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Abstract. In this paper, the transient performance for leader-following control of unicy-
cle-type mobile robot with limited visual field is considered. Due to the limited detection
range of sensors loaded on mobile robot, the field-of-view constraint is considered to en-
sure that mobile robot can always detect its leader. The prescribed performance bound
(PPB) technique is introduced to ensure the transient and steady-state performance. In
addition, the prescribed performance function used in this paper is different from the
traditional one. Based on the fixed-time control design and Lyapunov analysis, leader-
following formation tracking errors are shown to converge to a small neighborhood of zero
in fixed settling time. An example is illustrated to show the effectiveness of the proposed
control scheme.
Keywords: Leader-following control, Prescribed performance, Field-of-view constraint

1. Introduction. Compared with other robots, wheeled mobile robots are more widely
used because of their simple electrical structure, strong mobility, low energy loss and low
hardware cost. For example, a large number of wheeled mobile robots have been used
to carry goods autonomously. The unicycle-type mobile robot is a typical nonholonomic
system. As a type of wheeled robot, its cost is greatly reduced on the premise of sacrificing
only part of the maneuverability. Therefore, it is more widely used in various fields and
there are many studies on it. In [1], the wheeled mobile robot model under nonholonomic
constraints is constructed as a simple chain structure, and a trajectory tracking controller
is designed through local linearization. In [2], a time-varying feedback tracking method is
designed based on the backstepping method, which realizes the global trajectory tracking
of the wheeled mobile robot with any initial error within the desired speed range. In
[3], for a class of nonholonomic system, a tracking controller is designed and it allows
global tracking of arbitrary reference trajectories. In [4], a trajectory tracking controller
is designed at actuator level, which guarantees that the nonholonomic mobile robot tracks
a given trajectory. Other related works of nonholonomic mobile robots include [5-9], but
are not limited to these.

As one of the most attractive topics in the field of multi-agent systems, formation
control has formed several typical control methods in many years of robot control research,
including leader-following method [10, 11], virtual structure method [12, 13], behavior-
based method [14, 15], etc. Of these methods, the leader-follower is not mathematically
difficult to comprehend. In addition, it has good scalability, as the distance and angle
required to maintain between a leader and a follower can be easily extended to the problem
of formation control for multiple robots in a similar way. Therefore, the leader-follower
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approach has been extensively applied to the formation control, and this method will be
used in this paper.
From the perspective of practical application, the performance of the sensor is limited,

which means that the detection distance and detection angle of the robot are limited
[16, 17]. If the detection range of the robot is exceeded, the robots cannot communicate
with each other. To solve this problem, the connectivity maintenance is considered in [18].
In addition, the transient performance control of the system is sometimes important in
practical application. For a system, in addition to asymptotic convergence, it is usually
desirable to have a fast convergence rate and a small tracking error at the initial stage of
operation. By adding performance constraints to some state variables of formation sys-
tem, then the design and analysis of the system are performed to evaluate its prescribed
performance. In [19], for a class of multi-input multi-output feedback linearizable non-
linear systems, the attributes such as maximum overshoot, a lower bound of convergence
speed and maximum allowable steady-state error are specified by introducing performance
function. In [20], for a class of high-order nonlinear multi-agent systems, the prescribed
transient and steady state performance is achieved by imposing the designer-specified
performance functions. The barrier Lyapunov functions (BLF) have been proposed in the
literature to solve the constraint problem, for example, the log-type symmetric or asym-
metric BLF proposed in [21] and the tan-type BLFs proposed in [22-24]. For constrained
and unconstrained systems, a new universal barrier function has been designed in [25, 26].
In the above part, the trajectory tracking, formation control methods, limited field of

view and prescribed performance constraints of nonholonomic mobile robots are briefly
summarized. After the above discussion, the following issues are discussed by us. The
leader-following control method will be applied to realizing the formation of robots. At
the same time, filed-of-view constraints are added to keep the visibility and avoid collision
between each follower and its leader. Besides, time-varying constraint functions are used
to address the prescribed transient and steady-state performance of the controlled system.
Furthermore, the fixed-time control technique is incorporated into the formation control
design. The contributions of this paper are formally summarized as follows.

