
ICIC Express Letters
Part B: Applications ICIC International c⃝2023 ISSN 2185-2766
Volume 14, Number 12, December 2023 pp. 1295–1305

SMART SLEEP MONITORING SYSTEM
BASED ON MICROSERVICES ARCHITECTURE

AND EDGE COMPUTING

David Jayaatmaja1, Stanley Dave Teherag1, Nico Surantha1,2,∗

and Sani Muhamad Isa1

1Computer Science Department, BINUS Graduate Program – Master of Computer Science
Bina Nusantara University

Jl. K. H. Syahdan No. 9, Kemanggisan, Palmerah, Jakarta 11480, Indonesia
{david037; stanley.teherag }@binus.ac.id; sisa@binus.edu

∗Corresponding author: nico.surantha@binus.ac.id

2Department of Electrical, Electronic and Communication Engineering
Faculty of Engineering
Tokyo City University

Setagaya-ku, Tokyo 158-8557, Japan

Received February 2023; accepted May 2023

Abstract. Internet of Things (IoT) based sleep monitoring is improving and can be
found easily nowadays, but it depends on a good network environment to work properly. In
this study, an edge computing-based smart sleep monitoring system was built by migrating
a cloud computing-based smart sleep monitoring system into an edge device. The system
was built based on the edge computing concept, which is built inside the edge device
and based on microservices architecture. The input for the cloud computing-based sleep
monitoring system was Electrocardiogram (ECG) data. The experimental result indicates
that the average latency and response time on an edge computing-based system decreased
by 27.04% and 33.81% respectively, compared to the cloud computing-based system, but
the edge computing-based system’s average throughput was slower by 15.08% compared
to the cloud computing-based system.
Keywords: Internet of Things, Microservices, Health monitoring, Edge computing,
Smart sleep monitoring

1. Introduction. There are lots of studies that propose the definition of health in this
era, for example, [1-3]. However, among all of them, World Health Organization (WHO)
stated a definition that is the foundation and brings huge impact for the development
of medical studies in 1948. “A state of complete physical, mental and social well-being
and not merely the absence of disease or infirmity” [4] is the definition that WHO stated.
Society highly valued and prioritized health as an outcome and a state of being [5]. It is an
asset that people need for contributing in society [6]. Especially in an era of diseases, many
people start to realize that they need to pay more attention to their health. Sleep is very
important for health and well-being in human’s life. It can reduce the risk of accidents
and injuries caused by sleepiness and fatigue. A healthy sleep needs to fulfill certain
requirements, such as sufficient sleep duration, good sleep timing, regularity of sleep,
and absence of sleep disorders [7,8]. There are already many sleep monitoring systems
developed for this problem, but most of them are cloud-based systems that depend on a
good network environment, for example, [9-12]. With the current advancements in sensor
technology and information technology, it is possible to monitor someone’s sleep data
accurately by using the Internet of Things (IoT) that included sensors, cloud and mobile
technologies. Many IoT systems used cloud to perform calculations and other processes

DOI: 10.24507/icicelb.14.12.1295

1295



1296 D. JAYAATMAJA, S. D. TEHERAG, N. SURANTHA AND S. M. ISA

that lead to slower response time because of cloud computing’s delay on a large-scale
transmission and demanding requirements for load and process capacity on cloud [13].
When it comes to someone’s life, accuracy is not the only crucial factor. In the medical
world, just a split-second difference can lead to very different results. That is why it
should not only be accurate, but it also needs to be able to work on all places including
places that have poor network environment. To do that, there are some requirements that
need to be fulfilled such as the latency, throughput, and response time. Processing the
collected data locally can reduce the computational load on the central cloud server and
is particularly useful in situations where time delay is critical, such as in healthcare, since
it reduces the need to transmit large amounts of data over the network [14]. The aims for
this study are
1) IoT architecture for sleep monitoring system that runs on edge device;
2) Sleep monitoring system that runs on edge device;
3) Performance analysis of edge computing-based sleep monitoring system.
In this study, the focus is on improving the throughput and reducing the response time

and latency of the healthcare monitoring system, while ensuring the privacy of users’
sensitive data such as sleep data [15]. This will be achieved by using a combination of cloud
computing and edge computing. The computational process will be carried out on edge
devices, making it possible to perform computations even in poor network environments.
Stable performance in latency, response time, and throughput are aimed to be achieved

in this work. The benefit from the proposed system for health monitoring providers is
that they can provide a service that can work well on poor network environments [16],
especially for services that are sensitive to latency and response time [17]. The structure of
this paper is organized as follows. Section 2 provides works that have been done previously
that have related subject on health monitoring, IoT, edge computing and cloud computing.
The proposed architecture and cloud-to-edge migration steps are presented on Section
3. Section 4 presents the performance analysis of the proposed architecture. Section 5
provides conclusion and future works that can be done.

