies (I2). Let $t \in[0,1]$ be such that $\delta_{t} \neq \emptyset$.
(I1) Assume that $(x, y) \circledast(u, v) \in \delta_{t}$ and $(u, v) \in \delta_{t}$. Then $\delta((x, y) \circledast(u, v)) \geq t$ and $\delta(u, v) \geq t$. By $(\mathrm{fd} 2)$, we have $\delta(x, y) \geq \min \{\delta((x, y) \circledast(u, v)), \delta(u, v)\} \geq t$. Thus, $(x, y) \in \delta_{t}$.

Therefore, δ_{t} is an ideal of $X \times X$.
Conversely, suppose that δ_{t} is an ideal of $X \times X$ for any $t \in[0,1]$ and δ_{t} is nonempty.
(fd1) Assume that there exists $(x, y) \in X \times X$ such that $\delta(0,0)<\delta(x, y)=c$ for some $c \in[0,1]$. Then $(x, y) \in U(\delta, c) \neq \emptyset$. By assumption, we have $U(\delta, c)$ is an ideal of $X \times X$. This means that $(0,0) \in U(\delta, c)$, that is, $\delta(0,0) \geq c$. It is a contradiction. Thus, for each $(x, y) \in X \times X, \delta(0,0) \geq \delta(x, y)$.
$(\mathrm{fd} 2)$ Assume that there exist $(x, y),(u, v) \in X \times X$ such that $\delta(x, y)<\min \{\delta(x *$ $u, y * v), \delta(u, v)\}$. Choosing $c=\frac{1}{2}(\delta(x, y)+\min \{\delta(x * u, y * v), \delta(u, v)\})$, we get $\delta(x, y)<$ $\frac{1}{2}(\delta(x, y)+\min \{\delta(x * u, y * v), \delta(u, v)\})=c<\min \{\delta(x * u, y * v), \delta(u, v)\} \leq \delta(x * u, y * v)$ and $c<\delta(u, v)$. Since $(x * u, y * v),(u, v) \in U(\delta, c)$ and $U(\delta, c)$ is an ideal of $X \times X$, we have $(x, y) \in U(\delta, c)$, that is, $\delta(x, y) \geq c$. It is a contradiction.

Hence, δ is a bi-fuzzy ideal of X.
Proposition 3.4. If δ is a bi-fuzzy ideal of a medial d-algebra X, then

$$
X_{\delta}=\{(x, y) \in X \times X \mid \delta(x, y)=\delta(0,0)\}
$$

is an ideal of $X \times X$.
Proof: Assume that δ is a bi-fuzzy ideal of a medial d-algebra X. Let $(x, y) \circledast(u, v) \in$ X_{δ} and $(u, v) \in X_{\delta}$. Then $\delta(x * u, y * v)=\delta(0,0)$ and $\delta(u, v)=\delta(0,0)$. By (fd1), we have $\delta(0,0) \geq \delta(x, y)$. Using (fd2), we get $\delta(x, y) \geq \min \{\delta(x * u, y * v), \delta(u, v)\}=$ $\min \{\delta(0,0), \delta(0,0)\}=\delta(0,0)$. Thus, $\delta(x, y)=\delta(0,0)$, that is, $(x, y) \in X_{\delta}$. Next, let $(x, y) \in X_{\delta}$ and $(u, v) \in X \times X$. By (fd1), we have $\delta(0,0) \geq \delta(x * u, y * v)$. Using (fd2), we get

$$
\begin{align*}
\delta(x * u, y * v) & \geq \min \{\delta((x * u) * 0,(y * v) * 0), \delta(0,0)\} \\
& =\min \{\delta((x * u) *(x * x),(y * v) *(y * y)), \delta(0,0)\} \tag{d1}\\
& =\min \{\delta((x * x) *(u * x),(y * y) *(v * y)), \delta(0,0)\} \tag{medial}\\
& =\min \{\delta(0,0), \delta(0,0)\} \tag{d1,d2}\\
& =\delta(0,0) .
\end{align*}
$$

Thus, $\delta(x * u, y * v)=\delta(0,0)$, that is, $(x, y) \circledast(u, v) \in X_{\delta}$. Hence, X_{δ} is an ideal of $X \times X$.

