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Abstract. In this paper a study of numerical approximate solution to solve the following
fuzzy Volterra integral equations (FVIE) is presented: 1) Linear fuzzy Volterra integral
equation (LFVIE); 2) Non-linear fuzzy Volterra integral equation (NLFVIE); 3) Linear
fuzzy Volterra integro differential equation (LINTGRO); 4) Non-linear fuzzy Volterra in-
tegro differential equation (NLINTGRO). Finally, linear non-polynomial spline algorithm
is presented to solve some examples which implemented by using software MathCad15.
Keywords: Fuzzy Volterra integral equation, Linear non-polynomial spline, Linear and
non-linear fuzzy Volterra integro differential equation

1. Introduction. The concept of fuzzy numbers was originally introduced by Zadeh
[1]. Fuzzy number was developed by Mizumoto and Tanaka [2], Nahmias [3], Dubois and
Prade [4] for all fuzzy numbers as a location of α-levels, 0 ≤ α ≤ 1. Alternative approaches
were later suggested by Goetschel and Voxman [5], Matloka [6] and others. The notions of
fuzzy integral equation with fuzzy control have attracted researchers. Different definitions
of fuzzy integrals have been established and extended to fuzzy calculus. The fuzzy integral
equation theory played a key role in various fields of applied mathematics, physics, engi-
neering, etc. Therefore, the study of fuzzy integral equations has been rapidly advancing
in recent years [7-11]. In recent years, researches on fuzzy integral equation from both the-
oretical and numerical points of view have been developed. A numerical solution of some
fuzzy integral equation using approximation methods, such as collocation method was
produced [7]. [8] proposed a technique to remove the singular behavior of Lane-Emden
equation and provide the high precision approximation solution by cubic non-polynomial
spline method. Among the approximation methods for solving fuzzy Volterra integral
equations (FVIE) in [9] the homotopy analysis method is semi analytic to solve the linear
and non-linear fuzzy Volterra integral equation. Recently, Padmapriya et al. [10] inves-
tigated the numerical solution of fuzzy fractional delay differential equation using the
proposed novel technique. [11] studied the homotopy perturbation Sumudu transform
method is employed to find the analytical solution of non-linear integro differential equa-
tion. Finally in [12] Hasan and Nasif used cubic trigonometric spline for solving non-linear
Volterra integral equation. In this paper, we drive linear non-polynomial spline to solve
main classes of FVIE (linear, non-linear and integrodifferential). The paper is organized
as follows: in Section 2 preliminaries of fuzzy sets are given, in Section 3 parametric form
of FVIE is described, in Section 4 linear non-polynomial spline functions are derived, in
Section 5 illustrated examples show the accuracy of the method and finally conclusion is
given in Section 6.
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2. Preliminaries. In this section, basic notations used in the fuzzy operations are in-
troduced [13].

Definition 2.1. If X is a collection of objects denoted by x, then a fuzzy set Ã in X is
a set of ordered pairs denoted and defined by Ã =

{(
x, µÃ(x)

)
/x ∈ X

}
, where µÃ(x) is

called membership function or grade of membership (also degree of compatibility or degree
of truth) of x in Ã which maps X to [0, 1].

Definition 2.2. α-cut of a fuzzy Ã set is a crisp set Aα and defined by Aα or Ã[α] ={
x/µÃ(x) ≥ α

}
, where Ã =

{(
x, µÃ(x)

)}
.

Definition 2.3. A fuzzy set Ã is said to be convex fuzzy set if Aα is a convex set for all
α ∈ (0, 1].

Definition 2.4. A fuzzy set Ã is said to be normal fuzzy set if there exists an element
(α, 1) ∈ Ã.

Definition 2.5. If a fuzzy set is convex, normalized and its membership function, defined
in R, is piecewise continuous, then it is called as fuzzy number. A triangular fuzzy number
Ã is denoted by (a1, a2, a3) and it is a fuzzy set

(
x, µÃ(x)

)
where

µÃ(x) =


x− a1
a2 − a1

, a1 ≤ x ≤ a2

a3 − x

a3 − a2
, a2 ≤ x ≤ a3

0, otherwise

Ã is called positive triangular fuzzy number if a1 > 0 and negative triangular fuzzy number
if a3 < 0.

