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Abstract. Sound quality evaluation for audio instruments is often conducted by em-
ploying professional evaluators known as “golden ears”. However, the correlation between
the evaluation results and physical features cannot be understood clearly, and the parts
are objectively disjointed from the evaluation results. Hence, this study aims to link these
two aspects associated with sound design. The following evaluation system is proposed:
when the car’s interior acoustic features contribute significantly to the sound quality and
are input to the system, the audio evaluator’s evaluation is provided as the output. In
this study, car interior acoustic features were incorporated as parameters, and a sparse
model was designed through machine learning. Three acoustic features in the frequency
domain were incorporated: frequency magnitude, frequency phase, and frequency group
delay. These features were calculated on the basis of impulse responses obtained under
various car conditions. Based on the auditory impression evaluation in terms of clarity,
sound localization, and spatial impression, the sparseness between the features and audi-
tory impressions was extracted and modeled by applying machine learning.
Keywords: Car interior, Audio, Sparse modeling, Auditory impression, Golden ears

1. Introduction. In conventional studies based on machine learning, some sound quality
prediction system is proposed for the interior noise of cars. For instance, a method is
proposed based on Deep Neural Networks (DNN) such as Laplacian Score-Deep Belief
Network (LS-DBN) to evaluate the interior noise of electric vehicles automatically [1]. In
addition, using Support Vector Machine (SVM) and genetic algorithm, a system is also
proposed to evaluate interior noise which is radiated from automotive engine [2]. Neural
network is often applied to constructing sound quality prediction systems as described.
However, these ways need to be clarified, which affects sound quality.

Audio instruments are generally evaluated by a professional evaluator known as “golden
ears” [3]. Their evaluations are considered essential to improve the sound quality of audio
devices. For this reason, the sound quality will be enhanced if it reveals what affects
their evaluations efficiently. Kvist et al. presented the correlation between the subjective
listening test and the sound quality model [4]. It similarly specifies the factors contributing
to the sound quality of audio instruments and the efficiency of various sound designs.
Sakamoto et al. evaluated some audio equipment with wavelet transform to clarify the
auditory impressions [5]. As previously described, experiments are arduous, and it is
crucial to have a universalized and objective evaluation of sound quality. Furthermore,
the eagerly anticipated emergence of artificial intelligence’s “golden ears” has been long-
awaited. That is why this study aims to link the subjective and objective evaluation,
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identifying car interior acoustic features related to auditory impression based on the Least
Absolute Shrinkage and Selection Operator (lasso). The following evaluation system is
proposed. First, the car interior acoustic features that contribute significantly to the sound
quality are entered into the system. Then, the score assigned by “golden ears” is provided
as the output. Thus, the car interior acoustic features are incorporated as parameters, and
a sparse model based on machine learning is designed. The diagram depicted in Figure 1
illustrates the input-output block diagram of the model proposed. By inputting acoustic
features, a sound quality evaluation identical to that of an expert “golden ear” evaluator
can be conducted. Although there have been previous studies on sound classification [8]
or sound separation [9], there have been few applications to sound quality evaluation.
This methodology facilitates the development of the “golden ears” AI, thus introducing
a more streamlined evaluation system for assessing audio quality. The paper comprises
five chapters, with the subsequent chapter detailing the analytical techniques employed
in this investigation. Chapter 3 delineates the experimental procedures, whereas Chapter
4 expounds on the findings. Ultimately, Chapter 5 presents a summary of the outcomes.

Figure 1. The proposed model

2. Method.

2.1. Lasso regression. Sparse modeling is defined as “technology to extract requisite
parts from a statistical model according to given data” [10]. In this study, we applied
lasso regression for model estimation to extracting car interior acoustic features. This
method enables the selection of necessary variables. You can refer to lasso regression in
Equation (1).

min
β

N∑
i=1
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p∑
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)2

+ λ

p∑
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|βj| (1)

Here, β is a coefficient to be estimated, x(j) is the j-th explanatory value and yi is a

measured value of objective value when explanatory value is x
(j)
i .

