
ICIC Express Letters
Part B: Applications ICIC International c⃝2023 ISSN 2185-2766
Volume 14, Number 11, November 2023 pp. 1217–1224

DEVELOPMENT OF WEB 3.0 INFORMATION SYSTEM
WITH PERMISSIONED BLOCKCHAIN

Justin Susanto and Arya Wicaksana∗

Department of Informatics
Universitas Multimedia Nusantara

Jl. Scientia Boulevard, Gading Serpong, Tangerang 15810, Indonesia
justin.susanto@student.umn.ac.id; ∗Corresponding author: arya.wicaksana@umn.ac.id

Received January 2023; accepted April 2023

Abstract. Blockchain has the potential to securely store and manage information trans-
parently in a distributed manner. It allows the development of decentralized applications
in areas dependent on client/server technology, such as information systems. This study
explores the design and implementation of a decentralized information system for real-
world use cases. The EOSIO blockchain is chosen for this study’s proof-of-concept, and
a microservice is used to connect it with the rest of the information system. This study’s
chosen application of the information system is university student activity records and
testing and evaluation using actual data from Universitas Multimedia Nusantara. The
throughput of the decentralized information system delivers 7,492 requests per minute on
average with a single validator node. This study showcases blockchain technology’s design
and implementation in decentralizing information systems with real use cases and data.
Keywords: Blockchain, Downtime, EOSIO, Information system, Microservice, Through-
put

1. Introduction. The discovery of blockchain and distributed ledger technology (DLT)
allowed the development of decentralized applications that are transparent, immutable,
and secure in comparison with the client/server technology [1-6]. It unveils the possibilities
for developing a decentralized information system with the same or even higher quality
of service in terms of throughput and uptime compared to the client-server architecture.
Moreover, distributed applications do not suffer client/server technological drawbacks:
single point of failure. Decentralized applications also bring back control to the users in
the following three aspects: privacy, ownership, and dissemination [7]. Related works on
decentralized applications demonstrate the potential and benefit of blockchain technology
[8-11].

Guo and Liang in [8] pointed out that blockchain can establish a credit mechanism
where parties lack mutual trust, reducing the non-technical costs required by centraliza-
tion. Regarding information systems, bank credit information systems with blockchain
technology could establish data ownership and promote data sharing. Sytnyk et al. in [9]
designed and prototyped a decentralized information system for supply chain management
using the Ethereum blockchain with Solidity smart contracts. It is concluded that the
transparency of the tracking, trustworthiness and automation process in the supply chain
has been improved. Beck et al. in [10] studied the implications of blockchain technolo-
gy in business and information systems and encouraged information system researchers
to start new research on the topic. The technology could facilitate cross-border money
transfers and complex financial transactions, including tracking ownership of different and
real-world assets in international shipping.

DOI: 10.24507/icicelb.14.11.1217

1217

1218 J. SUSANTO AND A. WICAKSANA

Blockchain technology adoption also benefits information systems in areas other than
finance and business, i.e., academics and universities, as in [11]. Students’ information is
critical and sensitive, and blockchain technology provides a more protected and trusted
archive of records. Ali et al. in [11] introduced three different blockchain models that
can match different sizes of organizations and eliminate the need for miners. This is
achieved by using trusted and well-identified nodes by the university to deal with the
student information system. However, there are no produced results on the performance
of the proposed decentralized information system. Performance is crucial in adopting new
technology, such as blockchain, for established fields like information systems.
This study extends current state-of-the-art studies in decentralized information systems

based on blockchain technologies by applying real-world use cases and scenarios. The
main contribution of this study is the design and implementation of a blockchain-based
information system for private-held institutions. The application chosen in this study for
performance testing and evaluation is the data management of student activity credit
units (SKKM) at Universitas Multimedia Nusantara (UMN). UMN is a private university
in Indonesia with more than 10,000 active students in 2022. The use cases and data for
testing and evaluation are obtained from UMN to develop the system. Private blockchain
and semi-decentralized architecture are adopted for the decentralized information system.
EOSIO blockchain technology is preferred to be cost-free and software developer-friendly
[12-15].
The rest of this paper is organized as follows. Section 2 describes the research methods,

and Section 3 presents the experimental results and discussion. Finally, Section 4 concludes
this paper with suggestions for future work.

2. Methods. This section describes the research methods used in this study: design,
implementation, testing and evaluation.

2.1. Design and implementation. The design and implementation part consists of
front-end (website) and back-end (blockchain and database) with microservice as the
connecting bridge. The microservice is tested under several scenarios to validate it in
real-world environment.

