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Abstract. Human-robot collaboration (HRC) systems combine abilities of human and
robot to achieve a certain level of automation with flexibility. This paper focuses on the
application of HRC in a mold assembly operation to improve human working condition
with the robot assistance. Besides, human existence in the HRC system provides adapt-
ability to cope with the wide variety of tasks and parts in the mold assembly. An efficient
mold assembly task execution by the HRC depends on the task assignment and real-time
status monitoring. This paper proposes a semantic knowledge representation conceptual
framework for the dynamic human-robot task assignment and execution. The HRC mold
assembly includes three modules, which are task assignment, status monitoring and task
execution modules. Task assignment module performs assignment of tasks to resources
based on considerations of task characteristics, processing time and agent’s capability.
Status monitoring module monitors and estimates the progress of the executing tasks.
Then, the task execution module carries on the tasks and feeds back the status to task
assignment module via status monitoring module for re-assignment if necessary. The
proposed knowledge representation describes the relationships between the modules and
components within each module to develop an efficient and practical HRC mold assembly
operation. The conceptual knowledge representation presented is based on the one human
with two cobots collaboration environment.
Keywords: Human-robot collaboration, Task assignment, Task execution, Status mon-
itoring, Semantic network

1. Introduction. Human-robot collaboration (HRC) systems become a potential solu-
tion to improve flexibility of automated systems with the integration of advanced col-
laborative robots (cobots) [1]. An HRC system is a system where a human and robots
work together on the same task within a shared workspace. The rapid development in
the artificial intelligence algorithms during the Industry 4.0 promotes the implementation
of the HRC systems in the manufacturing environments especially in the assembly oper-
ations [2-4]. This paper focuses on the application of HRC system in the mold assembly
operation. The HRC mold assembly must be flexible in reconfiguration to cope with all
types of molds. Besides, the wide variety of weights and shapes of mold parts require use
of various tools during the assembly operation. Therefore, this paper proposes use of two
cobots instead of a cobot with high payload for the mold assembly operation.

Knowledge representation was applied to providing information from a real-world sit-
uation in a data structure that is understandable by a decision-making system to solve
problem in the related domain [5]. In this paper, semantic network technique is applied
to gathering all the information about the resource, mold, task and related considera-
tions and requirements for the user to understand and enable the HRC mold assembly
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operation. Until now, the mold assembly is performed manually. In other words, all the
knowledge related to the mold assembly operation is based on the human intelligence
that may not be expressed in symbolic processing system. It is necessary to structure and
represent the human knowledge in the form that is understandable by the robot or the
intelligent system. Hence, this paper presents the knowledge representation conceptual
semantic networks in the HRC mold assembly operation modules. The proposed HRC
mold assembly consists of three resources which are the human, and two cobots (Cobot
1 and Cobot 2). In this paper, we define an agent as the combination of either of two
resources. Hence, besides the semantic networks for the main modules, we also include
semantic networks that represent the characteristics of the agent alternatives in the task
assignment module and other sub-modules that link to the main modules. In our previous
study, we developed task assignment [6] and status recognition models [7]. The developed
task assignment model included analysis on mold assembly operation to identify potential
resources in HRC systems with two cobots and assignment of tasks to these resources.
Status recognition was developed to recognize the status of manual tasks based on actions
that are to be used to update the state of HRC assembly. However, these models are in-
dividual and not linked to each other. Therefore, this paper aims to express relations
between modules using semantic network-based knowledge representation as a basis to
connect and integrate each module for developing an efficient and practical HRC mold
assembly operation.
The background and related research of this paper is presented in Section 2. Section 3

explains three main modules in the HRC mold assembly operation, and Section 4 presents
the semantic knowledge representation of the modules. Finally, Section 5 concludes this
paper and discusses the future research.

