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ABSTRACT. This study analyzes the correlation between air pollutants in Korea and in
Jiangsu, Hebei, and Shandong provinces in China, which are closest to Korea. The regres-
ston models in this study predict the amount of sulfur dioxide, carbon monoxide, ozone,
nitrogen dioxide, particulate matter, and ultra-particulate matter in the atmosphere of
the Korean peninsula. We use linear regression, k-nearest neighbor, AdaBoost, gradient
boost, random forest, bagging, and XGBoost algorithms for predictive regression models.
Through feature importance, we confirm that Jiangsu’s air pollutants have the most sig-
nificant effect on the atmosphere of the Korean peninsula and identify the importance
of other independent features. We evaluate and compare the results of six models using
performance measures of R2-Score, mean squared error, root mean squared error, and
mean absolute error. The model using XGBoost shows the best results.

Keywords: Comparative analysis, Machine learning models, Air pollution, Prediction
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1. Introduction. Air pollutants cause many chronic diseases, harm the human body,
and are a constant source of fear for people with chronic illnesses [1]. China grows eco-
nomically as a manufacturing base for global supply but relies heavily on thermal power
generation for manufacturing production. Due to the geographical location of the Ko-
rean peninsula, there is an issue that mainland China influences the concentration of
air pollutants in the Korean peninsula. The Korean government issued and implemented
emergency reduction measures for high-concentration particulate matter and implement-
ed a seasonal management system to reduce the concentration of particulate matter. It is
necessary to promote preemptive air pollution reduction measures, manage air pollution
emission sources, and strengthen scientific investigation and analysis of air pollution. Har-
ishkumar et al. [2] implemented a machine-learning model to predict particulate matter in
Taiwan’s major cities. Shin et al. [3] implemented a prediction model to predict Japan’s
average monthly nitrogen dioxide concentration. Chiwewe and Ditsela [4] used linear re-
gression and neural network models as prediction models for ozone and derived 0.579 and
0.77 accuracy, respectively. According to Park and Shin [5], the maximum and average
values of the ultra-particulate matter in the air in Shandong province in China were 94.62
and 160 pg/m3, higher than those in Korea. The correlation coefficient between Korea’s
ultrafine particulate matter and the wind direction ratio of the west wind in Shandong
province was a positive value of 0.402. The correlation coefficient between particulate
matter and the westward wind ratio in China was about 0.358. They derived significant
results from the correlation between ultrafine particulate matter in the atmosphere of
China and Korea. They confirmed the possibility of using it as an independent variable
through further research. Zhang et al. [6] surveyed Asia’s total emissions and found that
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China’s emissions are significantly larger than those of other countries. They emphasized
emissions from China because the emissions from China dominate the Asia pollutant out-
flow to the Pacific, and the increase of emissions from China is of great concern. Kumar
and Pande [7] presented machine learning models to predict air pollutants in 23 Indian
cities. The Gaussian Naive Bayes model achieved the highest accuracy, while the sup-
port vector machine model exhibited the lowest accuracy. Hansun et al. [8] presented two
hybrid moving average methods, namely, B-WEMA and H-WEMA, to predict the air
quality index. Yang et al. [9] predicted hourly pollutant concentrations using lightweight
gradient boosting model shallow machine-learning and long short-term memory neural
network.

This study investigates the correlation between air pollutants in China and Korea to
confirm the influence of pollutants in the air between Korea and China. We analyze the
air pollution impact in Korea according to the level of air pollution in major regions of
mainland China. This study builds machine-learning models that predict the number of
pollutants in a unit space of the atmosphere according to meteorological conditions. We
analyze the feature importance in the model’s predictive model and present improved
prediction models over existing techniques by considering multiple variables. We evaluate
and compare the results of regression models using performance measures of R2-Score,
Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute
Error (MAE). The prediction model in this study has a high R2-Score of about 0.92.

2. Data and Attribute. The data used in this study primarily include air pollutants
and meteorological data in Korea and China. In addition to wind speed, we add wind
direction to account for China’s pollution in Korea. We obtain Korean air pollutant data
from the ‘Public Data Portal’ [10], collecting daily data from a municipality in Seoul and
China air pollutant data from the ‘World Air Quality Index Project’ [11] for five years
from 2016 to 2020. We collect China’s air pollutant data from the three administrative
regions of Jiangsu, Shandong, and Hebei provinces, close to Korea, with high air pol-
lution emissions. Meteorological data are collected from the ‘Meteorological Data Open
Portal’ from 2016 to 2020 [12] for five years. We consider sulfur dioxide (ppm), carbon
monoxide (ppm), ozone (ppm), nitrogen dioxide (ppm), particulate matter (Lg/m?), ultra
particulate matter (Lg/m?), average temperature (°C), daily precipitation (mm), average
wind speed (m/s), and Wind Direction at Maximum wind Speed (WDMS) (deg) as input
features. The target feature is six air pollutants over the Korean peninsula. The average
wind speed (m/s) is the distance moved by the atmosphere in unit time, and WDMS
(deg) represents the wind direction of the wind speed that blew the hardest on average
for any 10 minutes of the day.

