
ICIC Express Letters
Part B: Applications ICIC International c⃝2023 ISSN 2185-2766
Volume 14, Number 12, December 2023 pp. 1259–1266

INDUSTRIAL APPLICATION PLATFORM
FOR TWO-WHEELED ROBOTS

Bao Shi1, Guoliang Zhao2,∗, Sharina Huang3 and Hongxing Li1

1School of Control Science and Engineering
Dalian University of Technology

No. 2, Linggong Road, Ganjingzi District, Dalian 116024, P. R. China
dutlion@mail.dlut.edu.cn; lihx@dlut.edu.cn

2College of Electronic Information Engineering
Inner Mongolia University

No. 235, West College Road, Saihan District, Hohhot 010021, P. R. China
∗Corresponding author: guoliangzhao@imu.edu.cn

3College of Science
Inner Mongolia Agricultural University

No. 306, Zhaowuda Road, Saihan District, Hohhot 010018, P. R. China
huangsharina@imau.edu.cn

Received April 2023; accepted June 2023

Abstract. The large-scale design of industrial robots and the innovation of artificial
intelligence technology have promoted the development of industrialization and modern-
ization. Theoretical analysis shows that its universality and technological progress effect
are conducive to the transformation and upgrading of industrial structure, especially the
two-wheeled robot. Two-wheeled robot has the structure of wheeled mobile robot and in-
verted pendulum, which is an unstable nonlinear system. In industry, it can be used to
perform tasks in some special environments. Firstly, in order to improve the adaptabil-
ity of the controller, this paper takes the variable universe interval type II fuzzy control
method as an example to realize the path tracking control of the mobile robot. Secondly, in
addition to the design of the controller, the development platform of the two-wheeled ro-
bot is also worth studying. Different development platforms have a significant impact on
the efficiency and stability of industrial robots. Two application methods of development
platform are proposed in this paper, namely Matlab/Simulink platform and OtoStudio
platform. Finally, the effectiveness of the controller is verified by simulation, and the
conversion method between different platforms is given, which has the advantage of wide
application.
Keywords: Mobile two-wheeled robot, Fuzzy control, OtoStudio platform, Industrial
application

1. Introduction. In recent years, the application of robots has become more and more
extensive. Mobile two-wheeled robot is often used to test the performance of control theory,
and because of its own particularity, it has a good application prospect in industry, for
example, [1-5]. In [1], the PID algorithm is used to control the speed of the two DC
motors to achieve precise control of the speed of the mobile robot. Model predictive
controller is designed based on the state space, and the control method is compared with
the conventional control method [2]. Wheeled robots exhibit fast and stable motion on
smooth roads, but lack the ability to overcome obstacles and rough terrain. A two-wheeled
jumping robot combining wheel motion and bouncing motion is proposed to solve this
deficiency [3]. A robot with deformable wheels that could steer in hard and soft soils is
proposed [4]. The linear velocity of the slave mobile robot follows the position command

DOI: 10.24507/icicelb.14.12.1259

1259



1260 B. SHI, G. ZHAO, S. HUANG AND H. LI

from the haptic master robot, while the slip-induced velocity error acts as a haptic force
feedback felt by the human operator [5].
There are also many studies on the path tracking control of robots, and different control

methods are continuously proposed. For two-wheeled robots with different configurations,
a population control design is proposed [6]. Under the leadership of the leader, the leader
performs the task of tracking the trajectory and can avoid obstacles to reach the specified
position. A fault-tolerant dynamic control method was developed for accurate trajecto-
ry tracking of redundantly actuated mobile robots, which utilizes a two-level structure
to cover wheel-ground interactions and possible actuator failures [7]. A control strategy
is proposed to tune the robot’s power output along the two DOF directions, which can
improve the robot’s trajectory-following control, especially on rough terrain [8]. Modular
deformable wheels capable of overcoming obstacles are proposed for indoor service robots
or service platforms that often move back and forth on thresholds or sidewalks [9]. Accord-
ing to the requirements of simultaneous position and force control of ankle rehabilitation
robot, a prototype of 3-PRS ankle rehabilitation robot based on impedance control and
its force/position control strategy are proposed [10].
As a programming software, OtoStudio is not only advanced in function and structure,

but also easy to master and control. It has become a leading programming tool in the
automation market. For OtoStudio platform, it is especially that the use of basic C lan-
guage function library and Windows dynamic link library can well realize complex control
functions. Relatively speaking, the platform is simple in design and fast in operation. At
the same time, under Windows system, any development tool supporting dynamic link
library can be used to develop programs, which is convenient to use.
This paper mainly realized the following aspects:
1) The controller design of two-wheeled robot with path tracking function, namely

variable universe interval type II fuzzy logic controller (VUIT2FLC);
2) Path tracking control based on Matlab/Simulink platform;
3) Path tracking control based on OtoStudio platform.
In this paper, the first section introduces the research status at home and abroad; The

second section introduces the physical model of the balancing robot; The third section
is the design of controller based on Matlab platform; The fourth section is the design of
controller based on OtoStudio platform; The fifth section is system simulation, through
the form of simulation to verify the performance of the controller; The last is the summary.