3. Parametric Form of FVIE. The second kind VIE [9] is defined below:

u(x) = f(x) + λ

∫ X

0

k(x, t, u(t))dt (1)

where λ is a positive fuzzy parameter, k is an arbitrary function defined over [a, b]× [a, b]
where a ≤ t, x ≤ b, t > x and f(x) is a given function of x ∈ [a, b] with u(x) as the
unknown function to be determined. The fuzzy VIE of the second kind according to [9]:

u(x, r) = f(x, r) + λ

∫ x

0

k(x, t, u(t, r); r)dt (2)

where

u(x) = u(x, r) = [u(x, r), ū(x, r)]

f(x) = f(x, r) =
[
f(x, r), f̄(x, r)

]
k(x, t, u(t)) = k(x, t, u(t); r) =

[
k (x, t, u(t, r); r) , k̄ (x, t, ū(t, r); r)

]
u(t) = u(t, r) = [u(t, r), ū(t, r)]

 (3)

here 0 ≤ r ≤ 1, then solution of Equation (1) can be obtained by solving the following
two integral equations:

u(x, r) = f(x, r) + λ

∫ x

0

k
(
x, t, u(t, r); r

)
dt

ū(x, r) = f̄(x, r) + λ

∫ x

0

k̄
(
x, t, ū(t, r); r

)
dt

 (4)
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4. Linear Non-Polynomial Splines [14]. Let ∆ = {r0, r1, r2, . . . , rn} be partition of
interval [a, b], and S(∆) denote the set of piecewise polynomials on subinterval Ii =
[ri, ri+1] of partition ∆. We consider linear non-polynomial spline method for finding
approximation solution of fuzzy Volterra integral equation (FVIE) of the second kind
considering the grid point ri on the interval [a, b] as follows:

a = r0 < r1 < r2 < · · · < rn (5)

ri = r0 + ih, i = 0, 1, 2, . . . , n (6)

h =
b− a

n
(7)

where n is appositive integer. Let u(r) be the exact solution of Equation (2) and Si(r)
be an approximation to ui = u(ri) obtained by the segment Si(r), each non-polynomial
spline segment Si(r) has the form

Si(r) = ai sin k(r − ri) + bi cos k(r − ri) + ci(r − ri) + di (8)

where ai, bi, ci and di are constant and k is the frequency of the trigonometric function
which will be used to raise the accuracy of method. We consider the following relations:

Si(ri) = u(ri)

S ′
i(ri) = kbi + ci ≈ u′

i(ri)

S ′′
i (ri) = −k2bi ≈ u′′

i (ri)

S ′′′
i (ri) = −k3ai ≈ u′′′

i (ri)

Now, we can obtain the values of ai, bi, ci and di as follows:

ai =
−1

k3
u′′′(ri) (9)

bi =
−1

k2
u′′(ri) (10)

ci = u′(ri) +
−1

k3
u′′′(ri) (11)

di = u(ri) +
1

k
u′′(ri) (12)

for i = 0, 1, 2, . . . , n.

The method.
Consider the (FVIE) of the second kind to solve we differentiate Equation (2) three

times with respect to r then put r = a to get [12]:

u0 = u(a) = f(a) (13)

u′
0 = u′(a) = f ′(a) + k(a, a)u(a) (14)

Let E(x, t, u(t, r); r) =
∂k(x, t, u(t, r))

∂r

u′′(r) = f ′′
0 (r) +

∫ x

0

∂E(x, t, u(t, r); r)

∂r
dt+ 2E(x, t, u(t, r); r)

u′′
0(a) = u′′(a) = f ′′

0 (a) + 2E(a, a, u(a)) (15)

Let F (x, t, u(t, r); r) =
∂E(x, t, u(t, r); r)

∂r

u′′′(r) = f ′′′(r) +

∫ x

0

∂F (x, t, u(t, r); r)

∂r
dt+ 3F (x, t, u(t, r); r)

u′′′
0 (a) = f ′′′(a) + 3F (a, a, a, u(a)) (16)
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Thus, we can approximate the solution of (FVIE) of second kind as the following
algorithm.

