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Abstract. During the process for manufacturing rubber products, ‘mixing’ is a process
of mixing by adding a raw material and a blending agent to a mixer. Most companies use
the tacit knowledge of skilled workers to determine the order and time of input of mate-
rials, which hinders the uniformity of process reliability and quality. To systematize this,
this study proposes a model that can predict rubber properties measured in the inspection
process, the last process, in time series data, which are measurement data of sensors such
as temperature, voltage, and RAM opening and closing of the mixer measured by the com-
pany. A model using CNN is constructed by grasping the characteristics of time series
data, which is 1 dimension data. In the model study, in order to increase the prediction
accuracy, a ResNet, which is advantageous for multi-layer stacking of convolution layers,
was built, but there was a problem that the validation error was not lowered. Therefore,
in this study, a model was developed to inversely reduce the number of layers, which is
a one-dimensional Convolution Neural Network (CNN), and Symmetric-padding, which
improves the problems of Zero-padding, was applied. The application of this method could
improve the learning speed of the model combining CNN and ResNet34 and reduce the
validation error by about 4%. Through the research results of this paper, it is expected that
the basic research results on other approaches of the quality indicator prediction model
of rubber mixing processes and similar processes can be provided.
Keywords: CNN, Mixing process, Quality indicator prediction, Time series data, Rub-
ber manufacturing, ResNet, Symmetric-padding

1. Introduction. The production of rubber products varies depending on the recipe of
the product to be produced. The quality of rubber products is also affected by the en-
vironment, such as the amount of blending agent, the temperature and voltage of the
mixing machine, and the weather around the factory. Therefore, it is difficult to obtain
the physical properties required by the final product, and the process of inspecting the
intermediate product is necessary. Even now, it is common in production sites to de-
termine the input time and order of materials by the tacit knowledge of skilled workers.
However, as interest in smart factories increases with the Industry 4.0, attempts to change
from the existing work method are gradually increasing. Among them, the application
of the methodology applying machine learning promotes process automation and is ad-
vantageous in discovering specific trends and patterns that are difficult for workers to do.
Therefore, this study intends to develop a model that predicts inspection data with data
from sensors generated during the process by applying machine learning. There are vari-
ous analyses using time series data [1-3]. So this study develops the model that predicts
inspection results by using sensor data occurring during the process. However, most of
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the previously performed rubber characteristic prediction models are studies focusing on
rubber lifespan.
As a study dealing with the prediction of rubber physical properties, Jeong et al. [4]

proposed a model to predict the properties of rubber compounding materials using an
Artificial Neural Network (ANN). This study was able to directly apply the amount of
raw material and the physical properties of rubber compounding material to the analysis
model without synthesizing the actual material. However, in this paper study, it is difficult
to use their model because it is necessary to make predictions using only data on changes
in material input time and temperature within the same recipe. And since they used
basic ANNs, it is difficult to apply to time series data of various channels in terms of
accuracy. An example of using time series data in the manufacturing process is a study
on the detection of abnormalities in the mold cylinder temperature cycle using the 1D
Convolutional Neural Network (CNN) of Yu et al. [5]. This is a study that improved
3% more than the basic ANN accuracy by using CNN’s effective pattern characteristic
extraction ability. However, the purpose of this paper study is different in that it is not
a prediction but a study on anomaly pattern detection.
Allamy and Koerich [6] applied 1D Residual CNN for continuous data to classify music

genres by learning audio datasets. Their results showed 80.93% in average accuracy, which
was higher than that of other models compared to other 1D CNN architectures. Based
on this paper, we propose a ResNet model using time series data in one dimension.
Therefore, in this paper, we propose a model that applies Residual Neural Network

(ResNet), which is advantageous for multilayer stacking of convolutional layers, based on
1D CNN. And we propose a model that applies Symmetric-padding, which is shallower
and simpler than deeply stacking the model, and improves the problems of Zero-padding.
Through the research results of this paper, it is expected that the basic research results on
the development of a quality indicator prediction model for kneading and similar processes
of rubber products can be provided.
The background and related studies of this study are presented in Section 2. Section 3

describes the mixing process, the quality indicators to be predicted, and the data consid-
ered in this paper. Section 4 presents two models for predicting quality indicators. Section
5 describes the results and analysis of the experiment, and finally Section 6 concludes this
paper and discusses possible future works.