2. Related Research. For an intelligent system to be able to process and make decision,
we need to input a large amount of information and knowledge that exist in real world.
However, it is impossible for a designed intelligent system to perform efficiently without
an accurate and proper structure or representation of knowledge that is related to the
domain of the targeted problem [8]. Humans gain the ability to tackle and solve difficult
real-world problems through the knowledge resources within the problem domain that
is obtained from their experience and training. For example, a human-robot interaction
based on visual communication where the robot received command from a human to pick
required parts. The robot captured and sent the images at working site to the human
to make decision on next task [9]. However, we need to transfer the information used
by the human into a structured knowledge so that the robot can make decision without
receiving command from the human. A way to provide such ability to an intelligent sys-
tem is through knowledge representation that represents information from the real world.
The created knowledge representation makes expert knowledge explicit and accessible, is
often based on logic and can explain their conclusions, and hence, it enables an intelli-
gent system to make decision about the targeted problem [10]. Semantic network-based
knowledge representation is easy to visualize, and the related semantic knowledge can be
easily clustered and clearly identifiable from the labels. Semantic networks can represent
factual knowledge about classes of objects and their properties with declarative, static
representations of relations [11,12].
In this paper, we focus on semantic networks-based knowledge representation technique

in the manufacturing and HRC applications. A knowledge representation model using se-
mantic networks was proposed to represent the knowledge in the manufacturing process
that included product characteristics, technology available and tasks required [13]. The
model was based on the concept of “situation” that implied the state of process to de-
cide the corresponded actions and tasks. Besides, semantic networks have been applied
to constructing knowledge in the production planning control domain [14]. The proposed
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semantic networks covered four main functions in the production control, which are pro-
cess capacity planning, shop flow control, purchasing and marketing requirement. The
semantic networks of the functions presented the linkage to the related information and
connections to other functions. The expanding applications of the HRC concept in the
manufacturing industry encouraged the application of semantic networks to gather and
organize the human and operation knowledge. The semantic network framework for the
HRC manufacturing process was proposed to represent different aspects of assembly pro-
cess that included knowledge of the process, objects, human and robot capabilities and
the environment [15]. The proposed framework was expanded to include knowledge rep-
resentation of process state, constraints, and relations with robot skills. The expanded
knowledge representation of assembly process was connected to the object tracker and ac-
tion recognition systems to deal with HRC operation and enable interactive learning in the
HRC environment [16,17]. A high-level ontology that contained two structures: semantic
event chain related to a skill and human to robot communication handling was proposed
for dynamic planning in human-robot teams [18]. The proposed ontology transformed
the human knowledge into an action plan to allow human to teach and communicate
with the robot. A knowledge engineering environment (KEE) was implemented in the
timeline-based task planning for a safe HRC operation. The functions of the proposed
architecture included support domain experts to coordinate human and robot tasks, gen-
erate temporal flexible plan and task execution with control and feedback functions [19].
Besides, an architecture of a cognitive semantic network consisting of four modules: user
interface, semantic network representation, knowledge representation and reasoner mod-
ules was presented. These modules were developed to enable cognitive decision making in
electrical motor domain [20]. In the application of activity recognition in a smart home
environment, a framework comprised of semantic knowledge base and activity recognition
module was proposed. The semantic knowledge base included common sense knowledge
base and domain-specific knowledge base that provided descriptive knowledge related to
the environment [21].

Various knowledge representation techniques were used in the existing studies to enable
decision making and communication in HRC applications. However, these studies focused
on the decision-making during operation execution. Besides, the HRC systems considered
in the existing studies were only based on assembly of simple prototypes using one human
and one robot. This paper focuses on using semantic networks to represent comprehensive
knowledge from operation planning and feedback during execution stages, which include
three modules: task assignment, status monitoring and task execution by considering two
cobots in mold assembly.

