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Abstract. The main goal of this study is to elucidate the theoretical approximation
capability of neural networks with time-variant weight. In this paper, we show that the
approximation capability of the time-variant network can be extended to time-variant dy-
namical systems. Moreover, the algorithm is designed according to the expression form of
2-D continuous-discrete system. Finally, one simulation of time-variant neural networks
is given to shown effectiveness of the obtained results.
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1. Introduction. In recent years, considerable attention has been paid to the applica-
tion of neural networks in the modeling and identification of dynamic processes. This
focus is mostly due to the increasing demand for system identification [1-4], intelligent
control systems [5-7], etc. There are two types of connections in neural networks. Neural
networks with only feed-forward connections are called feed forward networks, and neural
networks with arbitrary connections are often called recurrent neural networks. Clarify-
ing the theoretical capabilities of these neural networks provides important information
for learning algorithms and their applications [8-12]. In terms of the theoretical capabil-
ity of the recurrent neural networks, the approximation possibility to several dynamical
systems has been considered. A given trajectory of a dynamical system can be approxi-
mately realized by an appropriate continuous time recurrent network. The similar results
of the discrete time recurrent network for discrete systems and continuous time recurrent
network for non-autonomous systems have been shown [13-16].

The objective of this manuscript is to study the approximation capability of time-
variant neural networks. It is shown that the approximation capability is extended to
time-variant dynamical systems. The results presented in this paper confirm the use of
time-variant neural networks approach to the time-variant dynamical system. The rest of
this paper is organized as follows. Theoretical proofs of approximation capability of time-
variant neural networks are presented in Section 2. Algorithm based on time-varying
neural network is designed in Section 3. In Section 4, the simulation results are obtained.
A brief discussion and summary concerning the main results are provided in Section 5.

2. Approximation Capability of Time-Variant Neural Networks. In practical
situations, there exist many nonlinear time-variant systems. So in this section, based on
the continuous neural networks, the time-variant neural networks that can approximate
any nonlinear time-varying systems are studied.
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Consider the neural networks with time variant weight:

∂z(x, t)

∂t
= αz(x, t) +W (t)σ(z(x, t)) (1)

where σ(·) is a C1-sigmoid nonlinear activation function, z ∈ RL and α is a fixed constant,
chosen as 0 < α < 1. W (t) is a weight matrix. We will show that time-variant neural
networks in the form of Equation (1) with an arbitrary positive small α are capable of
approximating the dynamics of a time-variant nonlinear system. The following lemma is
the basis of the approximation of time-variant nonlinear systems using neural networks.

Lemma 2.1. Let the continuous time-variant mapping relation be f(x, t) : Ω× [0, T ] → R
and set the neural network approximation accuracy εlf > 0. For an arbitrary ti ∈ [0, T ],
there exists f(x, ti) = fi(x); select the neural network basis function σi(x) : Ω → RL, the
weight vector W ∗

i ∈ Rli and an arbitrary positive small α (α is an n×n diagonal matrix),
which satisfies the approximation accuracy. In this case, for any continuous time-variant
weight vector W ∗(t) : [0, T ] → Rli that meets W ∗(ti) = W ∗

i , there exists δi > 0, such that,
for all |t− ti| < δi

f(x, t) = −αx(t) +W (t)σi(x(t)) + ε(x, t)

holds.

Proof: For fixed ti ∈ [0, T ], there exists a fixed continuous function f(x, ti) = fi(x).
Hence, there exists an optimal time-variant weight function vector W ∗

i ∈ Rli and a neural
network basis function σi(x) : Ω → Rli such that

fi(x) = W ∗
i σi(x) + εi(x)

where |εi(x)| < εlf , and li is the node number of the corresponding neural network at
this moment. Let f(x, t) be a nonlinear function for each t ∈ [0, T ], without considering
the global approximation accuracy, for any W ∗(ti) = W ∗

i , there exists a continuous time-
variant weight vector function W ∗(t) : [0, T ] → Rli such that

f(x, t) = W ∗(t)σi(x) + ε(x, t) ∀x ∈ Ω, t ∈ [0, T ]

where ε(x, t) is the network reconstruction error and ε(x, ti) = εi(x).
Let F (x, t) = −αx(t) + W ∗(t)σi(x(t)) + ε(x, t) for ∀x ∈ Ω and |α(t)| < εα. Next, we

need to consider that within the scope of t, the inequality maxx∈Ω |ε(x, t)| < εlf holds.
Based on the definition of the network reconstruction error, we have

ε(x, t) = F (x, t) + αx−W ∗(t)σi(x) = F (x, t) + αx− f(x, ti)−W ∗(t)σi(x) (2)

Take fi(x) = W ∗
i (t)σi(x) + εi(x) into (2), and take the absolute values of both sides.

|ε(x, t)| ≤ |F (x, t)− fi(x)|+ ∥W ∗(t)−W ∗
i (t)∥∥σi(x)∥+ |εi(x)|+ |αx| (3)