This study analyzes correlations between input features after removing missing val-
ues and outliers from all data. We present two types of predictive models with different
independent features. Type 1 uses 21 independent features: 17 air pollutant data from
Shandong, Jiangsu, and Hebei provinces and 4 weather data from Korea, and model 1
does not consider carbon monoxide in Shandong. Type 2 uses 10 independent features,
including 6 average values of air pollutant data from three administrative districts in Chi-
na and 4 types of meteorological data in Korea. We use 11687 data in Type 1 and 28633
in Type 2 after removing outliers and missing values. In this study, we use correlation
coefficients to analyze whether there is a correlation between the air pollutant features of
Korea and China for predictive models.

In Figure 1, the horizontal axis represents six air pollutants in the administrative region
of China, and the vertical axis does six air pollutants in Korea. Figure 1 shows that the
correlation coefficient between ozone in Korea and China is high at 0.6, 0.57, and 0.44 in
the order of Hebei, Shandong, and Jiangsu. Particulate matter in Korea positively corre-
lates with particulate matter, sulfur dioxide, and carbon monoxide in each administrative
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F1cURE 1. Correlation for Type 1

district in China. Figure 1 shows that overall, average air pollutants in China and Korea
are correlated.

In Figure 2, the horizontal axis represents the average air pollutant of China’s three
administrative regions, and the vertical axis shows the air pollutant of Korea. Figure 2
shows the correlation coefficient between average ozone densities in China and Korea. The
highest value is 0.58, and the correlation coefficient for particulate matter is 0.4 in both
countries. Both data types showed a significant correlation between air pollutants in the
two countries. We identify the feature importance of each air pollutant using the XGBoost
model in Figure 3. Feature importance is used in tree-based models and determines
how much a particular feature contributes to splitting the tree. Figure 3 shows the
feature importance for Type 1, and Figure 4 shows the importance of China’s average air
pollutants as features for Type 2.
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3. Algorithms. To present and compare predictive models, this study uses machine
learning techniques such as multiple regression, k-nearest neighbor (k-nn) regressor, bag-
ging, AdaBoost, gradient boost, random forest, and XGBoost. We use the k-nn regressor
to find the nearest k neighbors through the distance formula due to simplicity and effi-
ciency in the solution procedure. This study uses ensemble techniques that combine the
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predictions of several base estimators built with a given learning algorithm to improve
generalizability /robustness over a single estimator [13]. We use a bagging regressor as a
bootstrap aggregation that takes multiple samples and trains each model to aggregate
the results. It is a method of learning the same algorithm-based decision tree in parallel
based on each sample data and then combining the learning results of each model [14].
An important hyperparameter in bagging is that bagging prevents this risk through it-
erative training and model combination based on slightly different datasets. AdaBoost
is an algorithm that sets the initial model as a weak model, uses weights every step to
sequentially fit a new model that compensates for the weaknesses of the previous model,
and finally creates a model obtained by linearly combining them. However, it has the
disadvantage of being sensitive to outliers [15]. The learning rate is considered under the
same condition as bagging for hyperparameters. Gradient boost is an ensemble technique
that performs well in predicting tabular format data. Tabular format data refers to data
in X-Y Grid. The gradient algorithm recognizes the weaknesses of the classifiers learned
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so far and focuses on the weaknesses to compensate for them in the following learning
step [16].

Random forest is a type of ensemble learning method used in regression analysis, which
works by outputting average predictions from multiple decision trees constructed during
training. Random forests have the advantages of reducing prediction variability, prevent-
ing overfitting, and exhibiting high accuracy [17]. We use hyperparameters to improve
accuracy and prevent overfitting. XGBoost is one of the ensemble techniques that use
several weak decision trees by combination. XGBoost learns quickly through parallel pro-
cessing and can prevent overfitting of the model itself [18].

4. Analysis of Models. In this study, we build, test, and analyze the predictive models
in Anaconda’s jupyter notebook with version 3.7 using Intel core i5 CPU. We split the
original data set into 70% of the train set and 30% of the test set for training and
validation of the predictive model. In Figure 5, we analyze seven prediction models to
predict four types of air pollutants. Figure 5 shows the prediction results for four types
of air pollutants where the XGBoost model has the highest R2-Score for nitrogen dioxide
and sulfur dioxide. However, the R2-Scores for AdaBoost and linear regression models are
low, 0.006 and 0.392. For particulate matter (PM10; fine particles with a diameter of 10
um or less) and ultra particulate matter (PM2.5; fine particles with a diameter of 2.5 um
or less), excluding linear regression and AdaBoost, the average prediction performance in
the R2-Score is 0.89, and the XGBoost model is 0.92.
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F1GURE 5. R2-Scores for Type 1

Figure 6 shows the R2-Score of seven models for Type 2. In Types 1 and 2, R2-Scores
of particulate matter (PM10) and ultra-particulate matter (PM2.5) are 0.92 and 0.89,
respectively. However, the R2-Scores of nitrogen dioxide and sulfur dioxide are 0.02 and
0.38, respectively, showing significantly lower prediction rates. The XGBoost model has
the highest accuracy.

