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Abstract. In this paper, we provide the necessary basic properties of homomorphisms
in Hilbert algebras. The main theorem of this paper, namely the Fundamental Theorem
of Homomorphisms, is constructed using the quotient Hilbert algebra of the congruence
induced by an ideal. We also give an application of the theorem to the first, second, and
third isomorphism theorems in Hilbert algebras.
Keywords: Hilbert algebra, Quotient Hilbert algebra, Ideal, Fundamental Theorem of
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1. Introduction. Among many algebraic structures, algebras of logic form an important
class of algebras. The concept of Hilbert algebras was introduced by Diego [1]. Diego
proved that Hilbert algebras form a variety which is locally finite. Hilbert algebras were
treated by Busneag [2, 3] and Jun [4], and some of their filters forming deductive systems
were recognized. Dudek [5] considered the fuzzification of subalgebras/ideals and deductive
systems in Hilbert algebras.

Isomorphism theorems in various algebraic systems are important and are being studied
by mathematicians continuously and extensively, which we will discuss below. In 1998,
Jun et al. [6] proved isomorphism theorems using the Chinese Remainder Theorem in
BCI-algebras. In 2001, Park et al. [7] proved isomorphism theorems of IS-algebras. In
2004, Hao and Li [8] proved isomorphism theorems by using the concept of ideals in BCI-
algebras. In 2006, Kim [9] proved the first isomorphism theorem for KS-semigroups. In
2008, Kim and Kim [10] proved isomorphism theorems of BG-algebras. In 2009, Paradero-
Vilela and Cawi [11] characterized ideals of KS-semigroups and proved the first isomor-
phism theorem for KS-semigroups. In 2011, Keawrahun and Leerawat [12] proved iso-
morphism theorems for SU-semigroups. In 2012, Asawasamrit [13] proved isomorphism
theorems of KK-algebras. In 2019, Iampan [14] proved isomorphism theorems of UP-
algebras. Bejarasco and Gonzaga [15] introduced the notion of AB-homomorphism of
AB-algebras and investigated the first and third isomorphism theorems. In 2020, Abed
[16] introduced homomorphisms of BZ-algebras and investigated their properties. They
also proved isomorphism theorems for BZ-algebras. In 2021, Chaudhry et al. [17] proved
isomorphism theorems for generalized d-algebras. Emmanuel [18] established the Funda-
mental Theorem of Homomorphisms of torian algebras and proved isomorphism theorems
of torian algebras. In 2022, Sriponpaew and Sassanapitax [19] introduced the notion of
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weak AB-algebras, which is a generalization of BCC-algebras. They proved the funda-
mental theorems of isomorphism for weak AB-algebras. In 2023, Bolima and Fuentes
[20] proved the first and third isomorphism theorems for dual B-algebras. The reviewed
articles inspired us to study isomorphism theorems in Hilbert algebras.
In this paper, we describe the essential fundamental properties of homomorphisms

in Hilbert algebras. The Fundamental Theorem of Homomorphisms in Hilbert algebras,
the central theorem of this paper, is derived from the quotient Hilbert algebra of the
congruence induced by an ideal, and a diagram of the theorem is presented. The theorem
is also applied to the first, second, and third isomorphism theorems for Hilbert algebras.

2. Preliminaries. The concept of Hilbert algebras, as it was initially introduced by
Diego [1] in 1966, will be reviewed initially.

Definition 2.1. [1] A Hilbert algebra is a triplet with the formula X = (X, ·, 1), where
X is a nonempty set, · is a binary operation, and 1 is a fixed member of X that is true
according to the axioms stated below:

(1) (∀x, y ∈ X)(x · (y · x) = 1),
(2) (∀x, y, z ∈ X)((x · (y · z)) · ((x · y) · (x · z)) = 1),
(3) (∀x, y ∈ X)(x · y = 1, y · x = 1 ⇒ x = y).

In [5], the following conclusion was established.