2. Literature Review.

2.1. Convolution Neural Network (CNN). CNN is an example of a CNN structure
that is mainly used in analyzing images or image data [7]. Unlike conventional ANNs,
spatial information is considered, so the number of parameters decreases and the amount
of computation decreases. In the convolutional layer, the characteristics of the image are
extracted through an operation that slides the characteristic map [8]. In order to preserve
the dimensions of the input data in the output data, a process called padding is used for
data reduction. Zero-padding refers to the process of symmetrically adding zeroes to the
input matrix. Wu et al. applied Symmetric-padding to eliminating shift problem occurring
in even-sized kernel convolutions. The result showed that Symmetric-padding achieved
similar accuracy to a new compact model, which used much less memory and time during
training [9]. In the pooling layer, the size of the feature map can be adjusted, and usually
max pooling or average pooling is used [10]. The fully connected layer is called an FC
layer, and flattens information so that it can produce the desired output by entering it.
CNN shows good performance for image classification problems. However, if the CNN

layer is stacked above a certain level, there is a problem that the performance is rather
poor [7]. A typical CNN model mainly used for image analysis is used for data of a
two-dimensional structure. CNNs used in one-dimensional structures are called 1D CNN
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models and are mainly used for natural language processing or time series analysis. Here,
the one-dimensional means that the kernel for composite product and the order of data
to be applied have a one-dimensional shape.

2.2. Residual Neural Network (ResNet). ResNet is a model that can effectively learn
deep layers on the 152nd floor by learning the residual presentation function [12]. As the
basic CNN deepens, there is a problem that the gradient vanishes or explodes. In order to
find the gradient of the neural network, the differentiation of the weighting loss function
is obtained by back-propagation, in which the partial derivative of the activation function
is obtained and multiplied by its value. In this process, if a small differential is multiplied
several times, it approaches zero, and if a large differential is multiplied several times, it
becomes very large. However, the ResNet model uses shortcut connection to transfer the
input of the previous layer to the next layer (Figure 1). This shortcut connection enables
deep neural network construction by avoiding gradient vanishing or exploding problems.
In addition, the proposed ResNet is able to produce smooth output results from noise
filtered images [13].

Figure 1. Shortcut connection of ResNet [7]

3. Mixing Process, Prediction of Quality Indicator, and Data.

3.1. Rubber product manufacturing process and mixing process. The basic pro-
cess flow for producing rubber products proceeds with raw material procurement, material
mixing, calendering (surface treatment), molding, vulcanization, and cutting (Figure 2).
Although vulcanization may be omitted depending on the product to be produced, the
mixing process is a common process. In the quality inspection for the final product, it
is verified whether the rubber has properties to function properly, and whether the size,
thickness, and shape are well molded. The mixing process is a part directly connected
to physical properties, and whether it has been uniformly mixed is an important fac-
tor in quality. As illustrated in Figure 2, the mixing process proceeds with five detailed
processes, such as mixing materials and blending agents, mixing them with a mixer, and
cooling them. After that, it is divided by batch and physical property tests are performed.
If there are no unusual outliers when checking the test results, the follow-up process is
carried out.

Figure 2. The order of the rubber product process
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3.2. Quality measurement indicator. Tensile strength refers to the maximum stress
until the material is broken by a tensile load. Tensile test is the most common industrial
tests conducted to obtain basic data on material strength, such as Proportional Limit,
Elastic Limit, Young’s Modulus, Fracture Stress and Poisson’s Ratio [11]. Moony viscosity
is the most basic index for evaluating the physical properties of uncured rubber, indicating
the degree of viscosity [14]. A rheometer usually refers to equipment for measuring a
vulcanization reaction of rubber and is also referred to as a vulcanization tester. This
shows whether the rubber is uniformly kneaded well and whether vulcanization can be
performed well when performing the post-process vulcanization [15].
The indicators to be analyzed in this paper consist of simple codes and include M1T10,

M1T90, M1ML, M1MH, and D2MN. The first alphabet of the code represents the manu-
facturer of the physical property measuring instrument. The second number is the order
of the measuring instrument. Among the following alphabets, T10 and T90 represent the
time it takes for the stress of tensile strength to reach a point corresponding to 10% and
90%. And ML and MH represent a minimum torque value and a maximum torque value
of tensile strength stress. MN represents the pattern viscosity of rubber.

