ICIC Ezxpress Letters
Part B: Azl)\?lications ICIC International (©)2022 ISSN 2185-2766
Volume 13, Number 9, September 2022 pp. 991-1000

MEMORY AND RESOURCE MANAGEMENT FOR MOBILE
PLATFORM IN HIGH PERFORMANCE COMPUTATION
USING DEEP LEARNING

DIPAK RAGHUNATH PATILY, MUKESH KUMAR GUPTA?, MANISH SHARMA®
AND MALAY BANERJEE?

!Department of Computer Engineering
Amrutvahini College of Engineering Sangamner
S.P. Pune University
University Road, Ganeshkhind, Pune, Pune, Maharashtra 411007, India
*Corresponding author: dipak.patil@avcoe.org; patildipak87@gmail.com

2Department of Electrical Engineering
4Chair Professor
Suresh Gyan Vihar University
Gyan Vihar Marg, Jagatpura, Jaipur, Rajasthan 302017, India
{ mukeshkr.gupta; malay.banerjee }@mygyanvihar.com

3Department of Computer Science and Engineering
Jaipur National University
Jaipur-Agra Bypass Near New RTO Office, Jagatpura, Jaipur 302017, India
director.naac@jnujaipur.ac.in

Received February 2022; accepted May 2022

ABSTRACT. Since the last decade, memory management systems have been a concern
in High-Performance Computing (HPC) and cloud computing. The number of supported
workloads in HPC' and Clouds environments causes the variation in-memory optimization
methods. Due to the heterogeneity of memory and resource locality, data migration in the
HPC becomes extremely crucial. In addition to the memory usage on cloud, eli-minate
the unutilized objects as well as transmission cost is reduced. Nevertheless, the migra-
tion of memory over the network is a very expensive and time-consuming process. This
paper describes, an efficient workload and memory management for mobile platforms
using deep learning algorithms is described. The Deep Convolutional Neural Network
(DCNN) has been carried out to improve the Quality of Service (QoS) parameters during
the execution. A most apparent target circumstance of the HPC is the batch processing
of a particular high-performance application through input data of the same size, with
a greater degree of heterogeneity and productivity. In particular, HPC pays attention to
speeding due to the memory system’s technological modernization and cache. However,
in the other direction, in Clouds, the focus is on maximizing resources’ availability and
allocation. The proposed algorithm reduces the network overhead by minimizing unnec-
essary data load from input file systems, and it has been selected according to the CNN
training module. In experimental analysis, the system reflects the reduction of execution
cost around 14% over the traditional data transmission CNN-TensorFlow. RESNET and
VGGNet framework have been used to investigate the efficiency of the proposed system.
RESNET demonstrates better results over VGGNet for both training and testing. The
proposed RESNET provides 99.69% accuracy, which is higher than other deep learning
frameworks such as GoogleNet, and CaffeNet. It also produces a low error of 0.31%,
which is lower than another deep learning framework.

Keywords: Memory management, HPC computing, TensorFlow, Deep convolutional
neural network

DOLI: 10.24507 /icicelb.13.09.991

991

992 D. R. PATIL, M. K. GUPTA, M. SHARMA AND M. BANERJEE

1. Introduction. In today’s era mobile edge registering is relied upon a million-dollar
industry with big business organizations arriving at $73 millions. The rise of organization
complexity frameworks is due to the growth of on-demand and adjustable services. Net-
work access suppliers should oblige traffic for web perusing, associated vehicles, real-time
videos, web-based gaming, voice over IP and consistently on Internet of Things (IoT) gad-
get transmissions [1]. New imperatives presented by on-request benefits as recorded above
require an extreme change of fixed and portable access organizations. There are signifi-
cant benefits to deep learning across conventional machine learning. Initially, when data
volumes are large, deep learning will deliver better efficiency. This implies that artificial
intelligence will take full advantage of the enormous amount of IoT data obtained. Where
data volumes are limited, conventional data mining techniques are superior. Even so,
when storage capacity is extremely high, the output dramatically degrades. In compar-
ison, through large data, deep learning demonstrates beneficial interoperability. Second,
deep learning is less dependent on functional technology [2]. Heterogeneous file systems
may accumulate differentiated knowledge categories that are spatial in nature. It is a
challenging task to manually extract characteristics of heterogeneous files. To extract
the features, conventional data found automatically expose architectures to hidden mean-
ings. Fortunately, in a layer-wise way, deep learning independently extracts the features
to describe input sequence with a hierarchical awareness campaign. Based on lower-level
functions derived from previous layer, each layer defines greater features. Deep learning
with convolutional hidden layers is one effective technique for maximizing the data. This
pre-allocates a continuous chunk of memory and assumes care of operating system mem-
ory management. There are numerous variations in the implementation of the memory
extraction and offload, to achieve small time complexity and competitive ratio [3]. This
does not provide optimization for deep learning instruction, however. This research fo-
cuses on optimizing the allocation of memory within the GPU memory pool by leveraging
the lifetime and size information of variables to achieve a better balance with low time
complexity. Following are the key contributions of this work.