Lemma 3.1. Let $I_{1} \subset I_{2} \subset \cdots \subset I_{n} \subset \cdots$ be a strictly ascending sequence of ideals of $X \times X$ and $\left(c_{n}\right)$ be a strictly decreasing sequence in $(0,1)$. Define a bi-fuzzy set δ of X by

$$
\delta(x, y)= \begin{cases}0, & \text { if }(x, y) \notin I_{n} \text { for any } n \in \mathbb{N} \\ c_{n}, & \text { if }(x, y) \in I_{n} \text { for the least } n \in \mathbb{N} .\end{cases}
$$

Then δ is a bi-fuzzy ideal of X.
Proof: Let $I=\cup_{n \in \mathbb{N}} I_{n}$. Then I is an ideal of $X \times X$. By the definition of δ, we get $\delta(0,0)=c_{1} \geq \delta(x, y)$ for all $(x, y) \in X \times X$, i.e., (fd1) holds. Let $(x, y),(u, v) \in X \times X$. We separate it into 2 cases.

If $(x, y) \notin I$, then $(x * u, y * v) \notin I$ or $(u, v) \notin I$. Thus, $\delta(x, y)=0=\min \{\delta(x * u, y *$ $v), \delta(u, v)\}$.
If $(x, y) \in I_{n}$ for the least $n \in \mathbb{N}$, then $(x * u, y * v) \notin I_{n-1}$ or $(u, v) \notin I_{n-1}$. That is, $\delta(x * u, y * v) \leq c_{n}$ or $\delta(u, v) \leq c_{n}$. Thus, $\delta(x, y)=c_{n} \geq \min \{\delta(x * u, y * v), \delta(u, v)\}$. Hence, δ is a bi-fuzzy ideal of X.
3.2. Homomorphic properties of bi-fuzzy ideals. Let $\left(A, *_{A}, 0_{A}\right)$ and $\left(B, *_{B}, 0_{B}\right)$ be d-algebras. A mapping $f: A \rightarrow B$ is called a homomorphism from A into B if $f\left(x *_{A} y\right)=f(x) *_{B} f(y)$ for all $x, y \in A$. The following results give the homomorphic properties of bi-fuzzy ideals.

Theorem 3.3. Let X and Y be d-algebras, $f: X \times X \rightarrow Y$ a homomorphism and γ a fuzzy ideal of Y. Then $f^{+--}(\gamma)$ is a bi-fuzzy ideal of X.

Proof: Let $(x, y) \in X \times X$. Then $f(x, y) \in Y$. Since γ is a fuzzy ideal of Y, we have $\left(f^{+--}(\gamma)\right)(0,0)=\gamma(f(0,0))=\gamma(0) \geq \gamma(f(x, y))=\left(f^{+--}(\gamma)\right)(x, y)$. Thus, $f^{+--}(\gamma)$ satisfies (fd1). Next, let $(x, y),(u, v) \in X \times X$. Since γ is a fuzzy ideal of Y, we have $\gamma(f(x, y)) \geq \min \left\{\gamma\left(f(x, y) *_{Y} f(u, v)\right), \gamma(f(u, v))\right\}=\min \{\gamma(f((x, y) \circledast(u, v))), \gamma(f(u, v))\}$. This means that $\left(f^{+--}(\gamma)\right)(x, y) \geq \min \left\{\left(f^{+--}(\gamma)\right)((x, y) \circledast(u, v)),\left(f^{*--}(\gamma)\right)(u, v)\right\}$. Hence, $f^{+--}(\gamma)$ is a bi-fuzzy ideal of X.

Lemma 3.2. Let X and Y be d-algebras, $f: X \times X \rightarrow Y$ a homomorphism and δ a bi-fuzzy ideal of X. If δ is constant on $\operatorname{ker}(f)$, then $f^{+--}(f(\delta))=\delta$.

