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Abstract. Rapid diagnosis increases the chance of a patient being cured of symp-
toms. This applies especially to diabetic diseases where there is a high risk of diabetic
retinopathy, which will lead to blindness if not treated promptly. Artificial intelligent
techniques are proposed to diagnose diabetic retinopathy. In this paper, we recognize dia-
betic retinopathy from retinal images using meta-learning Convolutional Neural Networks
(CNNs). Before training state-of-the-art CNNs, data resampling methods were proposed
to select training and validation sets, and then the CNNs were trained on the selected
training data. The simple data augmentation techniques were applied when training the
CNNs to increase the training data pattern. We compared two ensemble learning meth-
ods: meta-learner and unweighted average, to show that the ensemble methods always
performed better than when using a single CNN. The results showed that training the
CNN model with the random data method outperformed other data resampling methods.
However, data augmentation techniques did not present an outstanding result on diabetic
retinopathy. In conclusion, the ensemble learning method using the meta-learner method
resulted in the best accuracy when compared with unweighted average method. The pro-
posed meta-learner CNNs achieved an accuracy of 86.32%.
Keywords: Data resampling method, Lightweight convolutional neural networks, En-
semble learning method, Meta-learning method, Diabetic retinopathy recognition

1. Introduction. According to the World Health Organization (WHO), the world’s pop-
ulation with diabetes is constantly on the rise [1]. Furthermore, according to data collected
from a study in Henan Provincial People’s Hospital in China, diabetic retinopathy was
diagnosed in 580 (45.2%) out of 1,284 diabetic patients [2]. Also, other studies have shown
that people with diabetes have a high risk of contracting diabetic retinopathy, a diabetic
complication that can lead to significant vision loss or blindness. However, early detec-
tion of diabetic retinopathy greatly increases the chances of recovery while also helping
to mitigate or even prevent the damage to a diagnosed diabetic’s vision [3].

To make such early detection, though, ophthalmologists rely on examining patient
retinal images to diagnose retinal diseases which can be a time-consuming process. Un-
fortunately, if a doctor is overworked with too many patients, a proper examination and
diagnosis of a patient’s retinal images can take too long to help the patient. Because
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the symptoms of different eye diseases can present very similarly, the images must be
examined by a trained ophthalmologist in order to make a correct diagnosis of diabetic
retinopathy [4]. However, due to advancements in both hardware technology and artificial
intelligence, retinal identification [5] and eye automated diagnostic tools have been devel-
oped to detect diabetic retinopathy and its different stages by using retinal images [6].
Thus, the proper application of new diagnostic tools could help ophthalmologists reduce
the time it takes to make a final positive diagnosis and begin a patient’s treatment.
Related Work. Sarki et al. [4] proposed automated detection of mild and multi-

class diabetic eye diseases using Convolutional Neural Network (CNN) architectures. Two
CNN models, VGG16 and InceptionV3, were proposed to train retinal images and classify
them into five classes. The results showed that the VGG16 outperformed InceptionV3. In
addition, they evaluated the CNNs on the pre-trained and fine-tuning models. They found
that the fine-tuning models of the VGG16 achieved the best accuracy on the diabetic eye
diseases dataset.
Chen et al. [7] proposed a deep feature learning method for glaucoma detection. In

their method, they initially proposed six CNN architectures. It contains five multilay-
er perceptron convolutional layers and one fully-connected layer. In the output layer,
the softmax regression was applied. They also applied dropout with the value of 0.5
and data augmentation techniques: image translations and horizontal reflections. Sec-
ondly, the concatenated structure of CNNs was proposed to combine five CNNs. Their
proposed method was evaluated on ORIGA and SCES datasets, the glaucoma fundus
image datasets. The result showed that the concatenated structure of CNNs achieved an
accuracy of 83.8% and 89.8% on the ORIGA and SCES datasets, respectively.
Nazir et al. [1] presented results of detecting diabetic eye disease from retinal images

using deep learning. The first process involved preparing the dataset and feature extrac-
tion, while the second process involved improving a custom CenterNet model trained for
ophthalmic classification. The DenseNet-100 was used as the feature extraction method.
CenterNet was employed to localize and classify disease lesions. The recognition perfor-
mance of this method was 97.93% on the APTOS-2019 dataset and 98.10% on the Indian
Diabetic Retinopathy image Dataset (IDRiD).
For diabetic retinopathy recognition, Doshi et al. [8] proposed deep CNN architectures

