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Abstract. Existing neural machine translation (NMT) models have achieved notable
results in recent years. However, due to the complexities of extracting and understanding
linguistic insights, we hypothesize that using a Fuzzy mechanism along with NMT will
make the process more efficacious in expressing different aspects of word meanings. In
this paper, we perform a preliminary study to improve the NMT models by integrating a
Fuzzy layer into the Transformer architecture, one of the state-of-the-art encoder-decoder
architectures. The experimental results on both the IWSLT’15 En-Vi and IWSLT’14 De-
En datasets deliver encouraging results proving that applying fuzzy logic to the NMT
models is a promising research direction.
Keywords: Neural machine translation, Transformer, Fuzzy neural network, Fuzzy
logic, Sequence-to-sequence

1. Introduction. Neural machine translation (NMT) [1, 2] is a relatively new technique
for machine translation (MT) and has achieved auspicious results in recent years thanks
to its sequence-to-sequence architecture [3, 4] and attention mechanism [5]. The most
familiar framework in NMT models is the encoder-decoder framework, where the encoder
is responsible for encoding the sentence in the source language into a context vector; then,
a decoder relies on it to envision the context and translate it into a sentence in the target
language. This framework has recently become the motivation of many studies on MT
tasks.

For the translation with low-resource datasets, the techniques such as data augmenta-
tion [6], back translation [7], and exploiting multilingual word similarity [8] are applied
to improving existing model performances. There is also the approach of integrating ad-
ditional structural semantic information in abstract meaning representation graphs into
the existing NMT model [9, 10], whose improvements rely on the understanding of the
data by making use of semantic information.

Since our language has been referred to as the “shell” of our thinking [11], we com-
municate in natural language by making vague but superficial relations to prior mental
representations [12, 13, 14]. As natural language is full of imprecision and vagueness, map-
ping terms and phrases between the source and target languages in translation tasks is
usually not a one-to-one correspondence. As a result, rather than thinking of our natural
language as a set of terms, Ross [15] suggested that we should consider it a collection
of interpretations, with elements representing our mental representations and cognitive
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models. Therefore, we hypothesize that fuzzy set theory can be applied more deeply to
natural language, especially in MT tasks. The NMT model then transforms the source
language into interpretations instead of word surfaces before translating into the target
language. We suppose this will improve the understanding and language modeling of NMT
models.
To the best of our knowledge, there have been no published studies on fuzzy logic to

machine translation prior to this study. Therefore, in this paper, we do a preliminary study
in this approach by integrating the theory in fuzzy logic into the Transformer architecture,
one of the most famous encoder-decoder architectures currently, to evaluate the feasibility
of fuzzy logic in MT tasks.
The structure of this paper is represented as follows. In Section 2 we review the funda-

mental of our proposed models. The proposed fuzzy integrated models will be discussed
in Section 3. Section 4 contains the main results of our experiments. Finally, we present
our conclusions from this approach and the future works in Section 5.

2. Background. In this section, we provide the background about Fuzzy Block and the
Transformer base architecture.

2.1. Fuzzy Block. The Fuzzy Block used in this paper, which is illustrated in Figure 1, is
inspired by Deng et al. [18]. It consists of two layers besides the input layer: Membership
Function Layer and Fuzzy Rule Layer. Assume the input dimension is n and the number
of linguistic labels for each input is m. The Membership Function Layer assigns m fuzzy
degrees, which correspond to m linguistic labels, to each input. Here Gaussian function
is utilized as membership functions, as in existing works [16, 17, 18, 19]. For each input
xi, 1 ≤ i ≤ n and linguistic term j, 1 ≤ j ≤ m, fuzzy degree fi,j of

fi,j = e

−(xi−µi,j)
2

σ2
i,j (1)

is assigned according to two learnable parameters µi,j and σi,j; therefore, this layer intro-
duces O(mn) parameters to the model.