2. Mobile Two-Wheeled Robot Model. The Lagrangian modeling method is used
to complete the system modeling of the mobile two-wheeled robot. The system is used as
the controlled object. The quasi-linear parametric variable model of the system can be
written as [11]

ẋ =


0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 a1 0 0 a2 0 b1 b1
0 a3 0 0 a4 0 b2 b2
0 0 0 0 0 0 b3 −b3


[
x
u

]
(1)

where

a1 = −3g cos x2 sinc(x2/π)/(4h1)

a2 = Lh2/h1

a3 =
(
3/(4L) + 9 cos2 x2/(16h1L)

)
g sinc(x2/π)

a4 = −3h2 cos x2/(4h1)

b1 = (3R cosx2 + 4L)/(4LRMph1)



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.14, NO.12, 2023 1261

b2 = −
(
3h3 cosx2/(4h1L) + 3/

(
4MpL

2
))

b3 = 6/((Mp + 9Mr)DR)

h1 = 1 + 3Mr/Mp − 3 cos2 x2/4

h2 = x5 sinx2

h3 = 1/(MpR) + 3 cosx2/(4MpL) (2)

Among them, x = [x1, x2, x3, x4, x5, x6]
T =

[
xp, θ, δ, ẋp, θ̇, δ̇

]T
, where x1 represents the

displacement state of the robot, x2 represents the pitching state of the robot, x3 represents
the yaw state of the robot, and x4, x5 and x6 represent the state change rate of the robot,
respectively. Various physical parameters can be found in [11].

3. Matlab Platform Design. Matlab/Simulink is used to build the simulation plat-
form, and the platform interface of VUIT2FLC’s block diagram is shown in Figure 1.

Figure 1. Block diagram of VUIT2FLC

Among them, the six states acquired by the hardware are represented through six
modules, namely GetM1Pos, GetAngle, GetRate, GetM2Pos, VMCRVel and VMCR-
YawRate. The two states output to the motor are represented by two modules SetDacL
and SetDacR, respectively. GetM1Pos, GetAngle, GetRate, GetM2Pos are used to rep-
resent the actual values of the left motor encoder, the angle sensor on the gyroscope and
the right motor encoder, respectively, which are transformed into six state quantities by
the state conversion module, namely Pos, Vel, PitchAngle, PitchRate, YawAngle, and
YawRate.

The state transformation satisfied

xp =
xRL + xRR

2
+ θL, ẋp =

ẋRL + ẋRR

2
+ θ̇L, θ = θ, θ̇ = θ̇,

δ =
xRL − xRR

D
, δ̇ =

ẋRL − ẋRR

D
(3)

Before the six state variables enter the controller through feedback, the speed offset
of the forward channel input of the remote control is superimposed on Pos and Vel. The



1262 B. SHI, G. ZHAO, S. HUANG AND H. LI

voltage VMCRVel is transformed into the forward speed of the robot by subsystem 1
and superimposed on the Vel signal. The speed is integrated and superimposed on the
Pos signal. In the same way, the yaw angular velocity offset of yaw channel input of the
remote control is superimposed on YawAngle and YawRate. The voltage VMCRYawRate
is transformed into the yaw angular velocity of the robot by subsystem 2 and superimposed
on YawRate signal. The voltage VMCRYawAngle is integrated and superimposed on the
YawAngle signal. Among them, the subsystem 1 and the subsystem 2 only have different
product factors, and they are all composed of different sub-modules, that is, blind zone,
saturation and speed limiter modules are included. The parameters are set as blind zone:
[−2, 2]; saturation zone interval: [−5, 5]; speed limiter: [−0.1, 0.1].
The six state variables of the superimposed remote control signal are calculated by the