Lemma 2.1. Let X = (X, ·, 1) be a Hilbert algebra. Then

(1) (∀x ∈ X)(x · x = 1),
(2) (∀x ∈ X)(1 · x = x),
(3) (∀x ∈ X)(x · 1 = 1),
(4) (∀x, y, z ∈ X)(x · (y · z) = y · (x · z)),
(5) (∀x, y, z ∈ X)((x · z) · ((z · y) · (x · y)) = 1).

In a Hilbert algebra X = (X, ·, 1), the binary relation ≤ is defined by

(∀x, y ∈ X)(x ≤ y ⇔ x · y = 1),

which is a partial order on X with 1 as the largest element.

Definition 2.2. [21] A nonempty subset D of a Hilbert algebra X = (X, ·, 1) is called a
subalgebra of X if x · y ∈ D for all x, y ∈ D.

Definition 2.3. [22] A nonempty subset D of a Hilbert algebra X = (X, ·, 1) is called an
ideal of X if the following conditions hold:

(1) 1 ∈ D,
(2) (∀x, y ∈ X)(y ∈ D ⇒ x · y ∈ D),
(3) (∀x, y1, y2 ∈ X)(y1, y2 ∈ D ⇒ (y1 · (y2 · x)) · x ∈ D).

Definition 2.4. [22] Let X = (X, ·, 1) be a Hilbert algebra and B an ideal of X. Define
the binary relation ∼B on X as follows:

(∀x, y ∈ X)
(

x ∼B y ⇔ x · y ∈ B and y · x ∈ B
)

. (1)

Definition 2.5. [22] Let X = (X, ·, 1) be a Hilbert algebra. An equivalence relation ρ on
X is called a congruence if

(∀x, y, z ∈ X)(xρy ⇒ x · zρy · z and z · xρz · y). (2)

Lemma 2.2. [22] Let X = (X, ·, 1) be a Hilbert algebra. An equivalence relation ρ on X
is a congruence if and only if

(∀x, y, u, v ∈ X)(xρy and uρv ⇒ x · uρy · v). (3)
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Let X = (X, ·, 1) be a Hilbert algebra and ρ a congruence on X . If x ∈ X , then
the ρ-class of x is the (x)∼ρ

defined as follows: (x)∼ρ
= {y ∈ X : yρx}. Then the set

of all ρ-classes is called the quotient set of X by ρ and is denoted by X/ρ. That is,
X/ρ =

{

(x)∼ρ
: x ∈ X

}

.

Theorem 2.1. [22] Let X = (X, ·, 1) be a Hilbert algebra and B an ideal of X. Then
(

X/ ∼B, ∗, (0)∼B

)

is a Hilbert algebra under the ∗ multiplication defined by (x)∼B
∗ (y)∼B

= (x ∗ y)∼B
for all x, y ∈ X, called the quotient Hilbert algebra of X induced by the

congruence ∼B.

Theorem 2.2. [22] Let X = (X, ·, 1) be a Hilbert algebra and B an ideal of X. Then the
mapping πB : X → X/ ∼B defined by πB(x) = (x)∼B

for all x ∈ X is an epimorphism,
called the natural projection from X to X/ ∼B.

Proposition 2.1. [22] Let X = (X, ·, 1) be a Hilbert algebra and B an ideal of X. Then
∼B is a congruence on X.

Theorem 2.3. [22] Let X = (X, ·, 1) be a Hilbert algebra and B an ideal of X. Then the
following statements hold:

(1) the ∼B-class (0)∼B
is an ideal and a subalgebra of X in which B = (0)∼B

,
(2) a ∼B-class (x)∼B

is an ideal of X if and only if x ∈ B,
(3) a ∼B-class (x)∼B

is a subalgebra of X if and only if x ∈ B,
(4)

(

X/ ∼B, ⋆, (0)∼B

)

is a Hilbert algebra under the ⋆ multiplication defined by (x)∼B
⋆

(y)∼B
= (x ⋆ y)∼B

for all x, y ∈ X, called the quotient Hilbert algebra of X induced
by the congruence ∼B.

3. Main Results. In this section, we construct the Fundamental Theorem of Homo-
morphisms in Hilbert algebras. We also give an application of the theorem to the first,
second, and third isomorphism theorems in Hilbert algebras.