Because F (x, t) is uniformly continuous, by the definition of uniform continuity, for an
arbitrary εf > 0, there exists δf > 0 such that for ∥t− ti∥ < δf

|F (x, t)− fi(x)| < εf

holds. Similarly, because W ∗(t) is continuous, for an arbitrary positive εf > 0, there
exists εW > 0 such that for all ∥t− tf∥ < δW , ∥W ∗(t)−W ∗

i ∥ < εW . In view of the basis
function σi(x) being a Gaussian model and the finite dimension for each element in [0, 1],
there exists σmax(x) > 0 such that ∥σi(x)∥ ≤ σmax(x). Considering all of the elements as
mentioned above, take into Equation (3)

|ε(x, t)| ≤ |F (x, t)− fi(x)|+ ∥W ∗(t)−W ∗
i (t)∥∥σmax(x)∥+max

x∈Ω
|εi(x)|+ |αx| (4)
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Based on the previous analysis, we can adjust the neighboring domain of ti to make
|F (x, t)− fi(x)| and ∥W ∗(t)−W ∗

i (t)∥ sufficiently small, where σmax(x) is a fixed value
and maxx∈Ω |εi(x)| < εlf . Therefore, there must be a nearby neighborhood of ti such that

|F (x, t)− fi(x)|+ ∥W ∗(t)−W ∗
i (t)∥∥σmax(x)∥+max

x∈Ω
|εi(x)|+ |αx| < εlf (5)

Defining E = {(εlf , εW , εα)|εlf > 0, εW > 0, εα > 0, εlf + εWσmax + εα = εlf −
maxx∈Ω |εi(x)|}, the meaning of E can satisfy the inequality in Equation (4) such that
|f(x, t)− fi(x)| and ∥W ∗(t)−W ∗

i ∥ are the upper bounds of the collection. Define ∆i =
{δ|(εf , εW , εα) ∈ E}, for all ∥t− ti∥ < δ, ∀x ∈ Ω, |f(x, t)− fi(x)| < εf , ∥W ∗(t)−W ∗

i ∥ <
εW . The meaning of ∆i is the set of δ neighbors near ti that satisfy the inequality in
Equation (5). Let δi = max{∆i} and then, lemma can be obtained.

The following theorem is the basis for the approximation of the time-variant system
using the time-variant neural network.

Theorem 2.1. Let Ω ⊂ Rn be an open set, DΩ ⊂ Ω be a compact set, and f(x, t) :
Ω× [0, T ] → Rn be a C1-class vector function. For a time-variant system,

ẋ = f(x(t), t) x ∈ Ω t ∈ [0, T ]

Set the neural network approximation accuracy εlf and the fixed constant α to satisfy
0 < α < 1. Given this, there exists a piecewise continuous optimal time-varying weight
vector function W ∗(t) : [0, T ] → RL and a corresponding basis function neural network
σ(x) : Ω → RL such that

f(x(t), t) = −αx(t) +W ∗(t)σ(x(t)) + ε(x, t) x ∈ Ω t ∈ [0, T ]

where ε(x, t) = f(x, t)−W ∗(t)σ(x(t)) is the approximate error and ε(x, t) is a piecewise
continuous function that satisfies |ε(x, t)| ≤ εlf .

Proof: Lemma 2.1 shows that, for any time ti ∈ [0, T ], the method can approximate
the nonlinear mapping of a neural network, on the premise of guaranteed accuracy of the
expanded field near the moment. Due to the limited [0, T ], there must be a finite time
sequence {ti} and corresponding neural network basis functions {σi(·)}, that can maintain
the precision extension field sequence {Ni} (Ni = {t||t− ti| < δi}, i = 1, 2, . . . , n) covering
the whole period [0, T ]. In every neighborhood, the corresponding neural network basis
function can approximate the nonlinear time-variant function, and the precision of the
approximation error satisfies the given requirement.

Based on Lemma 2.1, suppose that ti corresponds to the basis function neural network
dimension li. Then, σi(·) : Ω → Rli , where σi(·) =

[
σ1
i (x), σ

2
i (x), . . . , σ

li
i (x)

]
, and the

weight vector for the continuous time-variant neural network is W ∗
i (t) : [0, T ] → Rli ,

where W ∗
i (t) =

[
W ∗

i1(t),W
∗
i2(t), . . . ,W

∗
ili
(t)

]T
. Then, for |t− ti| < δi, there exists

F (x, t) = −αx(t) +W ∗T
i (t)σi(x(t) + εi(x, t))

where εi(x, t) is the network reconstruction error, and satisfies |εi(x, t)| < εlf .
Considering the time series {ti} that covers [0, T ] and their corresponding neighborhood

sequence {Ni}, without loss of generality, assume that the sequence of the selected areas
and any two adjacent neighborhood overlap. Then, the function F (x, t) can be expressed
as a piecewise function in the following form:

F (x, t) =


−αx(t) +W ∗T

1 (t)σ1(x(t) + ε1(x, t)) 0 ≤ t ≤ t1 + δ1

−αx(t) +W ∗T
2 (t)σ2(x(t) + ε2(x, t)) t1 + δ1 ≤ t ≤ t2 + δ2

...

