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Abstract. The World Health Organization found that more than 34 million people suf-
fer from hearing loss and these people need to use sign language to communicate. Hence,
the sign language recognition system is proposed to communicate with hearing loss people
and others. In this paper, we aim to propose an end-to-end system to recognize the dy-
namic Thai fingerspelling from video. The proposed system includes two main processes.
First, we use the YOLOv5 algorithm for the human detection task. Subsequently, a uni-
form distribution method is proposed to select the robust frames before applying robust
frames to the detection algorithm. Second, we propose dynamic fingerspelling recognition
that consists of two deep learning architectures: convolutional neural network (CNN) and
long short-term memory (LSTM). We then combine CNN and LSTM, called CNN-LSTM
architecture, followed by the recognition block. The recognition block comprises dropout,
global average pooling, and softmax layers. For the CNN architectures, we evaluated
three CNNs: MobileNetV2, ResNet50, and DenseNet201. We found that the proposed
ResNet50-LSTM architecture achieved an accuracy of 88.42% on the test set of the dy-
namic Thai fingerspelling dataset and also prevented the overfitting problem.
Keywords: Dynamic fingerspelling recognition, Convolutional neural network, Long
short-term memory, Sequence pattern, Dynamic Thai fingerspelling dataset

1. Introduction. Language is essential for the communication of people worldwide. Ac-
cording to a World Health Organization survey in 2021 [1], over 34 million people world-
wide suffer from hearing loss, and the number of people with hearing loss is increasing.
These people need to use sign language for primary communication, thus resulting in
the development of technology to learn sign language from the movements of the hands
and arms to convey meaning. The sign language of each country around the world has a
different identity.
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Deep learning research proposes a communication tool for effective communication be-
tween persons with disabilities and people without disabilities. Islam et al. [2] proposed
deep learning to recognize English sign language. Their research used the convolutional
neural network (CNN) to extract features of hand images and learn them with the support
vector machine (SVM) method. Phong and Ribeiro [3] used a capsule network to detect
hands and recognize them at the same time. However, there are different methods to find
the region of interest (ROI), such as Faster R-CNN and YOLO [4,5]. These methods use
CNN as the backbone, giving the algorithm to find ROI and recognize that particular
ROI. In [3], their method is a static recognition of hand signs, which means that their
proposed method can recognize from only one image. It is not possible to recognize a
dynamic hand sign.
Related work. In 2016, Chansri and Srinonchat [6] presented a method for detecting

hands from complex backgrounds based on the depth image captured by the Kinect sensor
for high brightness value objects close to the Kinect sensor. It can detect the hand area
because hands are closest to the Kinect sensor. The hand area was then extracted using
a histogram of oriented gradients (HOG) and recognized by a neural network.
In 2017, Pariwat and Seresangtakul [7] proposed a method to recognize Thai sign

language by performing only on the static hand sign language with a total of 15 Thai
symbols. The Thai sign language data used in the test were hand-only images taken
against a blue background, allowing segment hands by transforming the color space from
RGB to HSV and then transforming HSV to grayscale. Hence, images were transformed
from grayscale into binary images by selecting a threshold value of 0.45 to extract the
hand area. Then, global and local features were extracted. Finally, all the features were
learned using the SVM method with the RBF kernel and achieved with 91.20% accuracy.
In 2019, Nakjai and Katanyukul [8] presented a method of hand sign recognition for

Thai fingerspelling. Their research used a hand extraction method by transforming RGB
color images to YCbCr. Then, the skin region was examined by the brightness values
from the chroma channels. Then, extract the hand area and learn with CNN, which can
recognize 25 classes. The results showed a recognition accuracy of 91.26%.
The limitation of Thai fingerspelling sign language is static hand sign which is only 15