Definition 3.1. Let A = (A, ·, 1A) and B = (B, ⋆, 1B) be Hilbert algebras. A function
f : A → B is called a homomorphism if f(x · y) = f(x) ⋆ f(y) for all x, y ∈ A. A
homomorphism f : A → B is called

(1) an epimorphism if f is surjective,
(2) a monomorphism if f is injective,
(3) an isomorphism if f is bijective. Moreover, we say A is isomorphic to B, symboli-

cally, A ∼= B, if there is an isomorphism from A to B.

Let A = (A, ·, 1A) and B = (B, ⋆, 1B) be Hilbert algebras. Let f : A → B be a function
and let U be a nonempty subset of A and V of B. The set {f(x) : x ∈ U} is called
the image of U under f , denoted by f(U). In particular, f(A) is called the image of f ,
denoted by Im(f). Dually, the set {x ∈ A : f(x) ∈ V } is said the inverse image of V
under f , symbolically, f−1(V ). Especially, we say f−1({1B}) is the kernel of f , written
by Ker(f). That is, Im(f) = {f(x) : x ∈ A} and Ker(f) = {x ∈ A : f(x) = 1B}.

In fact, it is easy to show the following theorem.

Theorem 3.1. Let A, B, and C be Hilbert algebras. Then the following statements hold:

(1) the identity mapping is an isomorphism,
(2) if f : A → B is an isomorphism, then f−1 : B → A is an isomorphism,
(3) if f : A → B and g : B → C are isomorphisms, then g ◦ f : A → C is an

isomorphism.

Theorem 3.2. Let X = (X, ·, 1) be a Hilbert algebra and B an ideal of X. Then the
mapping πB : A → A/ ∼B defined by πB(x) = (x)∼B

for all x ∈ A is an epimorphism,
called the natural projection from A to A/ ∼B.
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Proof: Let x, y ∈ X be such that x = y. Then (x)∼B
= (y)∼B

, so πB(x) = πB(y).
Thus, πB is well-defined. Note that by the definition of πB, we have πB is surjective. Let
x, y ∈ X . Then πB(x · y) = (x · y)∼B

= (x)∼B
⋆ (y)∼B

= πB(x) ⋆ πB(y). Thus, πB is a
homomorphism. Hence, πB is an epimorphism. 2

Theorem 3.3. Let A = (A, ·, 1A) and B = (B, ⋆, 1B) be Hilbert algebras and let f : A → B
be a homomorphism. Then the following statements hold:

(1) f(1A) = 1B,
(2) for any x, y ∈ A, if x ≤ y, then f(x) ≤ f(y),
(3) if C is a subalgebra of A, then the image f(C) is a subalgebra of B. In particular,

Im(f) is a subalgebra of B,
(4) if D is a subalgebra of B, then the inverse image f−1(D) is a subalgebra of A. In

particular, Ker(f) is a subalgebra of A,
(5) if C is an ideal of A, then the image f(C) is an ideal of f(A),
(6) if D is an ideal of B, then the inverse image f−1(D) is an ideal of A. In particular,

Ker(f) is an ideal of A,
(7) Ker(f) = {1A} if and only if f is injective.

Proof:

(1) By Lemma 2.1 (1), we have f(1A) = f(1A · 1A) = f(1A) ⋆ f(1A) = 1B.
(2) If x ≤ y, then x · y = 1A. By (1), we have f(x) ⋆ f(y) = f(x · y) = f(1A) = 1B.

Hence, f(x) ≤ f(y).
(3) Assume that C is a subalgebra of A. Since 1A ∈ C, we have f(1A) ∈ f(C) 6= ∅.

Let a, b ∈ f(C). Then f(x) = a and f(y) = b for some x, y ∈ C. Since C is closed under
the · multiplication on A, we get a ⋆ b = f(x) ⋆ f(y) = f(x · y) ∈ f(C). Hence, f(C) is a
subalgebra of B. In particular, since A is a subalgebra of A, we obtain Im(f) = f(A) is
a subalgebra of B.
(4) Assume that D is a subalgebra of B. Since 1B ∈ D, it follows from (1) that

1A ∈ f−1(D) 6= ∅. Let x, y ∈ f−1(D). Then f(x), f(y) ∈ D. Since D is closed under
the ⋆ multiplication on B, we get f(x · y) = f(x) ⋆ f(y) ∈ D. Thus, x · y ∈ f−1(D), it
follows that f−1(D) is a subalgebra of A. In particular, since {1B} is a subalgebra of B,
we obtain Ker(f) = f−1({1B}) is a subalgebra of A.
(5) Assume that C is an ideal of A. Since 1A ∈ C and (1), we have 1B = f(1A) ∈ f(C).