This study evaluates the seven predictive models using the regression models’ evalua-
tion measures, including R2-Score, MSE, RMSE, and MAE. MSE is the average of the
squared values of the error, and the coefficient of determination (R2-Score) is an indica-
tor of performance. Table 1 shows seven models’ evaluation measure values for predicting
particulate matter (PM10). XGBoost shows the highest R2-Score of 0.919 and has the
best results for MSE, RMSE, and MAE. Table 2 also shows the values of evaluation in-
dicators of seven models that predict the particulate matter (PM10; fine particles with a
diameter of 10 pm or less) of air pollutants for Type 2. For Type 2, XGBoost shows the
highest prediction accuracy, and MSE, RMSE, and MAE also show good results.
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TABLE 1. Comparison of prediction results for Type 1
. Measure| 1o |RMSE| MAE |R2-Score
Algorithm
Linear regression 315.071|17.750(12.937| 0.411
k-nn 68.828 | 8.296 | 5.693 | 0.871
Random forest 45.212 1 6.724 | 4.755 | 0.916
Bagging 48.014 | 6.930 | 4.948 | 0.910
XGBoost 43.368 | 6.586 | 4.685 | 0.919
Gradient boost 47.750 | 6.910 | 4.932 | 0.911
AdaBoost 306.664|17.512(14.812| 0.426
TABLE 2. Comparison of prediction results for Type 2
. Measure 1o | RMSE | MAE |R2-Score
Algorithm
Linear regression 328.2726(18.1183]13.4937| 0.2663
k-nn 209.113 | 14.461 | 10.090 | 0.533
Random forest 78.755 | 8.874 | 6.476 | 0.824
Bagging 51.576 | 7.182 | 5.072 | 0.885
XGBoost 49.882 | 7.063 | 5.123 | 0.889
Gradient boost 78.481 | 8.859 | 6.537 | 0.825
AdaBoost 396.284 | 19.907 | 16.774 | 0.114

Figure 7 shows a bar graph of each model’s learning time. The ensemble model’s learning
time varies depending on the number of weak learners. In both Type 1 and Type 2, we use
500 learners for AdaBoost, ten models for bagging, 100 trees for the random forest, 500
trees for gradient boost, and 300 estimators for XGBoost. Comparing the seven models,
k-nn and linear regression show a relatively short learning time, and AdaBoost, bagging,
and XGBoost models show around one second of learning time. We see that XGBoost is
the best model regarding accuracy and speed.

5. Discussion. This study intended to provide a basic framework for predicting and
analyzing the air pollution status of the Korean peninsula according to the atmospheric
conditions and air pollution conditions of neighboring countries. Among the predictive
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models, XGBoost had the highest prediction rate. The XGBoost model is a robust pre-
dictive model using the ensemble technique using a combination of several weak decision
trees. Due to its regulation of overfitting and its excellent predictive performance in clas-
sification and regression, we concluded that the XGBoost model is the most suitable.
Based on the prediction model presented in this study, implementing application software
on a mobile device will be possible to provide real-time pollutant information to chronic
patients suffering from air pollutants. By using the prediction system in this study, it will
be possible to manage air pollutants seasonally, which is always intensive management of
the high-concentration particulate matter. In addition, if high-concentration particulate
matter persists for a certain period in a metropolitan area, such as Seoul, it will be pos-
sible to plan and implement measures against air pollution, such as emergency measures
for pollutants, in advance through daily forecasts.

6. Conclusions. This study shows a high correlation between air pollutants in China
and Korea and presented predictive models to forecast Korea’s air pollutants using air
pollutants from three administrative regions of China as independent variables. We build
an air pollution prediction model in Korea based on the fact that air pollution in major
regions of mainland China affects air pollution in Korea. The prediction model pro-
posed is based on the meteorological characteristics of Korea and the characteristics of
air pollutants in China. It is possible to effectively predict the number of air pollutants in
the atmosphere, such as particulate matter and ultrafine particulate matter. Evaluating
and comparing the results of the six regression models using performance measures of
R2-Score, MSE, RMSE, and MAE, the predictive model in this study achieved a high
R2-Score of approximately 0.92.
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