2. Related Work. Several previous works related to healthcare monitoring systems are
discussed, including a cloud-based sleep monitoring system proposed by Surantha et al. [9],
the use of edge computing to capture human states during a pandemic [19], a system
that combines an Arduino UNO-based system with cloud computing for critical care of
COVID-19 patients [20], a cloud-based model for monitoring student health [21], and the
use of deep learning and cloud computing to predict heart disease from sensor data and
medical records [22].

3. Proposed Method. The purpose of this study is to migrate a cloud-based sleep
monitoring system from [9] with architecture shown in Figure 1 to become an edge-based
sleep monitoring system. An edge device is used to implement the edge computing for
the monitoring system. Several possible edge devices were compared in [23] which are
Raspberry Pi, Jetson Nano, and Jetson TX2. In this study, Jetson Nano was used as
the edge device considering that it has much lower cost than Jetson TX2 and higher
performance than Raspberry Pi [23]. Jetson Nano that was used as the edge device had
specifications as the following: 128-core Maxwell on GPU, Quad-core ARM A57 @ 1.43
GHz on CPU, 4 GB 64-bit LPDDR4 25.7 GB/s on RAM, 64 GB for storage, and TP
Link TLWN725N 150 Mbps for Wi-Fi adapter dongle. The edge-based sleep monitoring
system architecture is shown in Figure 2. Computing services and message broker that
were inside cloud server are moved to inside of edge device. The cloud-based services and
edge computing-based services have different requirements that need to be fulfilled.



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.14, NO.12, 2023 1297

Table 1. The summary of related work of the system architecture

Source Proposed method Result

[22] Smart healthcare system using
ensemble deep learning and fea-
ture fusion approaches

Creat a healthcare system that has increased ac-
curacy for the prediction but with all of those
privacy data being computed in cloud server, it
is vulnerable from the attacks and it also relies on
good network because it needs to be connected
to the cloud server.

[20] Real-time smart healthcare uti-
lizing important measured val-
ues for critical care using Ar-
duino UNO-based system and
cloud computing

Creat a system that can measure values accu-
rately and dashboard that can show the real-time
result, but it lacks on security by computing pri-
vacy medical record on cloud server and also it
needs good network environment to connect to
the cloud server.

[19] Internet of Medical Things
(IoMT) that uses edge deep
learning stack design with sys-
tem architecture that initial-
izes modules for each input that
needs to be processed

Creat a system that achieved user data privacy,
security, and low-latency by using edge-GPU ar-
chitecture.

[21] IoT-based student healthcare
monitoring model that checks
student vital signs and detects
biological and behavioral chan-
ges via smart healthcare tech-
nologies

Creat a healthcare system that can predict stu-
dent’s condition with 99.1% accuracy by using
Support Vector Machine (SVM). It also already
implemented variety of security protocols by us-
ing third-party encryption, user authentication
and credential mapping. However, this system
relies on a good network environment because
it needs to be connected to the cloud server to
be able to do the computation.

[9] IoT platform for sleep monitor-
ing based on event-driven and
microservice architecture

• Increase throughput by 92.59% and decrease
response time 75.48% compared to monolith ar-
chitecture.
• Increase throughput by 34.76% and decrease
response time 55.85% compared to microservices
without event-driven architecture.
• 7.81% and 17.3% slower for data processing
from raw ECG data into sleep quality data.

To migrate the cloud-based services into edge computing-based services so it can run
at the edge device, the following steps were taken (as shown in Figure 3).

1) Build the sleep monitoring system project. In this study .jar files were created for each
service because we used Java as programming language.

2) Build the docker images of the services based on the image architecture that is com-
patible with the edge device so that it can be run inside the edge device’s container.
In this study, Jetson Nano was used as the edge device and Jetson Nano’s Operating
System (OS) is Linux [24]; therefore, arm64 image architecture was used because it is
compatible with Jetson Nano [25].

3) Run arm64-based message broker inside the container of the edge device for the ser-
vices’ communication intermediary.

4) Run all docker images of the services inside the edge device’s container.