Let a, b ∈ f(A) be such that b ∈ f(C). Then f(y) = b for some y ∈ C, and f(x) = a for
some x ∈ A. Then a ⋆ b = f(x) ⋆ f(y) = f(x · y) ∈ f(C). Let a, b, c ∈ f(A) be such that
a, b ∈ f(C). Then f(y1) = a and f(y2) = b for some y1, y2 ∈ C, and f(x) = c for some
x ∈ A. Then (a ⋆ (b ⋆ c)) ⋆ c = (f(y1) ⋆ (f(y2) ⋆ f(x))) ⋆ f(x) = f((y1 · (y2 · x)) · x) ∈ f(C),
proving f(C) is an ideal of f(A).
(6) Assume that D is an ideal of B. Since 1B ∈ D and (1), we have f(1A) = 1B ∈ D.

Thus, 1A ∈ f−1(D). Let x, y, z ∈ A be such that x·(y ·z) ∈ f−1(D) and y ∈ f−1(D). Then
f(x · (y · z)) ∈ D and f(y) ∈ D. Since f is a homomorphism, we have f(x) ⋆ (f(y) ⋆ f(z))
= f(x · (y · z)) ∈ D. Since D is an ideal of B and f(y) ∈ D, we have f(x · z) = f(x) ⋆ f(z)
∈ D. Thus, x · z ∈ f−1(D). Hence, f−1(D) is an ideal of A. In particular, since {1B} is
an ideal of B, we obtain Ker(f) = f−1({1B}) is an ideal of A.
(7) Assume that Ker(f) = {1A}. Let x, y ∈ A be such that f(x) = f(y). By Lemma

2.1 (1), we have f(x · y) = f(x) ⋆ f(y) = f(y) ⋆ f(y) = 1B and f(y · x) = f(y) ⋆ f(x) =
f(y) ⋆ f(y) = 1B. Thus, x · y, y · x ∈ Ker(f) = {1A}, so x · y = y · x = 1A. Thus, x = y.
Hence, f is injective.
Conversely, assume that f is injective. By (1), we obtain {1A} ⊆ Ker(f). Let x ∈

Ker(f). Then f(x) = 1B = f(1A), so x = 1A because f is injective. Hence, Ker(f) = {1A}.
2
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Theorem 3.4. (Fundamental Theorem of Homomorphisms) Let A = (A, ·, 1A) and B =
(B, ⋆, 1B) be Hilbert algebras and f : A → B a homomorphism. Then there exists uniquely
a homomorphism ϕ from A/ ∼Ker(f) to B such that f = ϕ ◦ πKer(f). Moreover,

(1) πKer(f) is an epimorphism and ϕ a monomorphism,
(2) f is an epimorphism if and only if ϕ is an isomorphism. We get the following dia-

gram.

A B

A/ ∼Ker(f)

f

πKer(f) ϕ

Proof: Put K = Ker(f). By Theorem 3.3 (6), we have K is an ideal of A. It follows
from Theorem 2.3 (4) that (A/ ∼K , ⋆, (1A)∼K

) is a Hilbert algebra. Define ϕ : A/ ∼K →
B, (x)∼K

→ f(x). Let (x)∼K
, (y)∼K

∈ A/ ∼K be such that (x)∼K
= (y)∼K

. Then x ∼K y,
so x·y ∈ K and y ·x ∈ K. Thus, f(x)⋆f(y) = f(x·y) = 1B and f(y)⋆f(x) = f(y ·x) = 1B.
Thus, f(x) = f(y) and so ϕ

(

(x)∼K

)

= ϕ
(

(y)∼K

)