2.1.1. Blockchain subsystem. The main idea is to represent the credit units as EOSIO
tokens (fungible tokens) in the blockchain. Transactions are created and pushed into the
block that is later added to the blockchain. These transactions are made of tokens that
keep the credit units given to the students. Transactions on the EOSIO service system,
including token transfers, are added with a memo. In this case, the memo helps provide
additional information on the transaction for the credit unit type. The design will allow
the generation of ten billion tokens, and all tokens will be kept in the administrator
account.
Each user account created on the website has its designated EOSIO wallet. The wallet

design is a standardized design using keosd. Upon the events’ validation, students who
request credit units through the website will receive a token in their wallet. When the
EOSIO wallet creation is successful, user data will be entered into the database. The user
will receive an email for account verification using Google’s SMTP (Simple Mail Transfer
Protocol).
Each token transaction on the NodeOS system will generate an id of the transaction.

The id is valid for tracing the transaction and is stored in the database. This means
that every token transaction between users is carried out. The transaction will be held
in a database containing transaction history data. Transaction history data cannot be
manipulated simply because transaction history data can be compared with data on the
EOSIO blockchain.

ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.14, NO.11, 2023 1219

2.1.2. Interface subsystem. Students must register to access the website using the uni-
versity’s official email domain. The registration process takes users’ data such as email,
password, username, and id to create an EOSIO blockchain account. The website home
page provides the user with all necessary information, including current credit units and
transaction history. The website facilitates the business process needed to submit and val-
idate a student’s activity. Credit units are given upon successful validation in an EOSIO
token. The student service department accesses the website with various roles from the
students, and the staff can review and validate submitted activities.

All the business processes required are designed together with the blockchain. Smart
contracts are used in the blockchain to provide the business process’s functionalities on
the website. The blockchain network is integrated into the website by using microservice.
The microservice backend design will follow the web service model built using the spring
boot framework. The controller will have a dependency on the service. The service can
depend on other inbound/outbound services or the service repository to retrieve data
from the database.

2.1.3. Database subsystem. The database system used is NoSQL-based (or non-relational
database) MongoDB. Unlike relational databases, NoSQL databases are collection-based,
containing documents in JSON or Javascript Object Notation. NoSQL database is chosen
due to its high adaptability to dynamic data changes, which is suitable for the target
application. Besides, the web service system is designed to be implemented with systems
currently running because the system has no known structure, so the NoSQL database is
suitable for the conditions of this system requirement. The details of all the collections
are shown in Table 1.

Table 1. Database design with NoSQL

User SKKMQueue SKKMTransactionHistory
id id id

userEmail activity transactionId
eosUsername photos skkmPoints
password skkmPoints email
NIM email activity
token NIM eosUsername

isVerified createdDate createdDate
createdDate version version

version isAccepted

User collection has documents consisting of fields id (id), user email (userEmail), EO-
SIO username (eosUsername), password, student’s identity number (NIM), token, isVer-
ified, createdDate, and version. The token is a field that functions for user verification.
Every time a user is registered, a verification email is sent, and the user is given a token for
verification. The isVerified field indicates whether or not the user has verified the account.
All collections share the database’s id, createdDate, and version.

The SKKMQueue collection has documents consisting of fields id (id), activity, photos,
skkmPoints, email, student’s identity number (NIM), createdDate, version, and isAccept-
ed. The activity field is used to store activities carried out by students to claim credit
units. The photo field stores photos as evidence of the student activity, and the field uses
Base64 encoding. The isAccepted field is used to determine submissions’ status based on
the admin’s decision to accept or reject the submission.

1220 J. SUSANTO AND A. WICAKSANA

The SKKMTransactionHistory collection has fields consisting of id (id), transactionId,
student activity credit units (skkmPoints), email, activity, EOSIO username (eosUser-
name), createdDate, and version. The transactionId is used to store the transaction id
from the EOSIO blockchain.