3. Modules in HRC Mold Assembly Operation. Most assembly operations begin
with task assignment and scheduling, followed by operation monitoring and execution.
In this paper, we focus on three main modules: task assignment, status monitoring, and
task execution for an HRC mold assembly operation (see Figure 1). Before we proceed to
the semantic networks of each module (Section 4), we explain the functions and events in
every module and the corresponding sub-modules. This paper decomposes the mold into
cavity and core sub-assemblies, and then each assembly contains its main and supporting
parts based on the bill of material (BOM). For the task assignment purpose, we decompose
the tasks of the mold assembly operation according to the BOM into sub-tasks. Every
sub-task handles a main part and/or necessary joining parts such as screws or pins. Tasks
of the mold assembly operation are executed sequentially, which means only one task is
executed at a time. To simplify the analysis on the task, we decompose the tasks into
sub-tasks and the sub-tasks are categorized into nine categories based on actions, part
types and tolerance. The main role of the task assignment module is to generate an initial
assembly plan that is to be input into the task execution module. The task assignment
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Figure 1. Three modules in HRC mold assembly

module assigns assembly sub-tasks to an agent based on the task characteristics, agent’s
capability, and processing time. We analyze task characteristics and agent’s capability
based on two main criteria: part and skill. The part criteria include part weight and
tolerance, and the skill criteria include ergonomics, force and support requirement. The
objective of the task assignment module is to optimize processing time, capability of agent
assigned to execute the task and the ergonomics score.
As shown in Figure 1, the initial assembly plan generated from the task assignment

module is input into the task execution module. The assembly plan includes the sequence
of assembly tasks, the agent assigned to every sub-task, part to be assembled and tool
required. In this paper, we exclude the generation of robot programming for the task
execution. We assume all the parts and tools are located within the robot reachability.
Besides, the payload of the robot has been considered in the task assignment module as
one of criteria for the agent’s capability. During the task execution, status monitoring
module takes the role of assembly progress monitoring and feeds back the statuses to the
task assignment module. Three types of statuses are included in the status monitoring
module: assembly state, process state, resource states such as agent and tool states.
Assembly state indicates the progress of the whole assembly operation. Resource state
gives us the status of each agent and tool, either idle or busy. Assembly and resource states
can be input from the task execution module. Process state represents the status of a sub-
task during the task execution. The status monitoring module estimates the process state
by recognizing the parts and actions based on the images captured during the execution.
Results from the status monitoring module are fed back to task assignment module to
update the status of agent and tool. Based on the feedback, the task assignment module
can re-assign the subsequent tasks in case of any delay during the execution.

4. Semantic Networks of Modules in HRC Mold Assembly. A mold assembly
operation can be described as a series of tasks decomposed to sub-tasks and actions based
on the BOM that is executable by agents using the specified tools. From the description,
the mold assembly operation plan consists of a set of tasks (T), a set of agents (A), a set
of tools (E) and a set of mold parts (P). These basic components connect to each main
module to enable the events within the modules and express the relationships between
basic components and modules. Assembly tasks can be decomposed into sub-tasks, that
can be represented by Sub-tasks ⊆ Tasks. The set of tasks = {T1, T2, . . . , Tm}, where
T1 is the first task and so on, with total m number of tasks. Every task defines the
main part to be assembled and its sub-tasks. The set of sub-tasks of a task is defined as
Ti = {Vm1, Vm2, . . . , Vmn}, where Vmn is the nth subtask of task Tm. Figure 2 illustrates
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Figure 2. Semantic network of task assignment and execution modules

Figure 3. Semantic network of the mold and parts

the semantic network of task assignment and execution modules. The top part shows the
decomposition of mold assembly plan.

The task assignment module considers three input criteria which are agent preference,
processing time and tool to assign an agent to every sub-task. The right and bottom parts
of Figure 2 show the execution of a sub-task that is assigned to an agent. The sequence
of actions of a sub-task is performed by agent A by using a tool that is defined to be used
to assemble a part.

Figure 3 presents the decomposition of a mold into cavity and core sub-assemblies
and the list of parts in each sub-assembly. The mold parts are categorized into three
types of part: Plate, Component and Screw based on the shape and weight of parts.
Parts categorized into Plate and Component are considered as the main part to be as-
sembly in a sub-task. As mentioned previously, this paper focuses on the HRC configu-
ration that consists of resources: one human and two cobots (1H:2R), where Resource =
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Figure 4. Semantic network of resources and agents