to recognize diabetic retinopathy from retinal images that contain five classes. They pro-
posed a new CNN architecture that contains 14 layers and two layers of the fully-connected
layer. The Leaky rectifier activation function was used in training. Hattiya et al. [9] pro-
posed various CNN architectures to create the CNN models and recognize them as two
classes. During image processing process, they transformed the retinal images from RGB
color space into grayscale, HSV, L*a*b*, and YCbCr color spaces before sending them
to train with CNNs. However, training the CNN using AlexNet architecture with RGB
color space achieved the highest accuracy on 98.42% and 81.32% on training and test sets,
respectively.
For the ensemble learning method, Qummar et al. [6] proposed ensemble CNNs that

contain five CNNs to classify diabetic retinopathy into five classes: ResNet50, Inception-
V3, Xception, DenseNet121, and DenseNet169. Mahmoud and Yaroshchak [10] proposed
bagging ensemble learning that combines the output from three CNN architectures and
uses a weighted average method to calculate the output. The random training data with
replacement method was used in the bagging process. Hence, training data in set one
can appear again in other sets. In their experiments, the retinal images were divided into
four classes. The results showed that the bagging ensemble learning method increased
accuracy compared with single CNN.
Contribution. This paper presents meta-learning CNNs architecture to recognize di-

abetic retinopathy from the retinal images. First, we compared four data resampling
methods: random data, fixed data, 5K-fold, and bootstrap. Second, the resampling data
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from the first step is given to create the robust CNN models with lightweight CNNs:
MobileNetV2, EfficientNetB1, and NASNetMobile. In this step, we also performed the
simple data augmentation techniques: rotation, zoom, vertical flip, and horizontal flip,
that augment the images without distortion. Finally, ensemble learning methods, includ-
ing meta-learner and unweighted average, were compared. In this meta-learner, the var-
ious machine learning methods (logistic regression: LR, support vector machine: SVM,
K-nearest neighbors: KNN, and random forest: RF) were proposed to learn the proba-
bility values computed from the lightweight CNNs and classify the retinal images. While
the unweighted average method averages the probability values, the maximum probability
value was selected as the predicted label.

Paper Outline. The detail of the meta-learning CNNs architectures is explained in
Section 2. The experimental results and conclusion are presented in Section 3 and Section
4.

2. Meta-Learning Convolutional Neural Networks Architecture. In this section,
we present the meta-learning CNNs to recognize retinal images on the Diabetic Retinopa-
thy (DR) dataset. The meta-learning CNNs architecture is designed to learn from the
probabilities of state-of-the-art CNNs. It consists of two levels: CNN-learner and meta-
learner. The CNN-learner trains on the training data, which is the retinal images. Fur-
ther, the meta-learner trains on the probability values computed by CNN learners. The
framework of the proposed method is shown in Figure 1.

Figure 1. Illustration of the meta-learning CNNs architecture

2.1. Data resampling methods. The outstanding representation data will increase the
robustness of the model for the recognition tasks. In this research, we mainly focus on
selecting training and validation sets, while comparing the effectiveness of four various
data resampling methods: random data, fixed data, 5K-fold, and bootstrap. The data
resampling methods contain four methods as follows.

Random data. Under the random data method, we randomly allocated 80% of the
data to the training set and 20% to the validation set. We performed five separate random
data allocations to create five distinct training and validation sets, as shown in Figure
2(a).

Fixed data. The data was randomly selected only one time. This method selected
80% for training and 20% for validation sets. Further, CNN models were trained with the
same training set, as shown in Figure 2(b).

5K-fold. The idea of splitting the data into five folds, called the 5K-fold method, was
applied. For the 5K-fold method, each fold contains data of around 20%. The training
set contains 4-fold, while the validation set contains only 1-fold. The validation set was
selected from fold five until fold one in each training [11], as shown in Figure 2(c).

Bootstrap. This method allocated the training of data in accordance with the replace-
ment method [12], which also allows for the use of duplicate images to be allocated to
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(a) (b)

(c) (d)

Figure 2. Illustration of the data resampling methods: (a) Random data,
(b) fixed data, (c) 5K-fold, and (d) Bootstrap

sets. In our experiment, the training dataset allocated equal amounts of data to the fixed
data method, random data method, and 5K-fold method. However, the amount of data
allocated to the validation set was dependent on the images not allocated to the training
dataset. As a result, the amount of data in the validation data sets could vary with each
separate random allocation, as shown in Figure 2(d).