• For the nonholonomic mobile robot model studied in this paper, it is considered to
be an underactuated system. The original two-input-three-output system is trans-
formed into a two-input-two-output system by merging the errors in the X and Y
directions into the distance errors.

• In order to ensure that the follower can detect the leader when the sensor detec-
tion range is limited, the field-of-vision constraint is considered. In addition, the
prescribed performance of the system is guaranteed by PPB technology.

• The fixed settling time of formation tracking errors that converge to a small neigh-
borhood near the origin is obtained by using the fixed-time control technique.

The paper is organized as follows. In Section 2, some preliminaries and problem for-
mulation are shown. Section 3 shows the procedures of designing a fixed-time formation
controller. In Section 4, one simulation example is given to verify the effectiveness of our
designed control strategies. Section 5 concludes this paper.

2. Problem Formulation and Preliminaries.

2.1. Problem formulation. The investigated NMR is a typical two-wheeled driven mo-
bile robot as shown in Figure 1. In this paper, we consider a group of N two-wheeled
mobile robots. The velocity of the each two driving wheels (vil and vir) can result in linear
velocity vi = (vir + vil)/2. Angular velocity ωi =

ri
2
(ωir − ωil)/bi with the half distance

between two wheels being bi and the radius of the wheel being ri (for i = 1, . . . , N).
The positions of the robot i are denoted by (xi, yi) and the orientation is θi. Then, the
kinematics model of each robot can be described by
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ẋi =

 ẋi

ẏi

θ̇i

 =

 vi cos θi
vi sin θi

ωi

 (1)

and xi = [xi, yi, θi]
T is the state variable.

Figure 1. Geometric structure of leader-follower robots

A leader refers to the referenced model. As shown in Figure 1, a given reference tra-
jectory which can be provided by another robot acts as a leader. In the leader-following
structure, each robot acts according to local information. By maintaining the relative dis-
tance dei and relative bearing angle θei between robots as defined below, a predetermined
formation can be realized.

xei = xs − xi yei = ys − yi dei =
√
x2
ei + y2ei (2)

θei = θs − θi (3)

where xs and ys are the position of the leader in the X and Y directions, respectively. xei

and yei represent the distance between robot i and the leader in the X and Y directions,
respectively. θs = arcsin yei

dei
is the orientation of the leader.

Following from the above relations, the derivatives of dei and θei are calculated as

ḋei = − cos(θei)v +

(
xei

dei
x′

d +
yei
dei

y′d

)
ṡ (4)

θ̇ei = ω +
yei
d2ei

(x′
dṡ− v cos(θ))− xei

d2ei
(y′dṡ− v sin(θ)) (5)

where x′
d =

∂xs

∂s
, y′d =

∂ys
∂s

, s is the reference trajectory parameter.
1) Field-of-view constraints: The above defined dei(t) and θei(t) satisfy the following

constraints:
dei < dei(t) < d̄ei, −θ̄ei < θei(t) < θ̄ei ∀t ≥ 0 (6)

where d̄ei represents the maximum detection range of the mobile robot, θ̄ei represents the
maximum detection angle, and dei meeting 0 < dei < d̄ei refers to the safe distance. It can
be observed that through such constraints, ill-defined of systems (4) and (5) in dei = 0
and θei =

π
2
can be avoided.

Define the formation tracking errors

zdi = dei − ddi, zθi = θei − θdi (7)

where ddi and θdi are the desired distance and angle, respectively. In this paper, they are
considered as constants and meet conditions dei < ddi < d̄ei and −θ̄ei < θdi < θ̄ei.