Proof: Suppose that δ is constant on $\operatorname{ker}(f)=f^{+--}(0)$. Let $(x, y) \in X \times X$. Then there exists $z \in Y$ such that $f(x, y)=z$. Thus,

$$
\left(f^{+--}(f(\delta))\right)(x, y)=(f(\delta))(f(x, y))=(f(\delta))(z)=\sup \left\{\delta(u, v) \mid(u, v) \in f^{+--}(z)\right\}
$$

Let $(u, v) \in f^{+--}(z)$. Then $f(x, y)=f(u, v)$. This implies that $f((u, v) \circledast(x, y))=0_{Y}$, i.e., $(u, v) \circledast(x, y) \in \operatorname{ker}(f)$. Thus, $\delta((u, v) \circledast(x, y))=\delta(0,0)$. Therefore,

$$
\delta(u, v) \geq \min \{\delta(u * x, v * y), \delta(x, y)\}=\min \{\delta(0,0), \delta(x, y)\}=\delta(x, y)
$$

Similarly, we get $\delta(x, y) \geq \delta(u, v)$. Hence, $\delta(x, y)=\delta(u, v)$. Thus,

$$
\left(f^{+--}(f(\delta))\right)(x, y)=\sup \left\{\delta(u, v) \mid(u, v) \in f^{+--}(z)\right\}=\delta(x, y)
$$

Hence, $f^{+--}(f(\delta))=\delta$.
Theorem 3.4. Let X and Y be d-algebras, $f: X \times X \rightarrow Y$ a subjective homomorphism and δ a bi-fuzzy ideal of X such that $X_{\delta} \supseteq \operatorname{ker}(f)$. Then $f(\delta)$ is a fuzzy ideal of Y.

Proof: Since δ is a bi-fuzzy ideal of X and $(0,0) \in f^{+--}\left(0_{Y}\right)$, we have

$$
(f(\delta))\left(0_{Y}\right)=\sup \left\{\delta(u, v) \mid(u, v) \in f^{t--}\left(0_{Y}\right)\right\}=\delta(0,0) \geq \delta(x, y)
$$

for all $(x, y) \in X \times X$. Thus,

$$
(f(\delta))\left(0_{Y}\right)=\sup \left\{\delta(x, y) \mid(x, y) \in f^{+--}(z)\right\}=(f(\delta))(z)
$$

for all $z \in Y$, that is, $f(\delta)$ satisfies (fi1). Next, suppose that there exist $z, w \in Y$ such that $f(\delta)(z)<\min \left\{f(\delta)\left(z *_{Y} w\right), f(\delta)(w)\right\}$. Since f is subjective, there exist $(x, y),(u, v) \in$ $X \times X$ such that $f(x, y)=z$ and $f(u, v)=w$. Thus, $(f(\delta))(f(x, y))<\min \{(f(\delta))(f(x *$ $u, y * v)),(f(\delta))(f(u, v))\}$. This implies that $\left(f^{+--}(f(\delta))\right)(x, y)<\min \left\{\left(f^{+--}(f(\delta))\right)(x * u, y *\right.$ $\left.v),\left(f^{\star--}(f(\delta))\right)(u, v)\right\}$. Since $X_{\delta} \supseteq \operatorname{ker}(f)$, we have δ is constant on $\operatorname{ker}(f)$. By Lemma 3.2, we have $\delta(x, y)<\min \{\delta(x * u, y * v), \delta(u, v)\}$. It is a contradiction to the fact that δ is a bi-fuzzy ideal of X. Thus, $f(\delta)$ satisfies (fi2). Hence, $f(\delta)$ is a fuzzy ideal of Y.
4. Conclusion and Discussion. In a d-algebra, we have given the properties of a normal ideal. A normal ideal can also be used to generate the quotient skew-edge d-algebra. Following that, a bi-fuzzy subalgebra and ideal of a d-algebra was introduced. It is possible to get their properties. Finally, the homomorphic properties of a bi-fuzzy ideal are also given. A topic of interest and research in algebra, such as $\mathrm{BF} / \mathrm{BO} / \mathrm{BM} / \mathrm{BH} / \mathrm{BG}$-algebras, is examining the properties of a normal ideal and a bi-fuzzy ideal.