2.2. Convolutional neural networks.
MobileNetV2. MobileNetV2 was proposed by Sandler et al. [13]. It is a lightweight

CNN that includes inverted residual structure and linear bottlenecks. The bottlenecks
block contains three transforming layers: convolution 2D, depthwise separable convolu-
tion, and linear convolution 2D. Further, the shortcut connections are used to link between
two bottlenecks. When comparing the MobileNetV1 and V2, the MobileNetV2 has lower
parameters and computation time than MobileNetV1.
EfficientNetB1. EfficientNetB1 was proposed by Tan and Le [14]. It has eight mod-

els, including EfficientNetB0-EfficientNetB7. The model EfficientNetB0 is the smallest
size, while the EfficientNetB7 is the largest. The model of the EfficientNet is scaling by
considering four factors: width, depth, resolution, and compound methods, to balance the
network. The EfficientNetB0 was designed to be similar to MnasNet, but scaling factors
were applied that directly affected the size of the model.
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NASNetMobile. Zoph et al. [15] proposed a search architecture, called Neural Archi-
tecture Search Network (NASNet). It contains two types of cells: normal and reduction
cells. First, the normal cells were built by searching several convolution operations using
a recurrent neural network and reinforcement learning. Second, the spatial dimension of
the feature maps from the normal cell was reduced and was called the reduction cell. Fi-
nally, the normal cell and reduction cell were stacked together. Furthermore, the normal
cell could compute more than one time. The NASNetMobile has few cells repeats and
filters in the network.

2.3. Ensemble learning methods. We examined ensemble learning methods to recog-
nize diabetic retinopathy from the retinal images, including meta-learning and unweighted
average. A short description of the ensemble methods is as follows.

Meta-learner. The meta-learner [16] was proposed to learn the probabilities that were
the output of state-of-the-art CNN-learners. It was the second level of our proposed archi-
tecture. For the meta-learner, we investigated four machine learning techniques consisting
of LR, SVM, KNN, and RF to learn the output probabilities of the CNNs and create ro-
bust models.

Unweighted average. The unweighted average is the standard method that is com-
puted by averaging the output probabilities of the classifiers [17]. In this paper, we aver-
aged the output probabilities of the CNNs that were calculated using the softmax function.
Then, the highest probability value was selected as the final prediction.

3. Experimental Setting and Results. In this research, all the retinal images were
transformed into 224×224×3 pixels resolution according to the three CNN architectures,
EfficientNetB1, MobileNetV2, and NASNetMobile architectures. The pre-trained models
were used and we trained the CNN models with these hyperparameters: epoch = 100,
batch size = 16, learning rate = 0.01, and optimizer = Stochastic Gradient Descent (SGD).
The TensorFlow library was used as the deep learning platform. All experiments were
run on the Linux operating system using Intel(R) Core-15, 2320 CPU @ 3.00GHz, 16GB
RAM, and GPU GeForce GTX 1060Ti.

3.1. Diabetic retinopathy dataset. Three benchmark DR datasets were published on
the Kaggle website: APTOS 2019 blindness detection, diabetic retinopathy, and diabetic
retinopathy detection. In these datasets, the retinal images with labels were verified by the
experts of the Aravind eye hospital [8]. We randomly selected 23,510 retinal images and
divided them into training and test sets with 80 : 20 ratios. The retinal images contain
11,444 non-diabetic retinopathy and 12,066 diabetic retinopathy images, as shown in
Figure 3.