e This work is applied to various mobile platforms’ heterogeneous file systems, which
provides dynamic load balancing.

e RESNET-100 deep learning framework has been used to implement CNN with 100
convolutional layers with numerous optimization functions that provide effective
memory compression.

e Resource matchmaking is another novelty of this work; according to the job size
system automatically selects the virtual machine for data storage.

The paper is organized as follows. Section 2 describes the related work. In Section 3
system architecture is presented along with aim and modules. Results and discussion are
explained in Section 4. Finally, the conclusion is presented in Section 5.

2. Related Work. The state-of-the-art survey on deep learning and machine learning
in mobile computing with automatic resource allocation, energy efficiency, and memory
management for mobile environments is presented in this section. A concern of optimiz-
ing the benefit of cloudlets management solution that accepts computing orders from
smartphone subscribes and fulfils these requests by exploiting active computing services
in different frameworks [4]. Due to the uncertain advent of different mobile cloud user’s
active involvement and difficulty in the computational allocation of resources, optimiz-
ing such a management platform and given operating benefit is very difficult. The model
does not require any descriptive statistics of the related control system, unlike the ex-
isting method, and is effective for execution in optimization and allocation practices. A
new supervised learning method is applied to dealing with resource allocation supported
by cloud computing. The novel approach [5] proposed to build a various deep learning
frameworks implementation to reduce the memory consumption and network overhead

ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.13, NO.9, 2022 993

during data transmission. Deep Learning (DL) methodology proposed as the constituent
technique of machine learning can be incorporated into mobile computing methodologies
to construct perceptive edge for dynamic, most straightforward task management and
maintenance [6].

The implementation shows how to exploit computer vision techniques to increase hard-
ware design and optimize computational complexity. For collaborative training, the ma-
chine learning system MXNet (or “mix-net”) [7] is used. According to its low memory
size, MXNet is preferably added to edge computers. The autonomous deep Q-learning
approach [8] greatly increases the efficiency of computational offloading by minimizing
service computational latency [9]. To access its enormous computing power, mobile fog
interplays with conventional cloud. This segment explores the work on computing unload-
ing in the cloud infrastructure. A complex allocation and deep classification algorithms
focused on autonomous control of virtual resources depending on their ratio of minimum
allocated resources, confidence and achieve reserved unused resources from the Virtual
Networks (VNs). Instead, utilizing reinforcement learning algorithm based on the total
service quality efficiency or resource usage of their subscribers, the VNs independently
monitor their resource allocation [10].

A dynamic resource allocation model composed of mobile devices, cloudlets and public
cloud, refers to as hybrid mobile cloud computing to schedule data-intensive applications
in an integrated computing resource environment. Offloading heavy tasks to the cloud will
efficiently decrease energy consumption [11]. On cloud infrastructure, dynamic resource
allocation and memory for different frameworks the programmed asset and memory man-
agement was present, which is an important stage that empowers deep portable asset
designation in frameworks [12]. From the literature review it is seen that there are still
some flaws in those systems, such as high-power consumption during data transmission,
heavy network overhead due to massive data selection, high memory consumption, and
high time complexity due to single process overrun. Hence in this work, an efficient
workload and memory management for mobile platforms using deep learning algorithms
is described. The DCNN has been carried out to improve the Quality of Service (QoS)
parameters during the execution.

3. System Architecture. The aim of this work is to design and develop an approach
for effective memory management for mobile technology with resource utilization using
deep learning approach. An automatic memory management, effective resource utilization,
reducing network overhead during data offloading between local devices to data server
using deep learning algorithms is described.

Figure 1 illustrates three modules as described below.

1) TensorFlow Library Module: In the first module the interface is developed and cus-
tomized on TensorFlow. It provide the access interfaces and customized for every deep
learning tool.

2) Data Processing Module: This is the middleware module of system which maintains
available resources. This module executes processing tasks with free memory space, and
synchronizes deep learning process from the combined model to reach the target of code
execution on system on chip. The memory distracter will automatically check memory
request from application and provide available space in memory. That improves system
efficiency for both private as well as public cloud environments.