1298 D. JAYAATMAJA, S. D. TEHERAG, N. SURANTHA AND S. M. ISA

SSCS: Sleep Stage Classification Service

SQQS: Sleep Quality Quantification Service

Figure 1. Existing method

SSCS: Sleep Stage Classification Service

SQQS: Sleep Quality Quantification Service

Figure 2. Proposed method

Figure 3. Services setup flowchart



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.14, NO.12, 2023 1299

Along with the changes of the sleep monitoring system architecture, the system compu-
tational processes flow also changed compared to the cloud-based sleep monitoring system.
The goal is to perform the data processing on edge devices and only send the essential
information which is the computational results to the database. A comparison of the two
systems is illustrated by the process flowcharts presented in Figure 4 and Figure 5, for the
cloud-based and edge-based systems, respectively. The proposed computational process
flowchart of the system can be described as follows:

1) The sensor data are sent using Wi-Fi to the edge device (locally);
2) The services that run inside the edge device process the sensor data (data preprocess-

ing, data analytics);
3) The computational results stored inside the database in cloud server using the Internet

(globally).

Figure 4. System computational processes by [9]

Figure 5. Proposed system computational processes

4. Results and Discussion. The evaluation of the performance of the proposed edge
computing-based sleep monitoring system with microservices architecture was done by
measuring three metrics which are the latency, response time, and throughput and then
compare it with the cloud computing-based sleep monitoring system that run in google
cloud with 2vCPU, 4GB RAM, and E-2 Medium type compute engine. The measurements
were done using the JMeter [26] as follows.

4.1. Latency and response time.

4.1.1. Evaluation scenario. There is a slight difference between latency and response time;
latency is measured from the time differences between just before sending the request and
after the first response received. On the other hand, response time is measured from the
time differences between just before sending the request and after all responses received.
These two metrics can be evaluated in the same evaluation scenario. The system topology
for the cloud system and edge system evaluation is shown in Figures 6 and 7, respectively.
The evaluation scenario was done as follows.

1) Apache JMeter was used to simulate the sensors’ request.
2) Assuming there was only one user for one edge device, one request was sent on each

testing.
3) For cloud system, the request was sent using Internet (globally) and for edge system,

the request was sent using Wi-Fi (locally).
4) The testing was done 50 times for each evaluation.



1300 D. JAYAATMAJA, S. D. TEHERAG, N. SURANTHA AND S. M. ISA

Figure 6. System topology on cloud for evaluation

Figure 7. System topology on edge for evaluation

4.1.2. Evaluation result.
• Latency
The average latency for a request to reach the sensor and the first received response

at the sensor was 43.2 milliseconds for cloud system and 31.52 milliseconds for edge
system. Maximum latency achieved at 50 milliseconds which occurred in 2 percent of
total request for edge system; on the other hand, cloud system achieved 69 milliseconds
maximum latency, and 6.26 and 58.18 for standard deviation for edge and cloud system
respectively shown in Figure 8. Cloud system’s standard deviation was high because of
two anomaly latency occurred that has significant difference. The evaluation shows that
the edge system has lower average on latency which means edge system was quicker

Figure 8. The average and standard deviation on latency



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.14, NO.12, 2023 1301

Figure 9. The average and standard deviation on response time

Figure 10. The evaluation of latency on 50 requests

on responding requests. The evaluation’s result chart is shown in Figure 10. From the
evaluation testing, we found that request sent cannot be above 50 because Jetson Nano
cannot handle too many requests at a short time window.

• Response Time
The average response time for a request to reach the service in the edge system un-

til receiving all the response in the sensor was 33.18 milliseconds and 44.4 milliseconds
in cloud system. Maximum response time achieved at 59 milliseconds which occurred in
less than 3 percent of total request on the other hand cloud system achieved 79 millisec-
onds maximum response time, and 7.65 and 58.32 for standard deviation for edge and
cloud system respectively shown in Figure 9. Cloud system’s standard deviation was high
because of two anomaly response time occurred that has significant difference. In this
result, the response time can be affected by the application load. It can be lower if the
environment of the application is split between each service.

The evaluation results show that the edge system has a lower average response time,
indicating that it is quicker at responding to requests. The response time evaluation is
presented in Figure 11. However, we also observed that if the number of requests exceeds



1302 D. JAYAATMAJA, S. D. TEHERAG, N. SURANTHA AND S. M. ISA

Figure 11. The evaluation of response time on 50 requests

50, the response time tends to increase due to the limited computing power of Jetson
Nano.