controller VUIT2FLC to obtain the pitch and yaw torque Cθ and Cδ, which is subtracted
from the step input of the system pitch channel and the step input of the yaw channel to
obtain the error signal of the Cθ and Cδ. Among them, Cθ via hysteresis module Backlash,
its main purpose is to protect the motor from frequent switching directions and damage
the DC brushed motor. The error signal is transformed into the torque Cθ and Cδ of
the left and right motors through torque transformation, which meets the relationship:
Cθ+Cδ = CL, Cθ−Cδ = CR. CL and CR enter the safety protection switches, respectively.
The pitch angle range of the two-wheeled robot is limited. In this design, ±π/6 is selected.
With the help of the safety switch, the control is started within the angle range, and the
left and right motor torque output outside the angle range is 0. The transformation
between the input voltage and torque of the left and right wheel motors meets the Kh

times relationship, that is

Kh = − Um

Im × τ × γ
(4)

Among them, the maximum voltage Um is set to 10 V, the maximum current corresponding
to the maximum voltage Im is set to 6 A, the motor torque coefficient τ is set to 0.1, the
reduction ratio of the reducer γ is set to 8, and a saturation module is added with a range
of ±10 V.
After the Matlab/Simulink simulation platform was built, the “Level-2 MATLAB

S-Function” module was used to edit the program of the controller. The Matlab help
file can be referenced for the parameter definition in the specific module. The edited
controller program is translated into C code by Matlab “Coder”. The reason is that
the C language runs fast, so that the response speed of the controller is increased. The
“S-Function Builder” module is used to call the C file. It should be noted that the header
files and function files in the C file are totally added to the “S-Function Builder”, so that
the functions in the C file can be directly used by the “S-Function Builder” module call.
The help file of Matlab can be referenced for the specific use of “S-Function Builder”
module function.
It should be noted that
1) During transformation, the input type of C language needs to be defined, while

the block in “Level-2 MATLAB S-Function” belongs to the structure, and the C form
language cannot be directly constructed. However, the input of the output subroutine of
“Level-2 MATLAB S-Function” can be directly edited as a C function, and the input type
can be defined as double (6× 1);
2) In Matlab, load statement functionality is used to load “mat” type data, but the

load statement cannot be used during tensor product model transformation stage. Since
“Load” function is a unique function of Matlab, then the “coder.load” statement is used
to load the “mat” data set when the translation program is initialized, and the resulted
statement is assigned to a new variable for subsequent calls;
3) If the function of the external m file is called in the “Level-2 MATLAB S-Function”,

it is necessary to be ensured that there is no common variable name among the functions,



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.14, NO.12, 2023 1263

because the global variable is defined when the C language is initialized. If the variable
name used in the function is the same as the other function used, and the type is predefined
different, then the transformation will fail to finish the job;

4) The transformed C language is divided into 32-bit and 64-bit, and the number of
bits of the controllers is selected according to the need. The C code can also be obtained
through the following methods.

Method 1: The dynamic link library of the generated C file is generated by Microsoft
Visual Studio 2008 version. In addition, the functions encapsulated in the C file can
be directly called through the dynamic link library added to the “S-Function Builder”
module.

Method 2: It is compiled into a C-Mex file and the controller algorithm is invoked in
Simulink.

Method 3: The C file or m file is called by “S-Function” module, but they both need
to cooperate with the TLC package program; otherwise the real-time object cannot be
found during hardware compilation.

4. OtoStudio Platform Design. As shown in Figure 2, the OtoStudio platform con-
struction is divided into four steps:

Step 1: Compile the Simulink instruction program of Matlab into a C file;
Step 2: Establish an external library in OtoStudio;
Step 3: Establish a dynamic link library project in Microsoft Visual Studio to generate

a dynamic link library;
Step 4: Join the GTC controller.

Figure 2. Simulink simulation algorithm transfer to OtoStudio external
library block diagram

i) Convert C file
Parameters are configured in Matlab/Simulink according to Table 1.
After the parameter setting is completed, it is necessary to check the accuracy of the

model parameter setting. After clicking “Modify Parameters” on the “Code generation
Advisor” interface, the parameters to be automatically updated and set. Then click “Run
This Check” to make sure the result is “Passed”.

Notation:
1) Before detecting the model, you need to ensure that the current path of Matlab

is consistent with the storage path of the Simulink model, otherwise an error will occur
and the model cannot be found. At the same time, the parameter settings cannot be
automatically updated.