2) Performance constraints: If zdi(t) and zθi(t) satisfy the following inequalities:

α1iηi(t) < zdi(t) < β1iηi(t), −α2iηi(t) < zθi(t) < β2iηi(t) (8)
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with α1i, β1i, α2i and β2i being positive constants, the transient performances of zdi(t)
and zθi(t) can be guaranteed. Here, ηi(t) is referred to as prescribed performance function
(PPF).
The traditional PPF used in [18, 19, 24] is shown as follows:

ηi(t) = (ηi0 − ηi∞)e−at + ηi∞

where a > 0, ηi0 > ηi∞ > 0 are parameters to be selected. Clearly, ηi(t) ≤ ηi0 and
limt→∞ ηi(t) = ηi∞. However, there is a limitation in traditional PPF. It is the final value
ηi∞ which is reached only when t = +∞, which means that the user does not know the
exact convergence time. To overcome these two drawbacks, the following PPF function
[27] is introduced: {

ηi(0) = ηi0

η̇i(t) = −c1(ηi(t)− ηi∞)a − c2(ηi(t)− ηi∞)γ
(9)

where c1, c2, a and γ are positive constants, and 0 < a < 1 and γ > 1.
If the selected α1i, β1i, α2i, β2i, ηi0 and ηi∞ satisfy the following inequalities

α1i ≥
dei
ηi∞

− ddi β1i ≤
d̄ei
ηi0

− ddi α2i ≤
π

2ηi0
− θdi β2i ≤

π

2ηi0
− θdi (10)

then, as long as Equation (8) is satisfied, (6) will always be true.

2.2. Preliminaries. In order to study the formation control of nonholonomic mobile
robots, two assumptions and two lemmas are given here for subsequent analysis.

Assumption 2.1. The robot is placed at the given position without violating the constraint
(6) at the initial time t = 0, i.e., dei < dei(0) < d̄ei and −θ̄ei < θei(0) < θ̄ei.

Assumption 2.2. Assume that the directed graph Ḡ is connected and the leader is the
root of the spanning tree.

Lemma 2.1. For p = 1− 1
λ
, q = 1+ 1

λ
, where λ > 1 and x ≥ 0, it can be known that the

following inequality holds:
−x2 ≤ −xp − xq + 1

Lemma 2.2. If there exits a Lyapunov function W (x(t)) such that

Ẇ (x(t)) ≤ −aW p(x(t))− bW q(x(t)) + σ

where a > 0, b > 0, 0 < p < 1, q > 1, σ ∈ (0,+∞), then the system is practical fixed-time
stable, and the convergence region of the system is{

lim
t→T

|W (x(t)) ≤ min

{
a−

1
p

(
σ

1− φ

) 1
p

, b−
1
q

(
σ

1− φ

) 1
q

}}
where φ is a constant that satisfies 0 < φ < 1. The settling time function T can be
estimated by

T ≤ Tmax :=
1

aφ(1− p)
+

1

bφ(q − 1)

3. Design of Fixed-Time Formation Controller. Define the following error variables

ρ =
zdi
ηi

, χ =
zθi
ηi

(11)

Let

δ =
ρ̄ρρ(t)

(ρ̄− ρ(t))
(
ρ(t) + ρ

) , ζ =
χ̄χχ(t)

(χ̄− χ(t))
(
χ(t) + χ

) (12)
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Choose the following Lyapunov candidate function

V =
1

2
δ2 +

1

2
ζ2 (13)

Differentiating (13) along (11) and systems (4), (5) yields

V̇ = fδ

[
1

ηi

(
−v cos(θei) +

(
xei

dei
x′

d +
yei
dei

y′d

)
ṡ

)
− deiη̇i

η2i

]
+ fζ

[
1

ηi

(
ω +

yei
d2ei

(x′
dṡ− v cos(θ))− xei

d2ei
(y′dṡ− v sin(θ))

)
− θeiη̇i

η2i

] (14)

where fδ =
ρ̄2ρ2(ρ2+ρ̄ρ)ρ
(ρ̄−ρ)3(ρ+ρ)

3 , fζ =
χ̄2χ2(χ2+χ̄χ)χ
(χ̄−χ)3(χ+χ)

3 .