−αx(t) +W ∗T
n (t)σn(x(t) + εn(x, t)) tn−1 + δn−1 ≤ t ≤ T
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Define W ∗(t) =
[
V ∗T
1 (t), V ∗T

2 (t), . . . , V ∗T
n (t)

]T
and σ(x) =

[
σT
1 (x), σ

T
2 (x), . . . , σ

T
n (x)

]T
where V ∗

i (t) : [0, T ] → RL, i = 1, 2, . . . , n, and let

V ∗
i (t) =

{
W ∗

i (t) ti − δi ≤ t ≤ ti + δi

[0]li×L t < ti − δ or t > ti + δi

Obviously, W ∗(t) : [0, T ] → Rli is a piecewise continuous time-variant nonlinear func-
tion and σ(x) : Ω → RL is a neural network base function, where L = l1 + l2 + · · · + ln.
Define

ε(x, t) =


ε1(x, t) 0 ≤ t ≤ t1 + δ1

ε2(x, t) t1 + δ1 ≤ t ≤ t2 + δ2
...

εn(x, t) tn−1 + δn−1 ≤ t ≤ T

Clearly, for ∀x ∈ Ω, |t− ti| < δi and we have |εi(x, t)| < εlf . Based on the definitions of
W ∗(t), σ(x) and V ∗

i (t), we can obtain

F (x, t) = −αx(t) +W ∗(t)σ(x(t) + ε(x, t)) x ∈ Ω t ∈ [0, T ]

and |εi(x, t)| < εlf .
From the theoretical proof, we can see that the essence of the approximation is that any

finite time trajectory of a given n-dimensional dynamical system can be approximately
modeled by the internal state of the output units of a continuous time recurrent neural
network.

3. Algorithm Design. In the process of multi-layer feedback neural network training
weight matrix, each variable of nonlinear continuous system is related to two indepen-
dent dynamic factors: continuous time and the number of training iterations. Using the
expression form of 2-D continuous-discrete system, Equation (1) can be expressed as

∂z(t, k)

∂t
= −αz(t, k) +W (t, k)σ(z(t, k)) (6)

The training iteration of connection weight matrix of nonlinear continuous system can
be defined as

W (t, k + 1) = W (t, k) + ∆W (t, k) (7)

Assume that the difference between the real value and the simulated value is the amount
of deviation e

e(t, k) = y(t)− x(t, k) (8)

where y(t) ∈ RL.
Let the initial condition of the weight matrix be

x(0, k) = x(0) = y(0) k = 1, 2, . . . (9)

and

η(t, k) =

∫ t

0

[x(τ, k + 1)− x(τ, k)]dτ (10)

e(t, k + 1)− e(t, k)

= x(t, k)− x(t, k + 1)

= αη(t, k)−
∫ t

0

[f(W1(τ, k + 1), x(τ, k + 1))− f(W1(τ, k), x(τ, k))]dτ (11)

So we can get

∆W1(t, k) =

(
∂e(t, k)

∂t
+W1(t, k)(σ(x(t, k))− σ(x(t, k + 1)))

)



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.14, NO.12, 2023 1271

×
(
(σ(x(t, k + 1)))Tσ(x(t, k + 1))

)−1 × (σ(x(t, k + 1)))T (12)

4. Simulation Results. To further verify time-variant neural networks in Section 2 to
a dynamical time-variant system. In this section, we present a numerical example with
simulation result to demonstrate the effectiveness of the proposed results in the previous
section. Experimental studies that apply the time-variant system were considered as the
following mathematical model:

dp1(t)

dt
= t · p2(t)

dp2(t)

dt
= −p21(t)− p2(t)

(13)

with initial conditions p1(0) = 0, p2(0) = 1.
The training of Equation (1) was used for the approximation of the time-variant dy-

namical system (13).
In the presented results, the parameter α of Equation (1) was set to 0.01, and the basis

function tanh(x) was chosen for σ(x). For convenience, both the time-variant system (13)
and Equation (1) were discretized in the simulation with a sampling interval of 0.01. The
real-time modeling algorithm is iterated twice at each time point.

By comparative Figure 1 and Figure 2, it can be seen that the nonlinear time-variant
system (13) can be approximated by Equation (1) with a very high degree of accuracy.

Figure 1. The simulation solution and numerical solution of p1

Figure 2. The simulation solution and numerical solution of p2
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This modeling algorithm has a good real-time performance. At each time point, it usually
requires only a few iterative training operations to achieve the modeling accuracy required
by the nonlinear continuous system we want to simulate, and this method has a small
amount of calculation. Moreover, the results show that time-variant dynamical systems
can be approximately modeled by time-variant neural networks.

5. Conclusions. The main contribution of this paper is to prove that time-variant neu-
ral networks can be used to uniformly approximate time-variant dynamical systems. The
proof used in this paper is constructive. The simulation presented here illustrates the ap-
proximation capability of a time-variant neural network for nonlinear time-variant system.
Our method solved the problem of nonlinear system identification based on time-varying
neural networks. However, it should be mentioned that diffusion or time-variant delay of
nonlinear systems is usually unavoidable, and this can be described by diffusion neural
network or time-variant delay neural network, which makes one of possible directions in
the future.
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