. Thus, ϕ is a mapping. For any x, y ∈ A,

we see that ϕ
(

(x)∼K
⋆ (y)∼K

)

= ϕ
(

(x · y)∼K

)

= f(x · y) = f(x) ⋆ f(y) = ϕ
(

(x)∼K

)

⋆

ϕ
(

(y)∼K

)

. Thus, ϕ is a homomorphism. Also, since (ϕ ◦ πK)(x) = ϕ(πK(x)) = ϕ
(

(x)∼K

)

= f(x) for all x ∈ A, we obtain f = ϕ ◦ πK . We have shown the existence. Let ϕ′ be a
mapping from A/ ∼K to B such that f = ϕ′ ◦πK . Then for any (x)∼K

∈ A/ ∼K , we have
ϕ′
(

(x)∼K

)

= ϕ′(πK(x)) = (ϕ′ ◦ πK)(x) = f(x) = (ϕ ◦ πK)(x) = ϕ(πK(x)) = ϕ
(

(x)∼K

)

.
Hence, ϕ = ϕ′, showing the uniqueness.

(1) By Theorem 3.2, we have πK is an epimorphism. Also, let (x)∼K
, (y)∼K

∈ A/ ∼K

be such that ϕ
(

(x)∼K

)

= ϕ
(

(y)∼K

)

. Then f(x) = f(y) and it follows from Lemma 2.1
(1) that f(x · y) = f(x) ⋆ f(y) = f(y) ⋆ f(y) = 1B, that is, x · y ∈ K. Similarly, y · x ∈ K.
Hence, x ∼K y and (x)∼K

= (y)∼K
. Therefore, ϕ is a monomorphism.

(2) Assume that f is an epimorphism. By (1), it suffices to prove ϕ is surjective. Let
y ∈ B. Then there exists x ∈ A such that f(x) = y. Thus, y = f(x) = ϕ

(

(x)∼K

)

, so ϕ is
surjective. Hence, ϕ is an isomorphism.

Conversely, assume that ϕ is an isomorphism. Then ϕ is surjective. Let y ∈ B. Then
there exists (x)∼K

∈ A/ ∼K such that ϕ
(

(x)∼K

)

= y. Thus, f(x) = ϕ
(

(x)∼K

)

= y, so f
is surjective. Hence, f is an epimorphism. 2

Theorem 3.5. (First Isomorphism Theorem) Let A = (A, ·, 1A) and B = (B, ⋆, 1B) be
Hilbert algebras and f : A → B a homomorphism. Then A/ ∼Ker(f)

∼= Im(f).

Proof: By Theorem 3.3 (3), we have Im(f) is a subalgebra of B. Thus, f : A → Im(f)
is an epimorphism. Applying Theorem 3.4 (2), we obtain A/ ∼Ker(f)

∼= Im(f). 2

Lemma 3.1. Let A = (A, ·, 1A) be a Hilbert algebra, H a subalgebra of A, and K an ideal
of A. Denote HK =

⋃

h∈H(h)∼K
. Then HK is a subalgebra of A.

Proof: Clearly, ∅ 6= HK ⊆ A. Let a, b ∈ HK . Then a ∈ (x)∼K
and b ∈ (y)∼K

for
some x, y ∈ H , so (a)∼K

= (x)∼K
and (b)∼K

= (y)∼K
. Thus, (a · b)∼K

= (a)∼K
⋆ (b)∼K

=
(x)∼K

⋆ (y)∼K
= (x · y)∼K

, so a · b ∈ (x · y)∼K
. Since x, y ∈ H , it follows that x · y ∈ H .

Thus, a · b ∈ (x · y)∼K
⊆ HK . Hence, HK is a subalgebra of A. 2

Theorem 3.6. (Second Isomorphism Theorem) Let A = (A, ·, 1A) be a Hilbert algebra,
H a subalgebra of A, and K an ideal of A. Denote HK / ∼K =

{

(x)∼K
: x ∈ HK

}

. Then
H/ ∼H∩K

∼= HK / ∼K.