1264 B. SHI, G. ZHAO, S. HUANG AND H. LI

Table 1. Parameter setting

Attribute Parameter name Parameter value

Solver

Type Fixed-step
Size 0.006
Solver Ode1(Euler)

Stop time 10

Code Generation

System target le ert.tlc
Language C

Generate code only
√

Prioritied objectives Traceability
Code Generation=Report Create code generation report

√

Code Generation=Interface
continuous time

√

non-inlined S-functions
√

2) Because the C file obtained after compilation is a cyclically executed file, the value
of the parameter “Stop time” only needs to be set larger than the value of the parameter
“Fixed-step size”. In this paper, this parameter is set to 10.
3) Since the robot system is a real-time tracking system, the parameter “Traceability”

must be selected, and other targets can be selected as needed. In the “Code generation”
interface, the program generated by “Generate Code”, the generated file can be seen in
the current path of Matlab, and the new file path can also be viewed in the generated
report. The generated C file mainly includes four main functions, namely main function,
initialization function, running function and termination function. The function of each
function in the model and the meaning of each parameter can be viewed in the report
generated by the program. At the same time, the input and output of the model are
redefined in the C file to provide an interface for the later use of the program.
ii) Build external library
In OtoStudio, a project is created. The target system configuration is selected as CPAC-

GUC-X00-TPX, and the input parameters are defined in VAR INPUT. The input includes
two parts: one is the six system input values; the other is the parameters in the Simulink
block diagram algorithm that needs to be modified in real time in the OtoStudio project.
The output parameters are defined in VAR OUTPUT, and the output quantity also con-
tains two parts: one is the two system output quantities; the other is the state quantity
that needs to be monitored.
Three files are generated. “libGbot.c” contains two functions, namely the initialization

function “GBOTinit” and the running function “GBOT”. The implementation of the two
functions is not defined. In the dynamic link library project of Microsoft Visual Studio, the
function “slxGbot initialize()” and the function “slxGbot step()” in the C file converted
by the Simulink block diagram algorithm can be called, respectively.
iii) Generate dynamic link library
In Microsoft Visual Studio, a new Win32 smart device project is created, the GTx86

platform is selected, and the C file generated in the first section and the external library file
generated by OtoStudio are put into the project. Since Simulink block diagram algorithm
converts C files, it includes some built-in functions of Matlab, and the folder under Matlab
needs to be attached to the directory of Microsoft Visual Studio when converting. In order
to test whether the converted C file is wrong, it is set to not use the precompiled header,
and the solution is regenerated. The program is error-free and the rebuild is successful.
It proves that the C program converted from the Simulink block diagram algorithm has
been compiled successfully.
Next, OtoStudio external library program needs to be tested for errors. For OtoStudio

external library program, generated by ST program, its data type definition is different



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.14, NO.12, 2023 1265

from that of C language data type, and it needs to be modified accordingly. After edit-
ing the program, the interface of dynamic link library is defined. In “dllGbot.cpp”, the
path “#include ‘libGbot/libGbot.h’ ” is added, and OtoStudio’s “libGbot.h” is added.
In “dllGbot.h”, the declaration of the defined GetFunctionByName function was added.
Similarly, the solution needs to be regenerated, the program is error-free, and the regen-
eration is successful.

Finally, the dynamic link library “dllGbot.dll” generated in Microsoft Visual Studio
is copied to the GTC controller “/HardDisk/CPAC” folder, which replaces the control
program in the original controller.

5. Simulation. In this paper, the variable universe interval type II fuzzy controller is
used to complete the displacement tracking control of the two-wheeled robot. The initial

state is given as x0(t) =
[
0, π

6
, 0, 0, 0, 0

]T
, the expected tracking displacement is xr = 1 m

and the yaw angle is δr = 0.8 rad.
The simulation results are shown in Figures 3 and 4. Among them, state x1 represents

the displacement of the robot, state x2 represents the pitch angle of the robot, state x3

represents the yaw angle of the robot, and states x4, x5 and x6 represent the change rate
of each state of the robot, respectively. The initial pitch angle of the given robot is π/6,
the expected displacement is 1 m, and the expected yaw angle is 0.8 rad. In order to
ensure the stability of the robot, with the change of pitch angle, the robot is gradually

0 2 4 6 8 10

Time (s)

-0.2

0

0.2

0.4

0.6

0.8

1

S
ta

te
s 

of
 G

T
W

S
B

R

Figure 3. State curve of robot

0 2 4 6 8 10

Time (s)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

S
ta

te
s 

ch
an

ge
 r

at
e 

of
 G

T
W

S
B

R

Figure 4. State change rate curve of robot



1266 B. SHI, G. ZHAO, S. HUANG AND H. LI

producing displacement. The displacement tracking controller designed in this paper is
expected to control the balance robot to reach the specified position and still maintain
the upright state. According to the simulation curve, the robot maintains a steady state
while reaching the specified position 1 m and the yaw state 0.8 rad, that is, the horizontal
rotation angle is 45.84◦. At this time, the pitch angle of the robot is 0, indicating that
the robot is in an upright state. To sum up, the two-wheeled robot realized the control of
displacement and yaw state while stabilizing, and the balanced robot is well controlled,
which proves the effectiveness of the controller.