2.2. Testing and evaluation. The throughput parameter used as a benchmark for the
microservice capability used in testing in this study is the microservice throughput, name-
ly RPM (Requests per Minute). This test uses Apache JMeter to test the microservice
throughput. The tests are carried out using two computers. The first computer acts as a
server that runs the spring boot server instance, ExpressJS, keosd, NodeOS, and EOSIO
blockchain service instance. The other computer is used as a client, and it runs the Apache
JMeter.
There are ten out of twelve endpoints in total that are testable. The Register endpoint

could not be tested because sending an email using the Simple Mail Transfer Protocol
(SMTP) server is free. Thus, the testing procedure would cause the SMTP to get blocked
instead. The TokenVerification endpoint cannot be tested because it is part of account
verification, which will return an error upon verification if it is already verified before.
The tests are carried out using a one-second timeout parameter except for the end-

points with uploading features; the timeout is ten seconds. The number of users per
minute that accesses the endpoint simultaneously is 1,000, 5,000, 10,000, and 15,000. The
tested endpoints are Login, GetAccountBalance, ListSKKMStatus, SKKMTransaction-
History, EditUserSKKM, RequestSKKM, DetailSKKM, SendSKKM, GetSKKMQueue,
and AcceptOrRejectSKKMRequest.

3. Results and Analysis. In this section, the test results for all tested endpoints are
presented. The test results of endpoints Login, GetAccountBalance, ListSKKMStatus,
and SKKMTransactionHistory are shown in Tables 2-5.

Table 2. Endpoint Login

No User per Minute Timeout Throughput (RPM) Downtime
1 1,000 1s 1,000 0%
2 5,000 1s 5,000 0%
3 10,000 1s 10,000 0%
4 15,000 1s 10,741 28.39%

Table 3. Endpoint GetAccountBalance

No User per Minute Timeout Throughput (RPM) Downtime
1 1,000 1s 1,000 0%
2 5,000 1s 5,000 0%
3 10,000 1s 10,000 0%
4 15,000 1s 12,155 18.97%

Table 4. Endpoint ListSKKMStatus

No User per Minute Timeout Throughput (RPM) Downtime
1 1,000 1s 1,000 0%
2 5,000 1s 5,000 0%
3 10,000 1s 10,000 0%
4 15,000 1s 14,011 6.59%

ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.14, NO.11, 2023 1221

Table 5. Endpoint SKKMTransactionHistory

No User per Minute Timeout Throughput (RPM) Downtime
1 1,000 1s 1,000 0%
2 5,000 1s 5,000 0%
3 10,000 1s 8,588 14.12%
4 15,000 1s 8,333 44.45%

The results shown in Tables 2-5 are from the four of the most accessed endpoint by the
users. This demonstrates the system’s reliability in serving users on the four endpoints
with 0% downtime for 5,000 users per minute within 1s timeout. Downtime for larger
users per minute would be reduced given the larger timeout parameter.

The EditUserSKKM endpoint is tested using a ten-second timeout parameter. The
results are shown in Table 6. The resulting 1,000-user throughput is 960 requests per
minute with 4% downtime. Testing with 5,000, 10,000, and 15,000 users cannot be tested
because the microservice experienced a downtime when tested with 5,000, 10,000, and
15,000 users. This endpoint has a reasonably low throughput because the image upload
feature uses the Base64String format, slowing the performance. This user edit endpoint
could not be tested because, with 1,000 users per minute, the results made the microservice
down. When the I/O-thread programming is implemented, this endpoint could be tested
with 1,000 users per minute.

Table 6. Endpoint EditUserSKKM

No User per Minute Timeout Throughput (RPM) Downtime
1 1,000 10s 960 4%
2 5,000 10s – 100%
3 10,000 10s – 100%
4 15,000 10s – 100%

The RequestSKKM endpoint also has parameters in the form of photos. Thus, the
timeout used for this endpoint is ten seconds. The results are shown in Table 7 – the
test conducted with 1,000 users obtained a throughput of 580 requests per minute. The
microservice fails when tested with 5,000, 10,000, and 15,000 users in one minute. Table
8 shows the test results for endpoint DetailSKKM. The throughputs are close to the
maximum, with 0% downtime.

Table 7. Endpoint RequestSKKM

No User per Minute Timeout Throughput (RPM) Downtime
1 1,000 10s 580 42%
2 5,000 10s – 100%
3 10,000 10s – 100%
4 15,000 10s – 100%

Table 8. Endpoint DetailSKKM

No User per Minute Timeout Throughput (RPM) Downtime
1 1,000 1s 1,000 0%
2 5,000 1s 4,898 2.04%
3 10,000 1s 9,998 0.02%
4 15,000 1s 14,996 0.03%

1222 J. SUSANTO AND A. WICAKSANA

Tables 9 and 10 present the test results of endpoints SendSKKM and GetSKKMQueue,
respectively. The SendSKKM endpoint test yields poor results due to the email server’s
limited performance. The test with 1,000 users generates 14.3% downtime. However, the
throughput obtained in this test does not reflect the throughput generated by the NodeOS
in the blockchain. These differences are caused by the high failure rate when sending emails
due to timeout. Increasing the timeout would give the system enough time to serve all
requests.