3) Cloud Storage Module: This is used to train deep NN models, store the trained results,
and all file dataset in the training processes. For the proposed work NVIDIA is used
for deployment which has GTX 1080 GPUs.

994 D. R. PATIL, M. K. GUPTA, M. SHARMA AND M. BANERJEE

Data [Convolution_l}—h[Pooling 1]»—*[Com'nlution_n Pooling n]

—= Deep CNN using X

input Device Caffe & TensorFlow Dense layer

[Moda |

r

[Coding blocks]

Cloud
Storage

FIGURE 1. System architecture

Using this research work, the problems and limitation encountered earlier as enlisted
below are solved.

e High network overhead during the data transmission which leads to increased time
complexity as well as error rate.

e High level hardware resource dependency.

e Accuracy issues for object or various file system detection.

e Too much response time required to process the existing data.

4. Results and Discussion.

4.1. Code implementation. In the experimental analysis various deep learning frame-
works with inbuilt libraries are used. The entire system carries python implementation
with around 1500 Line of Codes (LoC), including the libraries for TensorFlow. All im-
plementation work is done on NVIDIA GFORCE GTX (TITAN) with 12GB GDDR5X,
Intel(R) Xeon ES 1607V 2.3GHz with 16GB DDR3-1866 ECC.

4.2. Dataset and deep models. During implementation phase mobile files system in-
cluding heterogeneous dataset is used, including .txt files, log files, image objects and
some supportive files. Flicker is another dataset used for processing large image objects
in execution. For deep framework, some CNN models like AlexNet, VGGNet, GoogleNet,
RESNET, CaffeNet are selected.

4.3. Memory optimization. Figures 2-6 represent the variation of size of the blocks in
MB with number of blocks where block is smallest amount of data retrieved.

Figure 2 depicts the per-iteration time approximately stays consistent as depth exten-
sions, around 30% over regular iteration cost. It presents time of written repetition on
epoch size 100 and batch size is 1280. In this phase TensorFlow is used for entire data
processing that effectively reduces the optimization time. Figure 3 describes time and
memory required for execution when on epoch size 100 and batch size is 4096.

Figure 4 demonstrates the memory and cost consumption using GPU execution with
TensorFlow. It reduces the memory consumption around 35%, while 40% communication
cost more than regular execution. It takes default epoch size as well as batch size as 1280.

Figure 5 demonstrates the memory and cost consumption using GPU execution with
TensorFlow. It reduces the memory consumption around 30%, while 35% communication
cost more than regular execution. It takes default epoch size as well as batch size as 4096.

ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.13, NO.9, 2022 995

V100, batch=1280
MBs

6000

5000 f
4000© —o— optimized

30001 —— regular

2000 - 'W
1000 +

1 blocks

FIGURE 2. Iteration time per memory optimization

V100, batch=4096
MBs

12000

10000}
8000 | —— optimized
6000 | regular
4000 |

2000 +

H blocks

F1GURE 3. Time evaluation per memory size when batch size is 4096

GTX1080, batch=1280
MBs

6000
5000
4000 -
—o— optimized

e —=— regular

2000

1000 W

- . 1 blocks
5 10 15

FiGURE 4. Memory and time evaluation when batch size is 1280 with GPU

Using the resources in this kit, one can trade off most of this memory used with com-
putation to allow data work into storage more easily. For feed-forward prototypes, it
was hard to squeeze more than 10x new designs into our GPU, with just a 20 percent
improvement in computing time.

996 D. R. PATIL, M. K. GUPTA, M. SHARMA AND M. BANERJEE

GTX1080, batch=4096
MBs

8000
6000 |
4000} o
t —=— optimized
[—=— regular
2000
E
S Y SN SN SR SN Y 0
5 10 15 20

FIGURE 5. Memory and time evaluation with batch size is 4096 with GPU

Iteration Peak Memory

MBs
6000 [
5000 F
40001 —o— optimized
3000} —=— regular

2000

1000

P R T — 1 blocks
5 10 15

FIGURE 6. Testing memory usage and running time for RESNET with
different numbers of layers. Batch size 1280, GTX1080.