Then, design the following control laws

v =
k1ηiρ̄

2ρ2

cos(θei)(ρ̄− ρ)
(
ρ+ ρ

)ρ+ 1

cos(θei)

[(
xei

dei
x′

d +
yei
dei

y′d

)
ṡ− deiη̇i

ηi

]
(15)

ω = −
k2ηiχ̄

2χ2

(χ̄− χ)
(
χ+ χ

)χ− yei
d2ei

(x′
dṡ− v cos(θ)) +

xei

d2ei
(y′dṡ− v sin(θ)) +

θeiη̇i
ηi

(16)

Hence, the derivative of V can be rewritten as

V̇ = −
k1ρ̄

2ρ2fδ

(ρ̄− ρ)
(
ρ+ ρ

)ρ− k2χ̄
2χ2fζ

(χ̄− χ)
(
χ+ χ

)χ (17)

Following from the above relations, inequalities − k1ρ̄2ρ2fδ

(ρ̄−ρ)(ρ+ρ)
ρ ≤ −k1

[
ρ̄ρρ

(ρ̄−ρ)(ρ+ρ)

]4
and

− k2χ̄2χ2fζ

(χ̄−χ)(χ+χ)
χ ≤ −k2

[
χ̄χχ

(χ̄−χ)(χ+χ)

]4
hold.

Hence, we can get

V̇ ≤ −k1

[
ρ̄ρρ

(ρ̄− ρ)
(
ρ+ ρ

)]4

− k2

[
χ̄χχ

(χ̄− χ)
(
χ+ χ

)]4

(18)

By applying Lemma 2.1, we obtain

V̇ ≤− k1

[
ρ̄ρρ

(ρ̄− ρ)(ρ+ ρ)

]2p
− k1

[
ρ̄ρρ

(ρ̄− ρ)(ρ+ ρ)

]2q
+ k1

− k2

[
χ̄χχ

(χ̄− χ)
(
χ+ χ

)]2p

− k2

[
χ̄χχ

(χ̄− χ)
(
χ+ χ

)]2q

+ k2

(19)

From (19), we can get

V̇ ≤ −αV p − βV q + C (20)

where α = min{2pk1, 2pk2}, β = min{2k1, 2k2}, C = k1 + k2.

Theorem 3.1. For the system (1) under Assumption 2.1 and the control laws given in
(15) and (16), if p and q are chosen as Lemma 2.1, then we can draw the following
conclusions.

1) Using the performance function ηi(t) shown in (9), the tracking errors zdi(t) and
zθi(t) will converge to the sets Ωd and Ωθ defined below, respectively.

Ωd =
{
zdi(t)|Γdηi(t) ≤ zdi(t) ≤ Γ̄dηi(t)

}
, Ωθ =

{
zθi(t)|Γθηi(t) ≤ zθi(t) ≤ Γ̄θηi(t)

}
(21)
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where Γd, Γ̄d, Γθ and Γ̄θ will be designed later. α and β are given in (20), and constant ϖ ∈
(0, 1). The range of Ωd and Ωθ can be adjusted by selecting different design parameters.
And the fixed time T is given in the following:

T ≤ Tmax :=
1

αϖ(1− p)
+

1

βϖ(q − 1)
(22)

2) Both constraints shown in (6) and (8) can be guaranteed.
3) All signals in the closed-loop system are bounded.

Proof: 1) From Lemma 2.2, we can get when t→T , V ≤min
{
α− 1

p
(

C
1−ϖ

) 1
p , β− 1

q
(

C
1−ϖ

) 1
q

}
.