Figure 5. Semantic network of the tools used in the mold assembly

{Human,Cobot 1,Cobot 2}. Figure 4 illustrates the semantic network of resources and
agents in this paper. Each resource is able to work independently or collaborate with each
other. We define an agent as a resource or combination to perform a sub-task. Hence,
we have six alternative agents: Agent = {Human,Cobot 1,Cobot 2, C1, C2, J}. C1 and
C2 are combination of Human and Cobot 1, and Human and Cobot 2, respectively. J is
the combination of both cobots. Since we have human and cobot as agents to perform
sub-tasks, we need manual tools and end-effectors that are attached to the cobot.
Figure 5 shows the sub-class of tools and relations of tools and part types. For man-

ual tools and end effectors for cobots, we define manual = {hex key, hammer}, and
end effector = {finger gripper, screwdriver, vacuum gripper}, respectively. In the seman-
tic network of the tools, we include relations of which tool is used to assemble a part that
is categorized in a specific part type. For example, to assemble a screw, we need to use a
hex-key if it is assigned to the human or use a screwdriver if it is assigned to a cobot. In
this paper, we categorize sub-tasks into nine categories based on the actions, tolerance and
the part types (see Figure 6), where Sub-task = {LPR,LPF,LPT,GCF,GCT,GST,HPT,
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Figure 6. Semantic network of types of sub-tasks

Figure 7. Semantic network of criteria used to generate agent preference

HCT,KST}. The first character of the sub-task type indicates the actions: “lift and posi-
tion (L)”, “pick and locate (G)”, “insert with force (H)”, and “tighten screw (K)”. Then,
the second character indicates the same part types as presented in Figure 3: Plate (P),
Component (C), Screw (S). The last character defines the levels of tolerance: Tight (T),
Fair (F) and Rough (R). We categorized the sub-tasks into nine types to simplify the anal-
ysis of the task characteristics and the capabilities of the agents. Each sub-task type has
part and skill characteristics which are also the criteria to generate the agent preference.
In Figure 7, the weight and tolerance have influence on the ergonomic, force and support
criteria. We used analytic network process (ANP) to generate the agent preference in our
previous study [7], so the details of the ANP are not included in this paper.

Figure 8 illustrates the semantic network of the status monitoring module. Four dif-
ferent statuses are included in the module: assembly state (B), process state (Q), tool
state (D) and agent state (J). The set of assembly state = {B1, B2, . . . , Bm}, where each
assembly state Bi corresponds to a task, and m defines the number of tasks. Process
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Figure 8. Semantic network of status monitoring module

states are the state of the sub-tasks of a task, Qij = {Qi1, Qi2, . . . , Qin}, where n defines
number of sub-tasks in task Ti. Initially, all assembly states and process states equal 0
(non-complete), and then Bi change to 1, indicating task is completed when all process
states Qij of task Ti are completed. Once assembly state Bi changed from 0 to 1, the task
Ti+1 will start. The update of status continues until all the assembly tasks are complet-
ed. An agent and the defined tool are required to execute a sub-task. When no task is
assigned to agent, all agents, and tools states equal 0, once tasks are assigned to agent,
and if the agent required a tool, then both states of the agent and the specific tool will
change to 1. Both tool and agent states have a constraint on the process state, where a
sub-task can start only when the assigned agent and tool of the task are available.

5. Conclusions. This paper presented semantic networks to represent knowledge of
three main modules in the HRC mold assembly operation: task assignment, task exe-
cution, and status monitoring modules. Besides, we also included the semantic networks
of the mold, tasks, tools, and agents that were acted as the basic components. The pro-
posed semantic networks presented the information related to all the basic components
and how they are connected to each module. The semantic networks presented were based
on the task assignment model and status recognition that was developed in our previous
study [6,7]. Although the presented semantic networks are at the conceptual stage, these
networks acted as the basis and are expected to contribute to integrating the three mod-
ules to develop a complete and practical HRC mold assembly operation.
The proposed semantic networks require further effort to realize the practical HRC

mold assembly using artificial intelligence (AI) approaches. AI helps us transfer human
knowledge expressed in the semantic networks into an intelligent system that enables real-
time decision-making via interaction between humans and cobots during the HRC mold
assembly operation. In the future, we will connect the developed modules based on the
semantic knowledge framework by applying the reinforcement learning technique.
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