6. Conclusions. With the popularity of mobile two-wheeled robots, people began to
study different design platforms. In this paper, the balanced robot is successfully con-
trolled by variable universe interval type II fuzzy controller. In order to further promote
the application of balanced robot in industry, the design method of Matlab and OtoStudio
platform is introduced in detail. First, the initialization module of the programming part
is built through Simulink. Next, the transformation of C language and the generation
of dynamic link library are completed. Finally, the program was successfully ported to
OtoStudio platform. In the later research process, the functions of vision and obstacle
avoidance can be added to the robot, so as to enhance the practical application value of
the system.

Acknowledgment. This work is partially supported by Natural Science Foundation of
Inner Mongolia (2019MS01005, 2020MS06016), National Natural Science Foundation of
China under number 61603126, and the work is also supported by the Research Foundation
for Advanced Talents Research Foundation of Inner Mongolia University (21700-5185130).
The authors also gratefully acknowledge the helpful comments and suggestions of the
reviewers, which have improved the presentation.

REFERENCES

[1] M. J. Meng, A. Liu, Y. Yang, Z. Wu and Q. Xu, Two-wheeled robot platform based on PID control,
2018 5th International Conference on Information Science and Control Engineering (ICISCE), 2018.

[2] S. Khatoon, D. K. Chaturvedi, N. Hasan and M. Istiyaque, Optimal controller design for two wheel
mobile robot, 2018 3rd International Innovative Applications of Computational Intelligence on Pow-
er, Energy and Controls with Their Impact on Humanity (CIPECH), pp.1-5, 2018.

[3] Y. Zhang, L. Zhang, W. Wang, Y. Li and Q. Zhang, Design and implementation of a two-wheel and
hopping robot with a linkage mechanism, IEEE Access, vol.6, pp.42422-42430, 2018.

[4] J. V. Salazar Luces, S. Matsuzaki and Y. Hirata, RoVaLL: Design and development of a multi-
terrain towed robot with variable lug-length wheels, IEEE Robotics and Automation Letters, vol.5,
no.4, pp.6017-6024, 2020.

[5] W. Li, L. Ding, H. Gao and M. Tavakoli, Haptic tele-driving of wheeled mobile robots under nonideal
wheel rolling, kinematic control and communication time delay, IEEE Transactions on Systems, Man,
and Cybernetics: Systems, vol.50, no.1, pp.336-347, 2020.

[6] J. L. Mata Machuca, L. F. Zarazua and R. Aguilar-López, Experimental verification of the leader-
follower formation control of two wheeled mobile robots with obstacle avoidance, IEEE Latin America
Transactions, vol.19, no.8, pp.1417-1424, 2021.

[7] X. Zhang, Y. Xie, L. Jiang, G. Li, J. Meng and Y. Huang, Fault-tolerant dynamic control of a
four-wheel redundantly-actuated mobile robot, IEEE Access, vol.7, pp.157909-157921, 2019.

[8] H. Qi et al., Control strategy for the pseudo-driven wheels of multi-wheeled mobile robots based on
dissociation by degrees-of-freedom, IEEE Access, vol.8, pp.155477-155491, 2020.

[9] Y. Lee, S. Ryu, J. H. Won, S. Kim, H. S. Kim and T. Seo, Modular two-degree-of-freedom trans-
formable wheels capable of overcoming obstacle, IEEE Robotics and Automation Letters, vol.7, no.2,
pp.914-920, 2022.

[10] G. Chen, H. Zhou and P. Yang, Force/position control strategy of 3-PRS ankle rehabilitation robot,
International Journal of Innovative Computing, Information and Control, vol.16, no.2, pp.481-494,
2020.

[11] B. Shi, S. Xu and G. Zhao, Variable universe type-II fuzzy logic control design for the Googol’s
two-wheeled self-balancing robot, 2020 Chinese Automation Congress (CAC), pp.1500-1505, 2020.