In 1996, lasso regression was initially supposed by Tibshirani [11]. Equation (1) em-
ploying the method of Lagrange multipliers, is commonly utilized [12]. Lasso regression
consists of minimum mean square error and penalty term. Estimation and measured val-
ues are assigned into xi and yi, respectively. This part outputs β, which minimizes the
mean square error between these variables. The penalty term is the most attractive point
of lasso regression. This part has a role in shrinking β compared to the case without
penalty term. At the same time, the whole of the equation is minimized, moreover, be-
coming zero in the case of unnecessary variables. In other words, the penalty term enables
one to make a choice of the variables automatically. λ is called a hyperparameter, and it
significantly impacts the results.
For this reason, it is essential to decide the optimal hyper parameter [13]. To estimate

and evaluate this parameter, K-fold cross-validation is applied. The method is described
in Section 2.2.

2.2. K-fold cross-validation. K-fold cross-validation is an evaluation method for model
estimation. You can refer to the process of K-fold cross-validation in Figure 2.
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Figure 2. K-fold cross-validation

Firstly, all data is divided by K. 10 to 20 percent of the split data, and those left are used
as test and learning data, respectively. As shown in Figure 2, the shaded and non-shaded
cells represent the test and learning data, respectively. Subsequently, a model is estimated
by learning data, and then test data evaluates the estimated model to determine whether
it can predict well. Shifting the assignment of the test data, the model estimation and
evaluation are conducted K times. After repeating the process, K-obtained results are
averaged, and an optimized model is finally decided.

3. Experimental Content.

3.1. Extraction of acoustic features. This section describes how to extract acoustic
features concretely. In Figure 3, you can refer to the process to extract acoustic features.

Firstly, “golden ears” scored sound quality in each car out of 100 according to three
different auditory impression items. The vehicles are classified as “good” and “bad” de-
pending on their scores in the evaluation. The cars obtaining high and low scores are
classified as “good” and “bad”. Subsequently, car interior acoustic features are calculated
from impulse response in respective cars. The sample and the acoustic features from the
data are set in vertical and horizontal lines, respectively. Furthermore, the individual ma-
trix data classified as “good” and “bad” are labeled “1” and “2”. These two matrix data
are combined as one matrix data. The obtained matrix data are scaled in each feature,
that is, along the vertical direction. This scaling aims to lose the variation among the
samples and enable the extraction of acoustic features. Using this matrix data, the hyper-
parameter is optimized by K-fold cross-validation. In this validation, all data is divided
by ten. In this study, 10 percent of the data and those of left are used as test and learning
data, respectively. The most optimal hyperparameter is decided by ten times validation.
Next, the labeled data is classified by lasso regression. Finally, the classification model is
completed after the hyperparameter is determined when there is the slightest classifica-
tion error. The model’s classification accuracy is obtained from the sample rate classified
according to the label.

Such a process is repeated 1000 times. After that, the number is counted as how many
times each feature makes β zero. If the number is zero, the feature is considered extracted.
Thus, the extracted features are related to auditory impressions. In other words, those
extracted are the features affected by the classification.

3.2. Experimental condition. Clarity and spaciousness are known as the main factors
which affect the sound quality of audio [6, 7]. For this reason, we focused on clarity, sound
localization, and spatial impression in this experiment. “Golden ears” listened to sound
sources in four cars and scored these out of 100 according to clarity, sound localization,
and spatial impression. Based on the scores, the cars are grouped into “good” and “bad”,
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Figure 3. Process to extract acoustic features

and the data of acoustic features in each group are labeled. Although there are various
acoustic features for evaluating the audio [14], we focused on frequency magnitude, phase,
and group delay in this experiment. We applied the physical data calculated from impulse
response since impulse response is known as a primary sound source to represent audio’s
characteristics [15]. Their input parameters consisted of the binaural, L-channel, and R-
channel attributes, all obtained from the driver’s seat. These parameters were utilized
for the simultaneous playback of the front seat speakers, their L-channel-only playback,
and their R-channel-only playback. Under such conditions, the experiment is conducted
in 3 patterns of groups. The score of each car in different auditory impression categories
is reported in Table 1. Here, the shaded cells represent scores classified as “good”. The
other scores are classified as “bad”.