Acknowledgment. The authors would like to thank the anonymous referee who provided useful and detailed comments on a previous/earlier version of the manuscript.

REFERENCES

[1] K. Iséki, An algebra related with a propositional calculus, Proc. of Japan Acad., vol.42, no.1, pp.2629, 1966.
[2] K. Iséki and S. Tanaka, An introduction to theory of BCK-algebra, Math. Japon., vol.23, pp.1-26, 1978.
[3] K. Iséki, On BCI-algebras, Math. Semin. Notes, vol.8, pp.125-130, 1980.
[4] Q. P. Hu and X. Li, On BCH-algebras, Math. Semin. Notes, vol.11, no.2, pp.313-320, 1983.
[5] R. K. Bandru and N. Rafi, On G-algebras, Sci. Magna, vol.8, no.3, pp.1-7, 2012.
[6] J. Neggers and H. S. Kim, On B-algebras, Mat. Vesnik, vol.54, pp.21-29, 2002.
[7] J. Neggers and H. S. Kim, On d-algebras, Math. Slovaca, vol.49, pp.19-26, 1999.
[8] J. Neggers, Y. B. Jun and H. S. Kim, On d-ideals in d-algebras, Math. Slovaca, vol.49, no.3, pp.243251, 1999.
[9] M. Akram and K. H. Dar, On fuzzy d-algebras, J. Math., Punjab Univ., vol.37, pp.61-76, 2005.
[10] R. Muthuraj, M. Sridharan, M. S. Muthuraman and P. M. Sitharselvam, Anti Q-fuzzy BG-ideals in BG-algebra, Int. J. Comput. Appl., vol.975, 8887, 2010.
[11] S. M. Khalil, New category of the fuzzy d-algebras, J. Taibah Univ. Sci., vol.12, no.2, pp.143-149, 2018.
[12] G. Dymek and A. Walendziak, (Fuzzy) ideals of BN-algebras, Sci. World J., vol.2015, Article ID 925040, 2015.
[13] S. S. Ahn and K. S. So, On (complete) normality of fuzzy d-ideals in d-algebras, Sci. Math. Jpn., vol.68, no.3, pp.345-352, 2008.
[14] N. O. Al-Shehrie, On fuzzy dot d-ideals of d-algebras, Adv. Algebra, vol.2, no.1, pp.1-8, 2009.
[15] Y. B. Jun, S. S. Ahn and K. J. Lee, Falling d-ideals in d-algebras, Discrete Dyn. Nat. Soc., vol.2011, Article ID 516418, 2011.
[16] S. R. Barbhuiya and K. D. Choudhury, $(\epsilon, \in \vee q)$-fuzzy ideals of d-algebra, Int. J. Math. Trends Technol., vol.9, no.1, pp.16-26, 2014.
[17] S. V. D. M. Rupa, V. L. Prasannam and Y. Bhargavi, Bipolar valued fuzzy d-algebra, Adv. Math., Sci. J., vol.9, no.9, pp.6799-6808, 2020.
[18] S. V. D. M. Rupa, V. L. Prasannam and Y. Bhargavi, Bipolar valued fuzzy d-ideals of d-algebra, J. Inf. Comput. Sci., vol.10, no.9, pp.1-7, 2020.
[19] S. V. D. M. Rupa, V. L. Prasannam and Y. Bhargavi, Homomorphism on bipolar anti fuzzy d-ideals of d-algebra, AIP Conf. Proc., vol.2375, 020026, 2021.
[20] N. Kandaraj and M. Chandramouleeswaran, On left F-derivations of d-algebras, Int. J. Math. Arch., vol.3, no.11, pp.3961-3966, 2012.
[21] P. Muangkarn, C. Suanoom, P. Pengyim and A. Iampan, f_{q}-derivations of B-algebras, J. Math. Comput. Sci., vol.11, no.2, pp.2047-2057, 2021.