Figure 1. Fuzzy Block structure

In the Fuzzy Rule Layer, we realize m IF-THEN fuzzy rules of the form
Rule j: IF x1 is A1,j AND x2 is A2,j . . . AND xn is An,j THEN yj is Bj

where 1 ≤ j ≤ m; xi is the i-th input, 1 ≤ i ≤ n; Ai,j is the fuzzy set of the j-th
label of the i-th input; yj is the j-th output, and Bj is the consequent fuzzy set of the
rule. In other words, the j-th fuzzy rule connects the j-th linguistic label of all inputs by
taking conjunction of the clauses of the form “xi is Ai,j.”, which is the value of membership
function assigned to xi by the j-th linguistic label, which is fi,j defined in the Membership
Function Layer.
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Each node in m nodes of the Fuzzy Rule Layer is responsible for the fuzzy degree of a
specific linguist label over all inputs by performing fuzzy “AND” operation, particularly,
the node j (1 ≤ j ≤ m) computes the product on fuzzy degrees of that linguist label over
all inputs:

yj =
n∏

i=1

fi,j (2)

The output of this layer is the fuzzy representation of dimension m of the fuzzy rule
antecedents. This fuzzy representation could be fused with neural representation of a
neural network as in the existing work [18], or be seen as features extracted from the
inputs, which is the approach taken by this paper. Compared to a rule-based fuzzy system,
the Fuzzy Block does not have a defuzzification process, because output fuzzy degrees are
taken as extracted “features”.

2.2. Transformer architecture. The Transformer architecture, which is proposed by
Vaswani et al. [5] and is illustrated in Figure 2, is used as the baseline for our proposed
models. The encoder consists of N identical layers, where the last layer output becomes
the context vector for cross-attention on other N decoder layers. Each layer in the encoder
has two sub-layers: multi-head self-attention, and a position-wise fully-connected feed-
forward network; in these sub-layers, residual connections, followed by layer normalization,
are employed. The decoder also has N identical layers, and each layer has three sub-layers:

Figure 2. Transformer architecture [5]
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masked multi-head self-attention; multi-head cross-attention, which receives keys and
queries from output context vectors of the encoder; and the position-wise fully-connected
feed-forward network; in each of these sub-layers, residual connections [20] and layer
normalization [21] of the result are also employed. Each token flows in N encoder and N
decoder layers with dimension dmodel.
The multi-head attention sub-layer uses the scaled dot product attention; the attention

matrix of the matrices of queries Q, keys K, and values V of dimension dk, dk, (Q and K
have the same dimension dk) and dv, respectively, are computed as

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (3)

The product of Q and KT is scaled by the factor 1√
dk

to address potential vanishing

gradient problem. In the case of self-attention, Q, K, and V are the same embedded data,
and in the case of cross-attention, Q would be the embedded output data, and K, V
would be the context vector. For the multi-head attention, instead of single time with key
dimension dk = dmodel, the attention function is performed h times, each with a separate
linear projection of Q, K, V into dimensions of dq/h, dk/h and dv/h, respectively, then h
results are concatenated and linear projected the last time to dimension dmodel:

Multihead(V,K,Q) = Concathi=1(Attention(QAi, KBi, V Ci))W (4)

where Ai, Bi, Ci are parameters in Rdk×
dk
h , Rdk×

dk
h and Rdk× dv

h , respectively, for 1 ≤ i ≤ h,
and W is in Rdv×dmodel . In the decoder, the masked version of multi-head self-attention
is performed to avoid attending to future tokens, by masking out all positions of illegal
connection in the input of the softmax in Equation (3).
Due to no recurrence and no convolution, positional encodings are added to the input

and output embeddings to inject relative and absolute positional information. Sine and
cosine functions of different frequencies are utilized as positional encodings PE:

PEp,2i = sin
( p

100002i/dmodel

)
PEp,2i+1 = cos

( p

100002i/dmodel

) (5)

since for any offset k, PEpos+k is representable as linear function of PEpos, and this allows
the model to easily attend by relative positions.