Thai alphabets [7] and in a recognition process designed to recognize only from one image
so that it is unable to recognize dynamic hand signs as it requires more than one input
image.
In 2020, Sugandi et al. [9] proposed hand gesture recognition using a back-propagation

neural network (BPNN) based on visual tracking in a real-time environment. They used
skin color detection based on a YCbCr color filter to extract the hand region from the
background and then converted it to grayscale and binary images to speed up the pro-
cessing time. The hand feature from the binary image of the hand region was divided
into six regions. Finally, six regions of the hand feature of each gesture became the input
data of the BPNN. The results showed that the BPNN achieved an accuracy of 86.67%.
In 2021, Pariwat and Seresangtakul [10] designed a Thai sign language recognition

system that could recognize dynamic hand signs by receiving video inputs, which can
recognize Thai hand sign in up to 42 Thai symbols. Moreover, Nakjai and Katanyukul
[11] designed an automatic Thai finger spelling transcription system that can transcribe
Thai sign language from the video by being able to classify Thai sign language with 20
Thai characters and 20 vowels. Their system consists of three steps: alphabet separation,
sign recognition, sign-sequence classification.
In this paper, an automated end-to-end fingerspelling recognition system is proposed to

solve human detection and dynamic fingerspelling recognition tasks. First, we select ro-
bust frames from the video using the uniform distribution method and send those frames
to detect humans using the YOLOv5 algorithm automatically. The sequence frames are



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.13, NO.9, 2022 951

given to extract the sequence pattern and temporal features using CNN and LSTM ar-
chitectures. For that, we combine state-of-the-art CNN with an LSTM network, called
CNN-LSTM, including MobileNetV2-LSTM, ResNet50-LSTM, and DenseNet201-LSTM.
Further, we add a recognition block containing; 1) a dropout layer to prevent the over-
fitting, 2) a global average pooling layer to average output and reduce the dimension of
feature maps, and 3) the softmax activation function to recognize dynamic fingerspelling
from video. The proposed system also enhances the accuracy and computation time. In
addition, we collected 3,025 videos of dynamic Thai fingerspelling, consisting of 42 Thai
alphabets, that were taken from 14 volunteers who are proficient in Thai sign language.

The rest of this paper is organized as follows. Section 2 presents the end-to-end system
of dynamic fingerspelling recognition. The Thai fingerspelling dataset is described in Sec-
tion 3. The experimental results are presented in Section 4. The conclusion and future
direction are concluded in the last section.

2. Dynamic Fingerspelling Recognition System Architecture. We divided the
proposed architecture into three main parts: frame selection, human detection, and dy-
namic fingerspelling recognition. The proposed architecture is shown in Figure 1 and the
details of the three parts are in the following sections.

Figure 1. Illustration of the dynamic fingerspelling recognition system

2.1. Frame selection. Generally, videos were recorded with unequal length. In this pa-
per, we first cut frames at the start and end of the video with 10% and 5%, respectively,
because these parts contain unnecessary information. Second, we computed the jump
ratio over the video frame using the following equation: jump ratio = floor(No. of all
frames/No. of selected frames), where No. of selected frames in our experiment is 32.
For example, if the jump ratio was 5, we used frames no. 1, 6, 11, . . . , N , where N is the
last frame. Finally, we randomly selected only 32 frames using the uniform distribution
method, in which the probability of each frame is equal chances to select.

2.2. Human detection. To build an end-to-end fingerspelling recognition system, this
paper first aims to detect humans from the videos using a deep learning approach. We
proposed to use the fast and accurate YOLOv5 (You Only Look Once) algorithm because
we required an algorithm that detects humans in a real-time condition. In YOLOv5
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[12], the latest update algorithm, the pre-trained model1 that was trained on the COCO
dataset was proposed to detect the human from the video. In this paper, we did not
experiment on human detection. We only applied the YOLOv5 algorithm.
As shown in Figure 1, after we extracted images from the video, we applied the YOLOv5

algorithm to detecting humans as the region of interest (ROI) and sending that ROI to
the CNN model.

2.3. Dynamic fingerspelling recognition. Dynamic fingerspelling recognition com-
bines two deep learning approaches: CNN and RNN. The details of the deep learning
approaches are described as follows.
CNN. We used different architectures of CNN: MobileNetV2, ResNet50, and Dense-

Net201, to extract robust deep features from a short video. In this research, the video
was first extracted into a single frame (image) and then given to the CNNs to extract
the spatial features from the image. We briefly described three CNN architectures in the
following section.
MobileNetV2. We used the lightweight MobileNetV2 architecture in our experiments.