4.2. Throughput.

4.2.1. Evaluation scenario. Throughput is measured from how many requests can be han-
dled at a time. In this study, the requests number was converted in Kilobyte (KB) and
second (s) was used as the unit of time. Figure 12 and Figure 13 show the system topology
for throughput’s evaluation scenario on cloud system and edge system, respectively. The
evaluation scenario was done as follows.

1) Apache JMeter was used to simulate the sensors’ request.
2) Assume there was 5 request that was sent from one user in one edge device.
3) For cloud system, the request was sent using Internet (globally) and for edge system,

the request was sent using Wi-Fi (locally).
4) The testing was done 30 times for each evaluation.

Figure 12. System topology on cloud for evaluation

4.2.2. Evaluation result. The average throughput for 5 requests at a time window was 25.2
KB/s for edge system and 29 KB/s for cloud system. Maximum throughput that had
been achieved on edge system was 30.9 KB/s with minimum throughput of 10.8 KB/s; on
the other hand, cloud system achieved 43.9 KB/s with minimum throughput of 4.3 KB/s.
Each of these results was affected with the condition of high resource usage. The average
and standard deviation chart is shown in Figure 14 and the evaluation chart is shown in
Figure 15. The standard deviation for edge system was 4.44 and 8.69 for cloud system; it



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.14, NO.12, 2023 1303

Figure 13. System topology on edge for evaluation

Figure 14. The average and standard deviation of throughput

Figure 15. The evaluation of throughput on 30 iterations

indicates that the throughput on cloud system was more variative or unstable. From the
evaluation testing we found that if the request was above 5, the container may encounter
errors and shut down if it receives too many requests within a short time window, as the
edge computing power may not be sufficient to handle the load.

5. Conclusions. This study provides a study for edge computing-based IoT architec-
ture for sleep monitoring system by migrating a cloud computing sleep monitoring to the
edge using Jetson Nano to check if the edge devices are able to compute near the source
of the data. The system was built based on microservices architecture which made the



1304 D. JAYAATMAJA, S. D. TEHERAG, N. SURANTHA AND S. M. ISA

services can be deployed separately, and the system was also built using edge comput-
ing concept where the services were deployed inside of a container that was inside of an
edge device with compatible architecture which is the arm64 architecture. The result data
shows that the proposed edge computing-based sleep monitoring system with microser-
vices architecture has lower latency and response time than the cloud computing-based
sleep monitoring system designed by [9], but because of the limitation on the edge device’s
resource the throughput is lower than the cloud computing-based system. Therefore, the
proposed system can be a solution for real-time sleep monitoring applications that require
low latency and fast response time. After analyzing the performance and metrics data, it
was found that combining edge computing with cloud computing can provide better re-
sults for all metrics. There are potential areas for improvement in this study, and further
exploration of the potential of cloud edge computing is encouraged.

Acknowledgment. This publication is fully supported by Bina Nusantara University.

REFERENCES

[1] J. Bircher, Towards a dynamic definition of health and disease, Medicine, Health Care and Philoso-
phy, vol.8, no.3, pp.335-341, 2005.

[2] M. Huber, J. A. Knottnerus, L. Green, H. Van Der Horst, R. A. Jadad, D. Kromhout, H. Smid et
al., How should we define health?, BMJ, vol.434, DOI: 10.1136/bmj.d4163, 2011.

[3] F. Leonardi, The definition of health: Towards new perspectives, International Journal of Health
Services, vol.48, no.4, pp.735-748, 2018.

[4] World Health Organization, Basic Documents, 2020.
[5] S. Dunlop, K. Swales and K. Trebeck, Oxfam Humankind Index: The New Measure of Scotland’s

prosperity, Oxfam GB, 2012.
[6] A. Sen, Development as freedom (1999), in The Globalization and Development Reader: Perspectives

on Development and Global Change, J. T. Roberts, A. B. Hite and N. Chorev (eds.), Wiley, 2014.
[7] K. Ramar, R. K. Malhotra, K. A. Carden et al., Sleep is essential to health: An American Academy

of Sleep Medicine position statement, Journal of Clinical Sleep Medicine, vol.17, no.10, pp.2115-2119,
2021.

[8] Consensus Conference Panel, N. F. Watson, M. S. Badr et al., Joint consensus statement of the
American Academy of Sleep Medicine and Sleep Research Society on the recommended amount
of sleep for a healthy adult: Methodology and discussion, Sleep, vol.38, no.8, pp.1161-1183, DOI:
10.5665/sleep.4886, 2015.