Table 9. Endpoint SendSKKM

No User per Minute Timeout Throughput (RPM) Downtime
1 1,000 1s 857 14.3%
2 5,000 1s – 100%
3 10,000 1s – 100%
4 15,000 1s – 100%

The endpoint GetSKKMQueue is used by the system administrator to retrieve all the
requests of the student activity credit units from the queue. When this test was per-
formed, the SKKM user queue collection data had reached 6,000 data. When testing was
performed with 1,000 users per minute, the throughput was 998 requests per minute. The
number of users per minute parameter is increased to 5,000, 10,000, and 15,000 which
causes the test to fail to complete due to timeout. The results are shown in Table 10.

Table 10. Endpoint GetSKKMQueue

No User per Minute Timeout Throughput (RPM) Downtime
1 1,000 1s 998 0.2%
2 5,000 1s – 100%
3 10,000 1s – 100%
4 15,000 1s – 100%

The last endpoint is AcceptOrRejectSKKMRequest. The system administrator solely
accesses this endpoint to accept or reject the request. The test results are given in Table
11.

Table 11. Endpoint AcceptOrRejectSKKMRequest

No User per Minute Timeout Throughput (RPM) Downtime
1 1,000 1s 1,000 0%
2 5,000 1s 5,000 0%
3 10,000 1s 10,000 0%
4 15,000 1s 12,222 18.52%

The highest throughput is delivered at the DetailSKKM endpoint by almost 15,000
requests per minute. The lowest throughput endpoint is at the RequestSKKM endpoint
of 580 requests per minute. All endpoints successfully passed the 1,000 users per minute
stress test. It is reasonable for some endpoints to suffer from the stress test due to limi-
tations from supporting services such as the email server. Various operations carried out
within the blockchain also affect performance. Queries with several parameters could also
be quite time-consuming, which could cause specific endpoints to fail the test. Endpoint
RequestSKKM and endpoint EditUserSKKM have a reasonably low throughput due to
the image upload process.
This study contributes to designing and implementing a semi-decentralized information

system using the EOSIO blockchain for real-world applications. The discussion focuses

ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.14, NO.11, 2023 1223

on the design and implementation considerations of the decentralization approach for
the information system. Since the organization uses the information system privately, the
blockchain architecture regarding permission and access is closely controlled and managed
by the owner and operator of the information system. Such an information system suits a
private blockchain system, which enforces access control and permission to read and write
transactions. This is the primary and first consideration in choosing the EOSIO blockchain
in this study and is the foundation of other design and development considerations.

In this study, two smart contracts are developed and run in the blockchain. The first
smart contract is for user wallet creation, and the second is for SKKM transactions. The
decentralization level of the information system and the application use cases require
only two smart contracts for the information system to operate thoroughly. This study
shows that the degree of decentralized software application determines the complexity
and number of smart contracts required. Decentralized applications rely entirely on smart
contracts validating student activities and still require human intervention to analyze and
decide. It is only feasible to implement some of the functionalities in smart contracts.

Adding more smart contracts increases transaction fees in the blockchain; thus, the
cost to run this information system increases unnecessarily. Identify essential operations
in the information system to be carried out in the blockchain network. The client-server
solution best implements the information system’s everyday operations and functions.

In this study, the information system has successfully used blockchain as its primary
technology to store and manage the SKKM (student activity credit units) records. The
records are distributed across the blockchain network. However, the application still has
to rely on a central authority, the university, regarding the policy and software rules,
including the operational service for the students. The decentralization approach allows
the university to own and run the validator nodes in this study wholly. It is feasible and
possible to upgrade the system architecture to be fully decentralized when the business
process allows the services to be charged for fees, incentivizing validators.

4. Conclusions. EOSIO blockchain provides the essential vitals to create a decentralized
application. In this study, the blockchain is implemented and integrated with the web-
based information system microservices. The information system consists of a blockchain,
website, and database. The website provides easy access to the system functionalities, and
users can also access the blockchain directly through the command line. The database only
stores limited helpful information to synchronize the information displayed on the website
and the blockchain. The system’s core business process information is safely stored in the
EOSIO blockchain. Microservice is designed and created to connect the website with the
EOSIO blockchain.