time to transform graph
seconds

1400 |
1200 |
1000 |
800 |
600
400 |

200 +

H blocks
00

50 100 150

FIGURE 7. Number of data compiling time by system using TensorFlow

The memory intensive aspect of training deep neural networks is to calculate the re-
gression of the failure through linear regression. It is feasible to compute the gradient
at minimal cognitive cost by clustering nodes in the computation graph defined by our
model and re-computing the portions of the graph in between other nodes during back-
propagation. When teaching deep bite neural networks composed of n layers, one can
minimize the memory consumption to O(sqrt(n)) in this manner, at the expense of one
incremental forward move. This repository includes an application of this feature in Ten-
sorFlow, using the TensorFlow graph editor to dynamically rewrite the calculation graphs

ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.13, NO.9, 2022 997

of the backward pass. Figure 7 depicts the time to compile the graph can be slow. In
particular, RESNET with 200 blocks takes 30 mins to compile.

Figure 8 describes how time should be increased, when data load has enlarged for various
deep models. Figure 9 shows how data processing time varies for various deep models
without TensorFlow. It sometimes depends on current heterogeneous configuration and
CPU process utilization.

45 4

a0 4

35 4

w
[=]
1

i CaffeNet

P
wn

HGoogleNet

=]
=]
L

H AlexNet

Time {minute)

LVGGNet

=
un

B RESNET

=
(=]
L

wn

o
I

100 200 500 1000
Data size[MB)

F1GURE 8. Data processing time for various deep models using TensorFlow

.
=1

L
=}

w
=1

[
th

Ed CaffeNet
H GoogleNet

Time [minute)
m
=

H AlexNet
M VGGNet

=
n

§ RESNET

=
=1

[

=}

Data size (MB)

FiGURE 9. Data processing time for various deep models without TensorFlow

4.4. Memory management. The RESENT (32, 50, 101 and 152) version has been used
for experimental investigation of the proposed system including 4G network. The major
factors are execution time (including data processing, data uploading and downloading,
etc.), memory consumption shown in Figure 10 to Figure 14.

Figure 10 demonstrates a default time reduction by the proposed methodology after
using all deep modelling with TensorFlow. Based on that experiment it is concluded that
RESNET can reduce around 30% time than default execution time.

Figure 11 illustrated the data uploading time required for five different deep learning
frameworks by using TensorFlow. The RESNET provides slightly effective results than
other deep learning frameworks. It provides around 20% effective results more than others.
The compressive efficiency evaluation has been done on mobile computing file systems that
is initially considered as input of system.

998 D. R. PATIL, M. K. GUPTA, M. SHARMA AND M. BANERJEE

Time in %

03

0.25 |

Ot W TF-CaffeNet
HTF-GoogleNet
HTF-AlexNet

015 |
HTFVGGNet
@ TF-RESNET

01 |

0.05

o

TF-CaffeNet TF-GoogleNet TF-Alexhet TF-VGGNet TF-RESNET
Data size(MB)

F1GURE 10. Default time reduction of deep learning model using TensorFlow

18

—a— CaffeNet
—&— GoogleNet
16
—— AlexNet
—am VGGNEE
14
== RESNET
—
J‘_.z’ 12
=2
o 10
=
=
[_‘
8
6
4
2
!__
]
500 KB 100 MB 500 MB

Data size (MB)

F1GURE 11. Data uploading TensorFlow with different deep learning models

18 CaffeNet

GoogleNet

[
=)

—i— AlexNet

14 ——VGGNet
. —4— RESNET
%12
=0
E
S

6

4

7]

0

500 KB 100 MB 500 MB

Data size (MB)

FiGURE 12. Data downloading TensorFlow with different deep learning models

ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.13, NO.9, 2022 999

Figure 12 describes the data downloading time required for five different deep learning
frameworks by using TensorFlow. The RESNET provides slightly effective results than
other deep learning frameworks. It provides almost 16.5% effective results more than
others. The overall execution demonstrates success of system with heterogeneous data
type or file system including various deep learning frameworks. The entire process could
take large amount of cost for execution, and sometimes generates data dimensionality
problem like data leakage.

Figure 13 demonstrates the data processing success rate with all frameworks. It shows
RESNET gives higher accuracy over the other deep learning frameworks. Similarly, da-
ta reduction and data leakage are another problem that have occurred during execution.
Figure 14 depicted the error rate of all frameworks using CNN. The data leakage has mea-
sured for all frameworks presented in Figure 14. It is observed that the CaffeNet produced
high data leakage and RESNET and VGGNet generated low data leakage problem.