3. Proposed Models. Regarding the ability of fuzzy logic, we hypothesize that the
performance of existing neural machine translation models could be enhanced with the
Fuzzy Block since fuzzy logic rules are capable of capturing word surfaces into linguistic
terms and connect these terms. In this study, we propose ten hybrid models based on the
Transformer architecture and group them into three main groups. The grouping we use
depends on the position of the Fuzzy Block: inside the encoder layers for the first four
models, outside of the encoder layers for the following four models, and parallel to the
encoder layers for the last two models.
Figure 3 describes various places to use Fuzzy Block in the encoder side of the baseline

architecture for the first eight proposed models. The number inside the circle is the iden-
tifier for each proposed model. If a numbered circle is inside the encoder layer, painted
light-gray, N Fuzzy Blocks are inserted or substituted for N multi-head selfattention sub-
layer in all N encoder layers. Otherwise, only one Fuzzy Block is inserted or substituted
for the input embedding layer.
Figure 4 illustrates our model 9, where a Fuzzy Block is associated with the embedded

and encoded inputs in parallel with N encoder layers. The result context vector of the
encoder is the concatenation of the output of the last encoder layer and the output of the
Fuzzy Block; this modifies the dimension of the context vector, which makes the model



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.14, NO.1, 2023 33

Figure 3. Proposed models with Fuzzy Block in various placements

Figure 4. Model 9: Fuzzy Block parallel with N encoder layers

dimension of the encoder different from the dimension of the decoder. Depicted by Figure
5, we made a further effort to propose our model 10, where we add another Fuzzy Block
to the decoder side, parallel with N decoder layers. Its output is concatenated with the
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Figure 5. Model 10: Two Fuzzy Blocks parallel with N encoder layers
and N decoder layers

output of the last decoder layer before feeding into the final linear layer. Keeping input
information in models 9 and 10 is unnecessary as they are connected parallel to encoder
or decoder layers; therefore, residual connections are not involved in these models.
To implement residual connections in the first eight models, the output dimension m

of a Fuzzy Block should be the same as its input dimension n, i.e., m = n. For simplicity,
the assumption m = n = dmodel is produced for all proposed models, even in those models
that do not utilize it.

4. Experiment and Results. In this section, we present how we conduct experiments
to test our hypothesis, and the results of these experiments.

4.1. Datasets. In our experiments, we used two datasets: the IWSLT’15 English-Vietna-
mese dataset containing about 133K pairs of sentences, proposed by Cettolo et al. [22]; the
other dataset used in our experiment is the IWSLT’14 German-English dataset, containing
approximately 172K parallel sentences, which was proposed by Cettolo et al. [23]. We pre-
processed data before the training phase and split the corpus into training, development,
and test set. The statistic of the two datasets we used is shown in Table 1.

Table 1. IWSLT’15 English-Vietnamese and IWSLT’14 German-English
dataset summary

Dataset
#tokens

#sent #docs
En Vi

train
dev(tst2012)
test(tst2013)
test(tst2015)

2.44M
27,988
26,729
20,850

2.87M
34,298
33,683
26,235

133K
1,553
1,268
1,080

1,192
14
18
12

Dataset
#tokens

#sent #docs
De En

train
dev(dev2012)
test(tst2013)
test(tst2014)

3.24M
20.8K
22.4K
27.6K

3.46M
21.6K
23.3K
28.1K

172K
1,165
1,363
1,414

1,361
7
9
10
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4.2. Model configuration. In our study, we used the original Transformer architecture
[5] as a baseline to evaluate the efficacy of the proposed hybrid architectures. For sim-
plicity, we used the same values of optimizer and regularization in the original work [5]
for the baseline and our proposed models. Those values are

• Optimizer : Adam optimizer [24] with β1 = 0.9 and β2 = 0.98. We also used
warmup steps = 4000.

• Regularization: Apply dropout [25] to the output of each sub-layer before it is added
to the input of the next sub-layer, with the dropout rate p = 0.1.

We trained our models using Google Colab with one GPU P100-PCIE-16GB. We trained
for 60 epochs for each model, which took roughly 6 hours.

Because of hardware limitations, we implemented the Transformer model architecture
with dmodel = 128 and dff = 512, which means reducing the number of dimensions by a
quarter compared to the original architecture proposed by Vaswani et al. [5]. This will
significantly reduce the number of parameters in the model, thereby affecting the learning
speed and performance of the model. However, that will not affect the outcomes of this
study much, as we only focused on the performance differences of prototypes with the
same configuration.