MobileNet was invented for mobile visual applications [13] because it used depthwise sep-
arable convolution to reduce the number of CNN parameters. In addition, MobileNetV2
was designed based on an inverted residual structure and linear bottleneck. The bottle-
neck block contains three layers (1× 1 conv2D with ReLU6, depthwise convolution with
ReLU6, and linear 1 × 1 conv2D) and each layer has the expansion factor that expands
the convolutional layers. Further, the residual was proposed to connect two bottleneck
layers, like ResNet architecture.
ResNet50. Plain architectures, such as VGGNet and AlexNet, could have problems of

vanished and exploding gradients when using very deep layers. The residual network
(ResNet) was proposed to solve these problems by introducing the shortcut connection
that does not transform the input from the previous to the following building blocks (called
bottleneck design) [14]. In the bottleneck, the 1×1 conv2D is added at the beginning and
end of the block to reduce the number of parameters in the network. In our experiments,
we used ResNet50 which contains only 50 layers.
DenseNet201. The idea of connections between layers was invented in DenseNet201

and was the same as the ResNet. In the DenseNet architecture [15], instead of shortcut
connections, dense connections were used to connect between the current and following
layers. Hence, the feature maps from the current layer were concatenated and passed to
the next layers during forwarding propagation. At the same time, the backpropagation
process sent back the error signal from the final classification layer to the earlier layers
to adjust the parameters. In this paper, we used the DenseNet201 architecture that con-
tained convolution, pooling, four dense blocks, three transition layers, and a classification
layer.
In our proposed network, the last layer of CNN architectures was the global average

pooling (GAP) because the fully-connected layer (FC) and softmax function were removed
from the CNN architectures. After applying the GAP layer, the size of the feature map
in each CNN was as follows: MobileNetV2 = 1× 1280, ResNet50 = 1× 2048, and Dense-
Net201 = 1× 1920. Furthermore, we extracted 32 images from the video and then com-
puted sequence patterns from sequence images. Hence, the sequence patterns given to the
recurrent neural network (RNN) of each CNN were as follows: MobileNetV2 = 32×1280,
ResNet50 = 32× 2048, and DenseNet201 = 32× 1920.
RNN. The RNN architecture was proposed to learn the sequence pattern of the spatial

features extracted by CNN architectures. In the RNN architecture, we added dropout and
GAP layers to avoid the overfitting problem and to decrease the size of the feature map

1The YOLOv5 pre-trained model was downloaded from the website: https://github.com/ultralytics/
yolov5.
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before giving them to the softmax layer. We experimented with two RNN architectures:
LSTM and GRU. The details are presented as follows.

Long short-term memory. LSTM is a sequential network proposed to learn sequence
patterns and address the vanishing gradient problem [16]. It has memory blocks that
contain three gates: input, output, and forget gates. The LSTM also has a memory cell
that can be recurrently self-connected. The memory blocks are designed to control the
information inside the LSTM unit that has an advantage in remembering past information
and forgetting unnecessary information from the network.

Gated recurrent unit. The GRU was designed to be similar to the LSTM network, but
simpler than it [17]. The GRU network could also solve the vanishing gradient problem
that constantly occurs when using the RNN architecture. It contains only two gates: reset
(short-term memory) and update gates (long-term memory). The GRU can store sequence
patterns from long ago and release irrelevant patterns to the output. Further, the GRU
trains faster than the LSTM network. In this paper, we compared the performance of
two hidden state sizes (32 and 64 hidden states) of LSTM and GRU.

Recognition block. After extracting the temporal features using RNN architecture,
we decided to include two extra layers followed by the softmax layer – 1) the dropout
layer to prevent the model from overfitting problems, and 2) a layer to calculate the
average output of each feature map using the GAP operation. It also could reduce the
dimension of the feature map. The softmax layer is the last layer that computes the final
probabilities and recognizes the output.