(a) (b)

Figure 3. Examples of the (a) non-diabetic retinopathy and (b) diabetic
retinopathy images
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3.2. Experiments on lightweight CNNs. In this experiment, three lightweight CNN
models, MobileNetV2, EfficientNetB1, and NASNetMobile, were examined. We also ap-
plied basic Data Augmentation (DA) techniques: rotation, zoom, vertical flip, and hori-
zontal flip. The DR dataset was divided into training and test sets with 18,808 and 4,702
images, respectively. The training set was split into training and validation sets using four
data resampling methods: random data, fixed data, 5K-fold, and bootstrap. Five exper-
iments were used to evaluate the CNN models, and the average accuracy and standard
deviation were reported.
The experimental results of the data resampling showed that the random data method

outperformed fixed data, 5K-fold, and bootstrap methods on the test set. It can be seen
from Table 1 that all data resampling methods achieved higher test accuracy than the
average accuracy on the validation set. As a result, the EfficientNetB1, when choosing
the training set with a random data method, achieved the highest accuracy with 84.05%.
The worst performances were obtained when training the CNN model with applied data
augmentation techniques but did give better results with the validation set.

Table 1. Performance of the CNNs and data resampling methods on the
DR dataset

CNN
architectures

DA
Random data Fixed data 5K-fold Bootstrap

Validation
(%)

Test
(%)

Validation
(%)

Test
(%)

Validation
(%)

Test
(%)

Validation
(%)

Test
(%)

MobileNetV2
No 75.21±0.78 84.77 75.16±0.35 82.41 75.43±0.69 84.13 73.55±0.32 82.35
Yes 78.98±0.57 82.45 79.46±0.48 80.41 79.28±0.45 82.26 77.68±0.33 81.01

EfficientNetB1
No 76.49±1.17 84.05 76.10±0.50 83.24 76.32±0.48 83.60 75.18±0.17 81.62
Yes 78.97±1.09 82.18 78.01±0.24 82.41 78.18±0.39 82.88 76.87±1.14 80.92

NASNetMobile
No 81.55±1.22 83.33 73.46±1.48 81.05 73.36±0.18 83.05 72.65±0.46 81.41
Yes 77.03±1.77 83.59 75.51±0.48 81.71 75.28±0.89 82.18 73.99±0.64 81.20

3.3. Experiments on ensemble learning methods. We examined the performance of
ensemble learning using an unweighted average method on the test set of the DR dataset.
First, we discovered the best number of ensemble CNN models by combining 1, 2, 3, 4,
and 5 CNN models. Second, we trained the CNN models with and without applying
data augmentation techniques to confirming that the data augmentation techniques do
not impact the recognition performance.
In the data augmentation experiment, four data augmentation techniques were pro-

posed: horizontal flip, vertical flip, rotation, and zoom. The random rotation value be-
tween 0-90◦ and zoom in and out with a random value of [1 − 0.2, 1 + 0.2] were applied
to the retinal images.
In the first experiment, the accuracies of different numbers of ensemble CNN models

obtained in the first experiment are shown in Figure 4. It can be seen that size of the
ensemble CNNs affected the accuracy of the result. We found that using five ensemble
CNN models achieved the highest result when training with different data resampling
methods.
In the second experiment, we selected only five ensemble models according to the results,

as shown in Table 2. The results showed that the ensemble CNNs with MobileNetV2,
when resampling data using random data, outperformed other N architectures and other
data resampling data methods. An accuracy of 86.01% was achieved. Also, comparing
the ensemble CNNs with the single CNN confirmed that the ensemble CNNs present the
best performance with approximately 1.2%.

3.4. Experiments on CNNs with the meta-learning method. To examine the
meta-learning method, we first received the probability values of the retinal images that
were computed using the fine-tuned CNN models. Second, the probability values were
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Figure 4. The performance of the ensemble CNNs when trained with
various data resampling methods

Table 2. The performance of diabetic retinopathy recognition experiments
on three CNN architectures with different ensemble learning methods and
data augmentation techniques

CNN architectures DA
Accuracy (%) of data resampling methods

Random data Fixed data 5K-fold Bootstrap

MobileNetV2
No 86.01 83.50 84.96 85.41
Yes 82.50 81.34 82.80 82.77

EfficientNetB1
No 85.79 84.26 85.09 83.54
Yes 82.34 82.65 84.75 83.13

NASNetMobile
No 85.28 82.96 84.69 83.86
Yes 83.18 82.20 84.01 83.50

transferred to the machine learning techniques to create the robust models. We also ad-
justed the machine learning models with the following parameters. SVM: C = 1, and
gamma = 0.1, kernel = RBF, KNN: K = 19, distance value = Euclidean, and weight =
uniform, RF: estimators = 800, max depth = 30, min samples leaf = 4, min samples split
= 10, min features = auto, and bootstrap = true.