M Accuracy

995
N i
99.4

CaffeNet GoogleNet AlexNet VGGNet RESMET

Frameworks

F1GURE 13. Accuracy for data processing with various deep learning frameworks

06

0.4
H Error Rate
0.2 +
0.1
o

Caffenet GoogleNet AlexNet WGGNet RESMET

Error Rate
[=]
w

Frameworks

FIGURE 14. Error rate for data processing with various deep learning frameworks

1000 D. R. PATIL, M. K. GUPTA, M. SHARMA AND M. BANERJEE

5. Conclusions. The experiments investigated the performance, good configurability
and original deep learning process of the system by installing the application with Tensor-
Flow frameworks. In this work the system’s overheads are also assessed along with exist-
ing system constraints. According to the overall analysis, the RESNET provides 99.69%
accuracy, which is higher than other deep learning frameworks such as GoogleNet, and
CaffeNet. It also produces a low error of 0.31%, which is lower than another deep learn-
ing framework. The overall extensive experiments show the proposed model can reduce
almost 2.2% upload and download time using RESNET with a similar dataset. For
future direction, apply ensemble deep learning classifiers for reducing memory problem
which occurs sometimes, when input data is complex or imbalance.

Acknowledgement. We would like to thank all the anonymous reviewers for their in-
sightful comments and suggestions that helped us to improve the quality of this paper.

REFERENCES

[1] M. G. Alam, M. Hassan, M. Z. Uddin, A. S. Almogren and G. Fortino, Autonomic computation
offloading in mobile edge for IoT applications, Future Generation Computing System, vol.90, pp.149-
157, 2019.

[2] D. Frajberg, C. Bernaschina, C. Marone and P. Fraternali, Accelerating deep learning inference
on mobile systems, in Artificial Intelligence and Mobile Services — AIMS 2019. Lecture Notes in
Computer Science, D. Wang and L. J. Zhang (eds.), Cham, Springer, DOI: 10.1007/978-3-030-
23367-9_9, 2019.

[3] Z. Ali, S. Khaf, Z. H. Abbas, G. Abbas, F. Muhammad and S. Kim, A deep learning approach
for mobility-aware and energy-efficient resource allocation in MEC, IEEE Access, vol.8, pp.179530-
179546, 2020.

[4] W. Fang, X. Yao, X. Zhao, J. Yin and N. Xiong, A stochastic control approach to maximize profit
on service provisioning for mobile cloudlet platforms, IEEE Trans. Systems, Man, and Cybernetics:
Systems, vol.48, no.4, pp.522-534, 2018.

[5] S. Goudarzi, M. H. Anisi, H. Ahmadi and A. L. Musavian, Dynamic resource allocation model for
distribution operations using SDN, IFEFE Internet of Things Journal, vol.8, no.2, pp.976-988, 2021.

[6] J. Zhang, J. Xiao, J. Wan, J. Yang, Y. Ren, H. Si, A. L. Zhou and H. Tu, A parallel strategy for
convolutional neural network based on heterogeneous cluster for mobile information system, Mobile
Information System, vol.2017, pp.1-12, 2017.

[7] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang and Z. Zhang, MXNet:
A flexible and efficient machine learning library for heterogeneous distributed systems, arXiv.oryg,
arXiv: 1512.01274, 2015.

[8] T. Li, X. Zhu and X. Liu, An end-to-end network slicing algorithm based on deep Q-learning for 5G
network, IEEE Access, vol.8, pp.122229-122240, 2020.

[9] L. Wang and Z. Yuan, Efficient task offloading strategy for low-energy base station groups in mobile
edge computing, International Journal of Innovative Computing, Information and Control, vol.17,
no.5, pp.1531-1548, DOL: 10.24507 /ijicic.17.05.1531, 2021.

[10] Y. Cui, Y. Liang and R. Wang, Resource allocation algorithm with multi-platform intelligent of-
floading in D2D-enabled vehicular networks, IEEE Access, vol.7, pp.21246-21253, 2019.

[11] M. Alkhalaileh, R. Calheiros, Q. Nguyen and B. Javadi, Dynamic resource allocation in hybrid
mobile cloud computing for data-intensive applications, in Green, Pervasive, and Cloud Computing.
GPC 2019. Lecture Notes in Computer Science, R. Miani, L. Camargos, B. Zarpelao, E. Rosas and
R. Pasquini (eds.), Cham, Springer, DOI: 10.1007/978-3-030-19223-5_13, 2019.

[12] D. Patil and M. Sharma, Dynamic resource allocation and memory management using machine
learning for cloud environments, International Journal of Advanced Trends in Computer Science
and Engineering, vol.9, no.4, pp.5921-5927, 2020.