4. Result. The extracted acoustic features in each experiment are shown in Table 2
to Table 4. In Experiment 1, the cars were grouped based on their scores for clarity.
According to Table 2, frequency magnitude was mainly extracted. With regard to the
frequency phase, all features were extracted. On the other hand, the frequency group delay
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Table 1. Auditory evaluation and grouping of each car in respective experiment

Experiment
Each evaluation of the cars Auditory
Car 1 Car 2 Car 3 Car 4 impression items

1 60 60 40 40 Clarity

2
50 40 − − Sound localization
60 60 − − Spatial impression

3
50 40 40 30 Sound localization
60 50 50 20 Spatial impression

Table 2. Extracted acoustic features in Experiment 1

Acoustic
features

Played
channel

Channel on
microphones

Acoustic
features

Played
channel

Channel on
microphones

Acoustic
features

Played
channel

Channel on
microphones

Left Left Left
Right Right RightBoth

Left-Right
Both

Left-Right
Both

Left-Right
Left Left Left
Right Right RightLeft

Left-Right
Left

Left-Right
Left

Left-Right
Left Left Left
Right Right Right

Frequency
magnitude

Right
Left-Right

Frequency
phase

Right
Left-Right

Frequency
group
delay

Right
Left-Right

Table 3. Extracted acoustic features in Experiment 2

Acoustic
features

Played
channel

Channel on
microphones

Acoustic
features

Played
channel

Channel on
microphones

Acoustic
features

Played
channel

Channel on
microphones

Left Left Left
Right Right RightBoth

Left-Right
Both

Left-Right
Both

Left-Right
Left Left Left
Right Right RightLeft

Left-Right
Left

Left-Right
Left

Left-Right
Left Left Left
Right Right Right

Frequency
magnitude

Right
Left-Right

Frequency
phase

Right
Left-Right

Frequency
group
delay

Right
Left-Right

Table 4. Extracted acoustic features in Experiment 3

Acoustic
features

Played
channel

Channel on
microphones

Acoustic
features

Played
channel

Channel on
microphones

Acoustic
features

Played
channel

Channel on
microphones

Left Left Left
Right Right RightBoth

Left-Right
Both

Left-Right
Both

Left-Right
Left Left Left
Right Right RightLeft

Left-Right
Left

Left-Right
Left

Left-Right
Left Left Left
Right Right Right

Frequency
magnitude

Right
Left-Right

Frequency
phase

Right
Left-Right

Frequency
group
delay

Right
Left-Right

was not completely extracted. In Experiments 2 and 3, the cars were grouped according
to sound localization and spatial impression. As you see in Table 3 and Table 4, frequency
magnitude and phase were primarily extracted, while only two features were extracted
regarding frequency group delay.

To sum up the above, there is the following tendency: frequency magnitude and phase
were often extracted. Mainly, the frequency phase was noticeably extracted. On the other
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hand, frequency group delay was hardly extracted. The results indicate that frequency
magnitude, particularly phase, is related to clarity, sound localization, and spatial impres-
sion. Alternatively, frequency group delays are not related to these auditory impressions.

5. Conclusion. To link the subjective and objective evaluation, we investigated con-
structing the sparse model, which outputs the evaluation by “golden ears” when acoustic
features are input. As a first step, we extracted the features in the frequency domain.
The results indicate that clarity, sound localization, and spatial impression depend on
frequency magnitude, particularly phase, while auditory impressions are independent of
frequency group delay. In further work, as a next step, focusing on the other car interior
acoustic features and auditory impression items, we will extract the features as well as
this study and build the system proposed at the beginning of this paper.
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