Proof: By Lemma 3.1, HK is a subalgebra of A. Then it is easy to check that HK / ∼K

is a subalgebra of A/ ∼K . Thus,
(

HK / ∼K , ⋆, (1A)∼K

)

itself is a Hilbert algebra. Also,
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it is obvious that H ⊆ HK , then f : H → HK / ∼K , x 7→ (x)∼K
, is a mapping. For

any x, y ∈ H , we have f(x · y) = (x · y)∼K
= (x)∼K

⋆ (y)∼K
= f(x) ⋆ f(y). Thus, f

is a homomorphism. We shall show that f is an epimorphism with Ker(f) = H ∩ K.
For any (x)∼K

∈ HK / ∼K , we have x ∈ HK =
⋃

h∈H(h)∼K
. Then there exists h ∈ H

such that x ∈ (h)∼K
and so (x)∼K

= (h)∼K
. Thus, f(h) = (h)∼K

= (x)∼K
. Therefore,

f is an epimorphism. Also, for any h ∈ H , if h ∈ Ker(f), then f(h) = (1A)∼K
. Since

f(h) = (h)∼K
, we obtain (h)∼K

= (1A)∼K
. By (1), we have h = 1A · h ∈ K. Thus,

h ∈ H ∩K, that is, Ker(f) ⊆ H ∩K. On the other hand, if h ∈ H ∩K, by h ∈ H , f(h) is
well-defined, by h ∈ K and 1A ∈ K, h · 1A ∈ K and 1A · h ∈ K. By (1), we have h ∼K 1A
and so (h)∼K

= (1A)∼K
. Thus, f(h) = (h)∼K

= (1A)∼K
. So, h ∈ Ker(f), that is, H ∩K ⊆

Ker(f). Therefore, Ker(f) = H ∩K. By Theorem 3.5, we have H/ ∼H∩K
∼= HK / ∼K . 2

Theorem 3.7. (Third Isomorphism Theorem) Let A = (A, ·, 1A) be a Hilbert algebra and
H and K ideals of A with H ⊆ K. Then (A/ ∼H)/ ∼ (K/ ∼H) ∼= A/ ∼K .

Proof: By Theorem 2.3 (4), we obtain
(

A/ ∼K , ⋆, (1A)∼K

)

and
(

A/ ∼H , ⋆
′, (1A)∼H

)

are Hilbert algebras. Define f : A/ ∼H → A/ ∼K , (x)∼H
7→ (x)∼K

. For any x, y ∈ A, if
(x)∼H

= (y)∼H
, then x · y, y · x ∈ H . Since H ⊆ K, we obtain x · y, y · x ∈ K. Thus,

(x)∼K
= (y)∼K

, so f
(

(x)∼H

)

= f
(

(y)∼H

)

. Thus, f is a mapping. Also, for any x, y ∈ A,

we see that f
(

(x)∼H
⋆ (y)∼H

)

= f
(

(x · y)∼H

)

= (x · y)∼K
= (x)∼K

⋆ (y)∼K
= f

(

(x)∼H

)

⋆

f
(

(y)∼H

)

. Thus, f is a homomorphism. Clearly, f is surjective. Hence, f is an epimor-
phism. We shall show that Ker(f) = K/ ∼H . In fact,

Ker(f) =
{

(x)∼H
∈ A/ ∼H : f

(

(x)∼H

)

= (1A)∼K

}

=
{

(x)∼H
∈ A/ ∼H : (x)∼K

= (1A)∼K

}

=
{

(x)∼H
∈ A/ ∼H : x = 1A · x ∈ K

}

= K/ ∼H.

By Theorem 3.5, we have (A/ ∼H)/ ∼ (K/ ∼H) ∼= A/ ∼K . 2

4. Conclusion. For this paper, we have given several important fundamental properties
of homomorphisms in Hilbert algebras. We have constructed the Fundamental Theorem of
Homomorphisms in Hilbert algebras using the quotient Hilbert algebra of the congruence
induced by an ideal. Finally, we derived the first, second, and third isomorphism theorems
in Hilbert algebra from the Fundamental Theorem of Homomorphisms.
To expand on the results of this paper, future research will focus on finding isomorphism

theorems of obic algebras and torian algebras, which were introduced by Emmanuel [23,
24].
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