3. Dynamic Thai Fingerspelling Dataset. Dynamic Thai fingerspelling is a short
video database with 3,025 videos and 42 classes. The videos of dynamic Thai fingerspelling
was recorded using a DSLR camera using a frame rate of 50 frames per second. We
recorded the videos with 14 volunteers who can use Thai sign language fluently. The
recorded length of the videos was around 1-5 seconds. Examples of the DTF dataset are
shown in Figure 2.

Figure 2. Examples of dynamic Thai fingerspelling dataset

4. Experimental Results and Discussion. The proposed framework was implement-
ed based on the TensorFlow platform running on Intel(R) Core(TM) i7-4790 Processor
3.6GHz, 16GB DDR4 RAM. We trained all deep learning models with these parameters:
stochastic gradient descent (SGD) optimizer, the momentum of 0.9, rectified linear unit
(ReLU) activation function, and 500 epochs training. Furthermore, we performed the 5-
fold cross-validation (5-CV), test accuracy, and testing time as for the evaluation metrics.

4.1. Experiments with CNN models using different learning rates. We experi-
mented by extracting the deep sequence features using three CNN models: MobileNetV2,
ResNet50, and DenseNet201. Then, all features were given to the LSTM architecture us-
ing 32 units to extract temporal features and classify by using the softmax function. In
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this experiment, the CNN parameters were adjusted according to the previous section.
Further, we mainly study the impact of the learning rate used while training the CNN-
LSTM model using 0.001, 0.0001, and adaptive learning rate that reduces the value from
0.01 to 0.0001. We trained the CNN models on the training set and used the validation
set for evaluation. The experimental results are shown in Table 1.

Table 1. Experiment with different learning rates

CNN-LSTM model
Test accuracy (%) with different learning rates

0.001 0.0001 Adaptive
MobileNetV2-LSTM 81.98 80.98 79.01
DenseNet201-LSTM 82.97 72.14 77.76
ResNet50-LSTM 87.93 82.14 81.81

Table 1 shows the experimental results from three CNN models, when using a learning
rate of 0.001 which achieved the highest accuracy on the validation set. As a result,
the best CNN model was the ResNet50 which achieved 87.93% accuracy. Note that we
subsequently used the learning rate of 0.001 while training the CNN-LSTM models in the
following experiments.

4.2. Experiments with CNNs and RNNs using different RNN sizes. In this
section, we evaluated the performance of the CNNs and RNNs (LSTM and GRU) using
two different numbers of units: 32 and 64 units.
As shown in Table 2, it undoubtedly shows that the LSTM, when using both 32 and

64 units, outperformed the GRU. The maximum accuracy of the ResNet50-GRU with
64 units was only 77.68%. In contrast, the ResNet50-LSTM with 64 units had the best
performance and achieved 89.16% accuracy on the validation set. In addition, the accuracy
obtained above 81% when the CNN model combines with the LSTM. Note that we chose
the number of units in the LSTM as 64 units in the following experiments.

Table 2. Comparison between CNN-LSTM and CNN-GRU with different
RNN units

CNN models
No. of units in RNNs

LSTM (%) GRU (%)
32 64 32 64

MobileNetV2 81.98 83.96 71.23 72.23
DenseNet201 82.97 84.62 72.14 74.24
ResNet50 87.93 89.16 77.52 77.68

4.3. Experiments with CNN-LSTM. In this experiment, as shown in Figure 1, we
decided to add the extra densely connected layer with 64 units between the GAP layer
and softmax activation function. In the densely connected layer, the dot product was
applied as a non-linear transformation between the weighted parameters and the output
of the GAP layer.
The experimental results comparing CNN-LSTM and CNN-LSTM with one densely

connected layer are shown in Table 3. The results showed that the LSTM without a
densely connected layer outperformed LSTM with one densely connected layer. As a
result, the ResNet50-LSTM achieved the best accuracy on both the 5-CV and test set
with 89.15% and 88.42%. We confirmed that the proposed network with a combination
between CNN and LSTM prevented the overfitting problem.
The validation loss values of CNN-LSTM architecture are shown in Figure 3. Figure

3(a) shows that the loss values decreased quickly at approximately epoch 50. Also, the
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Table 3. Comparison between CNN-LSTM and CNN-LSTM with a dense-
ly connected layer