For the evaluation metric, we used BLEU (Bilingual Evaluation Understudy) score [26]
to compare the similarity between hypothesis text and reference text.

4.3. Results. After experimenting with the Fuzzy Block integration models proposed
with two datasets, IWSLT’15 English-Vietnamese and IWSLT’14 German-English, the
results shown in Table 2 generally demonstrate that most models have a more elevated
BLEU than the baseline’s score. Specifically, for the English-Vietnamese dataset, the
scores are mainly higher in the range of 0.2-0.7; meanwhile, for the German-English
dataset, many of our models’ scores are 0.3-2.2 more increased than the baseline model’s.
However, some models have poor performance, which partly reveals the essence of the
Transformer architecture components. According to the results shown in Table 2:

• Putting Fuzzy Block in various positions inside the encoder does not convey a con-
spicuous impact when the BLEU score is almost not much different from the baseline.
Remarkably, substituting self-attention with Fuzzy Block (model 4) reduces Trans-
former’s translation capability when the results show that the BLEU declines by
about 1.0 score compared to the original Transformer.

• The translation quality differs greatly depending on the placement for putting Fuzzy
Block outside the encoder. For example, for IWSLT’15 English-Vietnamese, the best
result is 23.12 when putting Fuzzy Block at the output of the encoder (model 6), since

Table 2. Performances of different models

BLEU
Fuzzy Block placement Model

En-Vi De-En
No Fuzzy Block baseline 22.43 27.68

model 1 22.71 27.95
model 2 22.47 28.11
model 3 22.80 26.80

Fuzzy Block inside encoder

model 4 21.13 26.27
model 5 0.88 0.89
model 6 23.12 27.59
model 7 22.46 29.92

Fuzzy Block outside encoder

model 8 12.21 12.63
model 9 22.69 28.97

Fuzzy Block parallel with encoder/decoder
model 10 22.71 28.77
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with the dataset IWSLT’14 German-English, model 7 achieved an outstanding high
score of 29.92 when placing Fuzzy Block right after input embedding and positional
encoder. In contrast, putting Fuzzy Block in place of word embedding (model 5)
and right after the word embedding (model 8) eventually decreases the models’
recognition and translation capability.

• Finally, placing the Fuzzy Block outside the Transformer, in parallel with the encoder
and decoder layers (model 9, model 10) as a feature extractor layer, both provide
better results than the baseline, with an improvement of approximately 0.27 with the
dataset English-Vietnamese and 1.2 with the German-English dataset. In addition,
the results also indicate that putting one or two Fuzzy Blocks does not form much
difference when the scores of these two models are almost similar.

Figure 6 pictures the validation score accomplished over 60 epochs in training, and the
results show that the proposed models all have moderately stable performance for differ-
ent datasets. For example, in both datasets, English-Vietnamese and German-English,
models 9 and 10 achieve higher and earlier validation scores when compared to the original
Transformer since many other models have almost no difference in validation scores.
A comparison of the convergence of models during training with 60 epochs, with two

datasets, English-Vietnamese and German-English, is shown in Figure 7. The illustration
demonstrates that except for the poor performance of models 5 and 8, most other models

Figure 6. (color online) Validation over epoch of all models

Figure 7. (color online) Convergence analysis of training
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have a convergence rate that is not broadly distinct from the baseline model. Specifically,
model 9 and model 10 have much more rapid convergence than baseline for both datasets.
For the German-English dataset, model 7 also achieves the convergence rate nearly anal-
ogous to the two models where Fuzzy Block is used as the feature extractor.

5. Conclusions. This study experimented with the feasibility of applying fuzzy logic to
neural machine translation tasks by integrating Fuzzy Blocks into Transformer architec-
ture. As a result, most of our proposed hybrid models have more favorable translation
results when compared to the original Transformer architecture. Consequently, using fuzzy
logic for machine translation tasks is a probable research direction as it offers a novel ap-
proach to enhancing current models’ translation quality. However, our study stops at a
preliminary contention to assess the potential of this method. It is a premise for further
investigations on fuzzy logic language models and language representation in the future.
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