3.3. The definition and purpose of the question. These indicators are quality in-
spections of intermediate goods to move on to subsequent processes, not finished products,
and are aimed at measuring good products and defects that determine the availability of
delivery immediately, but at measuring physical properties to see if they are mixed well.
Currently, intermediate products are sampled and physical properties are tested to deter-
mine the good or defect of the product. To simplify this measurement process, we develop
a model that predicts the physical properties of rubber with the sensing data of the mixer.
If physical properties can be predicted based on the mixing process state data described
in Section 3.4, the physical properties of the product can be predicted with sensing data,
so samples of physical properties can be selected small or the tests can be omitted. And
you will be able to preemptively find defects in the product.

3.4. Used data. The data to be used for learning uses the temperature, voltage, and
RAM opening and closing states obtained through the sensor of the mixer. In addition,
additional data that can be used include the amount of carbon input, temperature and
humidity at the factory location, and month. Figure 3 shows a graph showing the tem-
perature, voltage, and RAM states of the mixer over time. RAM can be said to be the

Figure 3. The state of the mixer by time series
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cap of the mixer. The opening and closing of the RAM may include opening and closing
for material input and opening and closing for internal pressure drop. The RAM has a
discrete value of 1 in the open state and 0 in the closed state. One recipe randomly select-
ed from among the recipes of various rubber products was used for learning, and a total
of 358 time series data were used. Each data has an uneven size from a minimum of 262
to a maximum of 382.

The data were divided into training set 80%, validation set 15%, and test set 5%, and
used for each purpose. In order to remove outliers before learning, the label, a quality
indicator of data, was removed from the learning target if it became 1.5 times or more
than the IQR (Inter-Quarter Range). In order to normalize the size of each variable, a
min-max scaling technique was used to convert the number between the minimum and
maximum values from 0 to 1. Finally, the time series length is increased to a constant
value in consideration of the characteristics of the CNN that needs to be input with a
predetermined size. The remaining values above the given data are proceeded with Zero-
padding to fill 0 and Symmetric-padding to fill the value symmetrically. The length of
the extended time series is greater than the maximum value of 382 and is set to 400 for
convenience in calculation.

4. Model for Predicting Mixing Process Quality Indicators.

4.1. Changing parameters for model application. Prior to building the model, we
can discuss the application of Symmetric-padding. Input data has time series characteris-
tics and can be easily converted into 1 dimension data. However, each data has a different
length of time series. We would like to build a model in two types of padding that can
fill this length. First, the length of the data is adjusted with Zero-padding. Second, the
length of the data is adjusted by symmetrically filling the end of the data with Symmetric-
padding (Figure 4). Other parameters will be carried out the same. The model will be
conducted in two ways to check the results of a total of four models that applied different
padding.

Figure 4. Feature of Zero-padding and Symmetric-padding

4.2. ResNet-42 model. As a result of step-by-step addition of convolution layers in the
basic ResNet 34 model, the best-performing model was the ResNet-42 model. As shown
in Table 1, the ResNet 42 model adds 8 convolutional layers to the ResNet34 structure to
outline the structure of the 42-layer model. M1T10, M1T90, M1ML, M1MH, and D2MN
values are output by receiving temperature, process time, and month information of the
mixer as input. The convolutional layer of this model has parameters of kernel size = 5
and padding = 2. Among them, two models were conducted: a Zero-padding model and
a Symmetric-padding model.

When the calculation is completed in each convolutional layer, Batch Normalization
is performed and then the activation function ReLU is passed. Batch Normalization is
effective in solving the problem of efficient learning and staying at Local Optical [16]. After
passing through the convolution layer on the 41st floor, the number of output variables
is adjusted to five to predict quality indicators in the last FC layer.
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Table 1. Architecture for ResNet34 with the blocks stacked. Down-
sampling is performed by conv3 1, conv4 1, and conv5 1 with a stride of
2.