[9] N. Surantha, O. K. Utomo, E. M. Lionel, I. D. Gozali and S. M. Isa, Intelligent sleep monitoring
system based on microservices and event-driven architecture, IEEE Access, vol.10, pp.42069-42080,
2022.

[10] N. Surantha, O. K. Utomo, M. I. Sani and B. Soewito, IoT system for sleep quality monitoring using
ballistocardiography sensor, International Journal of Advanced Computer Science and Applications,
vol.11, no.1, 2020.

[11] E. Simanjuntak and N. Surantha, Multiple time series database on microservice architecture for
IoT-based sleep monitoring system, Journal of Big Data, vol.9, no.1, pp.1-19, 2022.

[12] K. Rajguru, P. Tarpe, V. Aswar, K. Bawane, S. Sorte and R. Agrawal, Design and implementation
of IoT based sleep monitoring system for insomniac people, 2022 2nd International Conference on
Artificial Intelligence and Smart Energy (ICAIS), pp.1215-1221, 2022.

[13] H. Ning, Y. Li, F. Shi and L. T. Yang, Heterogeneous edge computing open platforms and tools for
Internet of Things, Future Generation Computer Systems, vol.106, pp.67-76, 2020.

[14] K. Chung and H. Yoo, Edge computing health model using P2P-based deep neural networks, Peer-
to-Peer Networking and Applications, vol.13, no.2, pp.694-703, 2020.

[15] T. Lähderanta, T. Leppänen, L. Ruha et al., Edge computing server placement with capacitated
location allocation, Journal of Parallel and Distributed Computing, vol.153, pp.130-149, 2021.

[16] H. Li, J. Zhang and L. Zhao, Vehicular high-definition maps cache based on dew computing, 2022
9th International Conference on Dependable Systems and Their Applications (DSA), pp.1067-1068,
2022.

[17] X. Zhang, Y. Liu, Z. Cao, H. Zhou and F. Zhang, An efficient service migration model based on im-
proved genetic algorithm in mobile edge computing environment, International Journal of Innovative
Computing, Information and Control, vol.17, no.4, pp.1401-1419, DOI: 10.24507/ijicic.17.04.1401,
2021.



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.14, NO.12, 2023 1305

[18] O. K. Utomo, N. Surantha, S. M. Isa and B. Soewito, Automatic sleep stage classification using
weighted ELM and PSO on imbalanced data from single lead ECG, Procedia Computer Science,
vol.157, pp.321-328, 2019.

[19] A. M. Rahman and S. M. Hossain, An Internet-of-Medical-Things-enabled edge computing frame-
work for tackling COVID-19, IEEE Internet of Things Journal, vol.8, no.21, pp.15847-15854, 2021.

[20] M. M. Khan, S. Mehnaz, A. Shaha, M. Nayem and S. Bourouis, IoT-based smart health monitoring
system for COVID-19 patients, Computational and Mathematical Methods in Medicine, 2021.

[21] A. Souri, Y. M. Ghafour, M. A. Ahmed, F. Safara, A. Yamini and M. Hoseyninezhad, A new machine
learning-based healthcare monitoring model for student’s condition diagnosis in Internet of Things
environment, Soft Computing, vol.24, no.22, pp.17111-17121, 2020.

[22] F. Ali, S. El-Sappagh, R. S. Islam, D. Kwak, A. Ali, M. Imran and K.-S. Kwak, A smart healthcare
monitoring system for heart disease prediction based on ensemble deep learning and feature fusion,
Information Fusion, vol.63, pp.208-222, 2020.

[23] A. A. Süzen, B. Duman and B. Şen, Benchmark analysis of Jetson TX2, Jetson Nano and Raspberry
Pi using deep-CNN, 2020 International Congress on Human-Computer Interaction, Optimization
and Robotic Applications (HORA), pp.1-5, 2020.

[24] A. Basulto-Lantsova, J. A. Padilla-Medina, F. J. Perez-Pinal and A. I. Barranco-Gutierrez, Per-
formance comparative of OpenCV Template Matching method on Jetson TX2 and Jetson Nano
developer kits, 2020 10th Annual Computing and Communication Workshop and Conference (CC-
WC), pp.812-816, 2020.

[25] I. Rasmussen, S. Kvalsvik, P. A. Andersen, T. N. Aune and D. Hagen, Development of a novel object
detection system based on synthetic data generated from unreal game engine, Applied Sciences,
vol.12, no.17, 8534, 2022.

[26] APACHE Software Foundation, Apache JMeter Glossary, http://jmeter.apache.org/usermanual/
glossary.html, 2013.