Testing and evaluation show that the microservice’s highest throughput is 14,996 RPM,
with an overall throughput of 7,492 RPM. The results presented in the previous section
are obtained from the stress test conducted using only one microservice instance. Natural-
ly, adding more instances would deliver higher throughput (requests per minute). In this
study, the test shows that the system performance is adequate to serve the organization’s
needs. Optimization could be done by adjusting the timeout parameter for specific end-
points, such as the RequestSKKM endpoint, to allow the photo uploading process. High
throughput is essential for the system’s quality of service (QoS). Adding more blockchain
nodes would increase the throughput and improve the overall QoS.

Acknowledgment. The authors would like to thank Universitas Multimedia Nusantara
for the support of this research work.

1224 J. SUSANTO AND A. WICAKSANA

REFERENCES

[1] R. Azzi, R. K. Chamoun and M. Sokhn, The power of a blockchain-based supply chain, Computers
and Industrial Engineering, vol.135, pp.582-592, DOI: 10.1016/j.cie.2019.06.042, 2019.

[2] R. Casado-Vara, J. Prieto, F. De La Prieta and J. M. Corchado, How blockchain improves the supply
chain: Case study alimentary supply chain, Procedia Computer Science, vol.134, pp.393-398, DOI:
10.1016/j.procs.2018.07.193, 2018.

[3] B. B. A. Christyono, M. Widjaja and A. Wicaksana, Go-Ethereum for electronic voting system using
clique as proof-of-authority, Telkomnika (Telecommunication Computing Electronics and Control),
vol.19, no.5, 1565, 2021.

[4] L. Mark, V. Ponnusamy, A. Wicaksana, B. B. Christyono and M. Widjaja, A secured online voting
system by using blockchain as the medium, in The Smart Cyber Ecosystem for Sustainable Develop-
ment, P. Kumar, V. Jain and V. Ponnusamy (eds.), Wiley, 2021.

[5] A. Wicaksana and J. C. Wira, Security analysis of private blockchain implementation for digital
diploma, International Journal of Innovative Computing, Information and Control, vol.18, no.5,
pp.1601-1615, DOI: 10.24507/ijicic.18.05.1601, 2022.

[6] W. Philips and A. Wicaksana, Hybrid approach of quick response code and non-fungible token in pri-
vate permissioned blockchain for anti-counterfeiting, International Journal of Innovative Computing,
Information and Control, vol.18, no.5, pp.1617-1632, DOI: 10.24507/ijicic.18.05.1617, 2022.

[7] C. A. Yeung, I. Liccardi, K. Lu, O. Seneviratne and T. Berners-Lee, Decentralization: The Future of
Online Social Networking, https://www.w3.org/2008/09/msnws/papers/decentralization.pdf, 2008.

[8] Y. Guo and C. Liang, Blockchain application and outlook in the banking industry, Financial Inno-
vation, 24, DOI: 10.1186/s40854-016-0034-9, 2016.

[9] R. Sytnyk, V. Hnatushenko and V. Hnatushenko, Decentralized Information System for Supply Chain
Management Using Blockchain, http://ceur-ws.org/Vol-3156/paper45.pdf, 2022.

[10] R. Beck, M. Avital, M. Rossi and J. B. Thatcher, Blockchain technology in business and infor-
mation systems research, Business and Information Systems Engineering, vol.59, pp.381-384, DOI:
10.1007/s12599-017-0505-1, 2017.

[11] S. I. M. Ali, H. Farouk and H. Sharaf, A blockchain-based models for student information systems,
Egyptian Informatics Journal, vol.23, no.2, pp.187-196, DOI: 10.1016/j.eij.2021.12.002, 2022.

[12] W. Cai, Z. Wang, J. B. Ernst, Z. Hong, C. Feng and V. C. M. Leung, Decentralized applications:
The blockchain-empowered software system, IEEE Access, vol.6, pp.53019-53033, DOI: 10.1109/
ACCESS.2018.2870644, 2018.

[13] Y. Huang et al., Characterizing EOSIO blockchain, arXiv.org, arXiv: 2002.05369, 2020.
[14] W. Zheng, Z. Zheng, H. N. Dai, X. Chen and P. Zheng, XBlock-EOS: Extracting and exploring

blockchain data from EOSIO, Information Processing and Management, vol.58, no.3, 102477, DOI:
10.1016/j.ipm.2020.102477, 2021.

[15] Y. Huang, B. Jiang and W. K. Chan, EOSFuzzer: Fuzzing EOSIO smart contracts for vulnerability
detection, arXiv.org, arXiv: 2007.14903, 2020.