Layer name 34-layer 42-layer (modified)

conv1 7× 7, 64, stride 2 5, 64, stride 1

conv2 x
3× 3 max pool, stride 2 3 max pool, stride 2[

3× 3, 64

3× 3, 64

]
× 3

[
5, 64

5, 64

]
× 3

conv3 x

[
3× 3, 128

3× 3, 128

]
× 4

[
5, 128

5, 128

]
× 4

conv4 x

[
3× 3, 256

3× 3, 256

]
× 6

[
5, 256

5, 256

]
× 6

conv5 x

[
3× 3, 512

3× 3, 512

]
× 3

[
5, 512

5, 512

]
× 4

conv6 x no layer

[
5, 1024

5, 1024

]
× 3

average pool, 1000-d fc, softmax

4.3. 3-layer model. The 3-layer model is a shallow model consisting of 3 layers. It
has the same parameters as the model to which ResNet is applied and two convolution
operations are performed. Batch Normalization was not performed, and ReLU was used
as the activation function. Five predicted values are output by the last FC layer. The
convolution layer of this model has parameters of kernel size = 5 and padding = 2. As
in the previous model, double parameter padding proceeds in two ways: Zero-padding
model and Symmetric-padding model.

5. Experimental Results and Analysis. The experimental environment of this study
was executed on the Jupyter Notebook of the Linux environment. Python and Pytorch
were used for network configuration. As a hyper parameter, the learning rate was set to
1*1e-4, the batch size was set to 8, and the number of epochs was set to 240. Adam was
used as the optimizer and Root Mean Square Error (RMSE) was used as the loss func-
tion. Figure 5 shows the experimental results of ResNet-42 models. Finally, validation’s
RMSE did not reach 0.15. It is possible to confirm a relatively poorer RMSE than the
3-layer model. Symmetric-padding also could not confirm the difference in the results.
Considering why ResNet-42 model outputs worse RMSE, CNN has the property of extract-
ing overall features as the layer deepens. The input data is similar in overall appearance,
even though it is temperature data of different batches in Figure 6. Therefore, the vali-
dation loss is maintained and only the training loss has increased. The deeper the layer,
the better the result was sometimes not produced. Since the layer was relatively deeper
than the 3-layer model, the advantage of Symmetric-padding, which can make use of the
characteristics of the end of the data, was not highlighted.
Figure 7 shows that even for the 3-layer model, overfitting can be found that the

validation loss is maintained and only the training loss increases. However, it can be
seen that the RMSE of training and validation set converged below 0.15. Simple models
showed about 15% reduction in RMSE in validation set compared to ResNet. There are
two main assumptions that the shallow simple model performed better than the deep
ResNet model.
First, it is the similarity of the overall data. As the temperature continues to rise, it has

a similar overall shape, so it can be thought that sufficient prediction was possible even
with a shallow layer. In this case, the focus should be on the characteristics of the part
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Figure 5. Results of ResNet model (Zero-padding on the left, Symmetric-
padding on the right)

Figure 6. Temperature data of random different batches

rather than the whole. The second reason is the problem of the Zero-padding method
of data preprocessing. It was judged that the method of filling with zero to match the
length of the data could reduce the accuracy of the prediction by putting meaningless
values in the last part. So, instead of Zero-padding, Symmetric-padding was used once
more to improve the performance.

6. Conclusions. Unlike previous study [4], which used conventional ANNs to predict
physical properties of rubber, this study proposed applying 1D CNNs to physical prop-
erties prediction. It is possible to play a positive role in productivity and profitability by
efficiently inspecting intermediate products using the rubber physical property prediction
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Figure 7. Results of 3-layer model (Zero-padding on the left, Symmetric-
padding on the right)

model. The model proposed in this paper is significant in that it discussed the reasons why
it is difficult to use deep ResNet for time series data and attempted a direction to improve
it. In this study, a 1D CNN-based ResNet-42 model and a simple model consisting of three
layers were constructed, and Symmetric-padding was used instead of Zero-padding. The
reason why ResNet with a deep layer performs worse than a simple model is presumed
to be due to the specificity of time series data with different input lengths. Symmetric-
padding seemed to solve some of these problems, but it is not a fundamental solution.
Therefore, the prediction accuracy will be improved by applying a model that combines
RNN regardless of the input length of the data and CNN showing high accuracy, or a
methodology that can re-scale the length of time series data with different lengths later.
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