According to the expression of V , one can get the inequality 1
2
δ2+ 1

2
ζ2 ≤ min

{
α− 1

p
(

C
1−ϖ

) 1
p ,

β− 1
q
(

C
1−ϖ

) 1
q

}
. Hence, the following inequalities

|δ| ≤ ξ, |ζ| ≤ ξ (23)

hold, where ξ = min

{√
2α− 1

p
(

C
1−ϖ

) 1
p ,

√
2β− 1

q
(

C
1−ϖ

) 1
q

}
. As a result, we have∣∣∣∣∣ ρ̄ρρ(t)

(ρ̄− ρ(t))
(
ρ(t) + ρ

)∣∣∣∣∣ ≤ ξ,

∣∣∣∣∣ χ̄χχ(t)

(χ̄− χ(t))
(
χ(t) + χ

)∣∣∣∣∣ ≤ ξ (24)

By solving (24), we obtain

Γd ≤ ρ(t) ≤ Γ̄d, Γθ ≤ χ(t) ≤ Γ̄θ (25)

where

Γd =
ξ
(
ρ̄− ρ

)
+ ρ̄ρ−

√(
ξρ̄+ ρ̄ρ− ξρ

)2
+ 4ξ2ρ̄ρ

2ξ
,

Γθ =
ξ
(
χ̄− χ

)
+ χ̄χ−

√(
ξχ̄+ χ̄χ− ξχ

)2
+ 4ξ2χ̄χ

2ξ
,

Γ̄d =
ξ
(
ρ̄− ρ

)
− ρ̄ρ+

√(
ρ̄ρ− ξρ̄+ ξρ

)2
+ 4ξ2ρ̄ρ

2ξ
,

Γ̄θ =
ξ
(
χ̄− χ

)
− χ̄χ+

√(
−ξχ̄+ χ̄χ+ ξχ

)2
+ 4ξ2χ̄χ

2ξ

Combining (11) and (25), one can get that zdi(t) and zθi(t) converge to Ωd and Ωθ in
fixed time, respectively. And from Lemma 2.2, we can obtain the upper bound on the
convergence time is Tmax =

1
αϖ(1−p)

+ 1
βϖ(q−1)

.

2) Here, parameters α1i, β1i, α2i and β2i are designed as α1i ≥ max
{
Γd−ddi,

dei
ηi∞

−ddi

}
,

α2i ≤ min
{
|Γθ|−ddi,

π
2ηi0

−ddi

}
, β1i ≤ min

{
Γ̄d−dθi,

d̄ei
ηi0

−dθi

}
, β2i ≤ min

{
Γ̄θ−dθi,

π
2ηi0

−

dθi

}
. Therefore, we can easily know the constraints on dei(t) and θei(t) are guaranteed.

3) From (20), we can get

V̇ ≤ −αV p − βV q + C ≤ −2
√

αβV + C (26)

Integrate the above formula and get

V (t) ≤
(
V (0)− C

2
√
αβ

)
exp

(
−2

√
αβt

)
+

C

2
√
αβ

(27)
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We can know V is ultimately bounded by C
2
√
αβ
. This indicates that |δ| and |ζ| are

bounded by
√

C√
αβ
. Hence, one can know that all signals in the closed-loop system are

bounded.

4. Simulation Results and Analysis. The formation tracking control problem for
four identical mobile robots modeled by (1) is considered in this part. The system pa-
rameters are chosen as bi = 0.75, ri = 0.15. The reference trajectories are specified
as [s, 10 sin(0.1s)]. The initial states are set as x1(0) = 0.2, y1(0) = 9, x2(0) = 10.5,
y2(0) = −0.2, x3(0) = 0.2, y3(0) = −9.3, x4(0) = −9.8, y4(0) = −0.3. The simulation
results are shown in Figures 2 and 3. From Figure 2, it can be seen that all the robots
can track the reference trajectory effectively. Figure 3 shows that the tracking errors of
robot 1 are constrained. Due to the length limitation of the paper, the tracking errors of
other robots will not be shown here.

Figure 2. Robot position in (X, Y ) plane

Figure 3. Tracking errors zd1 and zθ1 of robot 1

5. Conclusion. The transient performance for leader-following control of unicycle-type
mobile robots with limited visual field is investigated in this paper. The prescribed per-
formance of formation tracking errors is guaranteed by applying PPB technique. And the
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performance function used in this paper is different from the traditional one. Besides,
the fixed-time control is applied to showing the formation tracking errors converge to a
small neighborhood of zero in fixed settling time. Finally, simulation results show the
effectiveness of the proposed control scheme.
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