CNN
models

LSTM LSTM with a densely connected layer

5-CV
Test

accuracy
(%)

Testing time
(seconds
per video)

5-CV
Test

accuracy
(%)

Testing time
(seconds
per video)

MobileNetV2 83.95 ± 2.525 83.41 6.70 s 82.54 ± 3.006 82.14 6.73 s
DenseNet201 84.64 ± 2.462 82.97 7.04 s 79.45 ± 1.426 76.85 7.07 s
ResNet50 89.15 ± 2.571 88.42 9.50 s 86.45 ± 2.146 85.45 9.53 s

(a) (b)

Figure 3. Illustration of the validation loss values of CNN-LSTM models.
The loss values of CNN-LSTM (a) without and (b) with a densely connected
layer.

loss values of Figure 3(a) are smoother than Figure 3(b). Consequently, the loss values of
Figure 3(a) indicated that the CNN-LSTM without a densely connected layer was trained
with the optimal architectures and parameters.

Additionally, the receiver operating characteristic (ROC) curves for CNN models are
shown in Figure 4. The ResNet50 had the greatest AUC (0.9891) in dynamic fingerspelling
recognition.

4.4. Accuracy of fusion CNNs-LSTM architecture. In other papers, the fusion
architecture between two CNNs and LSTM outperformed the single CNN and LSTM. We
demonstrate the impact of the fusion CNN-LSTM architectures, as shown in Table 4.

Table 4 shows the results of experiments with combinations of CNNs: MobileNetV2+
DenseNet201, MobileNetV2+ResNet50, and ResNet50+DenseNet201, using the concate-
nation operation before sending the sequence patterns to the LSTM network. The combi-
nation of MobileNetV2 and ResNet50 outperformed other combination CNNs. The fusion
CNNs (MobileNetV2+ResNet50)-LSTM achieved an accuracy of 89.42% and 88.62% on
the 5-CV and test sets, respectively.

Consequently, the Fusion CNN-LSTM showed slightly higher accuracy compared with
the single CNN-LSTM, but the result was not significant at p < 0.05. However, the Fusion
CNN-LSTM architecture spent much more time on recognition than using only a single
CNN-LSTM architecture.

5. Conclusion. We presented an automated end-to-end dynamic fingerspelling recogni-
tion system that contains frame selection, human detection, and fingerspelling recogni-
tion. We focused on the deep learning approaches: the YOLOv5 algorithm for human
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Figure 4. Illustration of the ROC curves for dynamic fingerspelling recog-
nition using different CNNs

Table 4. Evaluation of fusion CNNs-LSTM

Fusion CNNs

LSTM

5-CV
Test

accuracy
(%)

Testing time
(seconds
per video)

MobileNetV2+DenseNet201 85.29± 3.395 84.29 13.74 s
MobileNetV2+ResNet50 89.42± 3.670 88.62 16.20 s
ResNet50+DenseNet201 88.36± 2.917 87.76 16.54 s

detection and CNN-LSTM architecture for recognizing the dynamic fingerspelling from
the video. First, 32 video frames were selected using the uniform distribution method
and sent to extract the sequence patterns using CNN architecture. Second, the sequence
patterns were given to the LSTM architecture, followed by three layers: dropout, GAP,
and softmax activation function. Moreover, we mainly evaluated the recognition per-
formance of CNN-LSTM architectures. The results obtained from the ResNet50-LSTM
architecture achieved the highest accuracy on the validation set. We experimented with
the 5-CV and test set to confirm that the ResNet50-LSTM architecture outperformed
MoblieNetV2-LSTM and DenseNet201-LSTM architectures. Additionally, we compared
the MobileNetV2-LSTM with the fusion CNN-LSTM architecture. The results showed
that the fusion CNN-LSTM slightly outperformed MobileNetV2-LSTM. The fusion CNN-
LSTM spends more computational time on recognition. As a result, we are not recom-
mending the use of fusion CNN-LSTM architecture for real-time video fingerspelling recog-
nition.
In the future work, we plan to apply the proposed method to recognizing multiple words

and sentences of the Thai sign language. The lightweight 3D-CNN might be included in
future experiments to enhance accuracy and computation time.
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