Table 3 shows the results of experiments with the meta-learner methods. We found that
when applying the data resampling method using random data, the methods consistently
outperformed other data resampling methods. In this experiment, the highest accuracy
was obtained when the retinal images were trained with MobileNetV2 and then transferred
the probability values to the LR method to create the meta-learner model. It achieved an
accuracy of 86.32% on the DR dataset. Consequently, the accuracy of the meta-learner
method was slightly higher than the ensemble CNN method when evaluated on the DR
dataset.

The confusion matrices of the unweighted average method used MobileNetV2 as a CNN
architecture and meta-learning method combined with logistic regression on the diabet-
ic retinopathy dataset, as shown in Figure 5. The meta-learning method technique has
the advantage of decreasing classification errors. Recognition performance and incorrect
classification from DR to non-DR class were reduced from 248 to 214 instances.

We also considered the testing time of the ensemble CNN and meta-learning methods.
The testing time showed that the NASNetMobile spent more computation time on the
testing set of the DR dataset with both ensemble CNN and meta-learning methods. It
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Table 3. The accuracy performance of the meta-learning method experi-
ments on four machine learning techniques and three CNN architectures

Machine learning
techniques

CNN
architectures

Accuracy (%) of data resampling methods
Random data Fixed data 5K-fold Bootstrap

Logistic regression
MobileNetV2 86.32 83.16 84.56 85.09
EfficientNetB1 85.52 84.24 84.90 83.39
NASNetMobile 84.81 82.82 84.88 83.60

Support vector
machine

MobileNetV2 86.13 83.26 84.18 85.07
EfficientNetB1 85.60 84.64 85.28 83.33
NASNetMobile 84.92 81.94 84.62 83.69

K-nearest neighbors
MobileNetV2 86.03 83.26 84.45 85.16
EfficientNetB1 85.69 84.54 85.30 84.03
NASNetMobile 84.86 81.43 84.64 83.86

Random forest
MobileNetV2 85.58 82.69 84.45 85.84
EfficientNetB1 85.73 84.18 85.03 84.67
NASNetMobile 84.47 82.58 85.05 84.24

(a) (b)

Figure 5. Illustrated confusion matrices of (a) the unweighted average
method using MobileNetV2 architecture as a CNN architecture and (b)
meta-learning method combined with logistic regression on the diabetic
retinopathy dataset

spent around four milliseconds per image on the ensemble CNNs and meta-learning meth-
ods. As a result, MobileNetV2 took only approximately 13 milliseconds. Compared to
the training time of single CNN, the MobileNetV2 was trained faster than EfficientNetB1
and NASNetMobile. MobileNetV2 spent 5 hours and 42 minutes when EfficientNetB1
and NASNetMobile trained for 13 hours 34 minutes and 17 hours 31 minutes, respective-
ly. Consequently, the meta-learning and ensemble CNNs methods computed almost the
same testing time.

4. Conclusions. This paper proposed the meta-learning CNNs framework to recognize
diabetic retinopathy images, which were recognized as two classes: diabetic retinopathy
and non-diabetic retinopathy. We mainly experimented with data resampling methods,
including random data, fixed data, 5K-fold, and bootstrap.
For the experiments, we first proposed three state-of-the-art lightweight CNN architec-

tures: MobileNetV2, EfficientNetB1, and NASNetMobile, to create a robust CNN model
by training on the retinal images. Second, we created the ensemble CNNs learning with an
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unweighted average method. In the ensemble CNNs, five CNN models were investigated.
Finally, the meta-learning method was proposed, which is the stacking of CNN models
and machine learning methods. We compared the experiments with four machine learning
methods: LR, SVM, KNN, and RF. We especially experimented with various data resam-
pling methods, including random data, fixed data, 5K-fold, and bootstrap. We discovered
that the random data method consistently outperformed other data resampling methods.

In addition, the experimental results obtained showed that the lightweight MobileNetV2
outperformed the EfficientNetB1 and NASNetMobile in terms of accuracy and testing
time. The meta-learning method, which stacks the MobileNetV2 and LR methods, slightly
improved accuracy compared with the ensemble CNNs. Both methods achieved around
86% accuracy on the diabetic retinopathy dataset.

In future work, we aim to create the fusion CNNs and extract the deep features using
both CNN and Recurrent Neural Networks (RNNs).
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