Algorithm
Step1: Input h = (b− a)/n, ri = r0 + ih, i = 0, 1, . . . , n.
Step2: Compute ai, bi, ci and di by substituting Equations (13)-(16) in Equations

(9)-(12).
Step3: Evaluate S0(r) by using Step2 and Equation (8) for i = 0.
Step4: Approximate u1 = u(r1) ≈ S0(r1)s.
Step5: Do the following steps for i = 1 to n− 1.
Step6: Compute ai, bi, ci and di by using Equations (9)-(12) and replacing u0(ri),

u
′′
0(ri) and u

′′′
0 (ri) in S(ri), S

′′
(ri) and S

′′′
(ri).

Step7: Approximate ui+1 = Si(ri+1).

5. Illustrative Examples. In this section, four test examples are illustrated below to
solve main classes of FVIE (linear, non-linear, integrodifferential), s(x, r) the approximate
solution by the proposed method and error = |u(x, r)− s(x, r)| where u(x, r) the exact
solution.
Example (1): Consider LFVIE

u(x, r) = f(x, r)+
∫ x

0
xtu(r, t)dt, where f(x, r) =

[
x3− x6

5

(
r2+ r

)
;x3− x6

5

(
4− r3− r

)]
.

The exact solution is u(x, r) =
[
x3
(
r2 + r

)
;x3

(
4− r3 − r

)]
[7].

Table 1. Results of Example (1)

r u(x, r) s(x, r) Error ū(x, r) s̄(x, r) Error

0 0.0040000 0.0039992 8.0× 10−7 0.0000000 0.0000000 0.0000000

1/3 0.0036962 0.0036291 5.9× 10−7 0.0004440 0.0004433 1.1× 10−6

2/3 0.0030370 0.0030429 5.9× 10−5 0.0011111 0.0010946 1.6× 10−5

1 0.0020000 0.0020484 4.8× 10−5 0.0020000 0.0019190 8.0× 10−5

Example (2): Consider LINTGRO
y′(x, r) = g(x, r) +

∫ x

0
y(t, r)dt, where g(x, r) = [(r − 1)x, (1 − r)x], y(x, 0) = −x,

y′(x, 0) = x. The exact solution y(x, r) = [(r − 1) sinh (x), (1− r) sinh (x)] [9].

Table 2. Results of Example (2)

r u(x, r) s(x, r) Error ū(x, r) s̄(x, r) Error

0 −0.0100166 −0.1000000 1.66× 10−4 0.10016675 0.1000000 1.66× 10−4

0.2 −0.0801334 −0.0800000 1.33× 10−4 0.08013340 0.0800000 1.33× 10−4

0.4 −0.0601167 −0.0600000 1.00× 10−4 0.06011672 0.0600000 1.00× 10−4

0.6 −0.0400667 −0.0400000 6.67× 10−5 0.04006670 0.0400000 6.67× 10−5

0.8 −0.0200333 −0.0200000 3.33× 10−5 0.02003335 0.0200000 3.33× 10−5

1 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

Example (3): Consider NLFVIE

u(x, r) = f(x, r) +
∫ x

0
x2(1 − 2t)u2(t, r)dt, where f(x, r) =

[
(2− r)2

(
x6

2
+ x5 + x3 +

11x2

32

)
− 11x2

32
+ rx+ r, r2

(
x6

2
+x5+x3 + 11x2

32

)
+(2− r)

(
−11
32

(2− r)x2+x+1
)]

. The exact

solution u(x, r) = [r(x+ 1); (2− r)(x+ 1)] [15].
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Table 3. Results of Example (3)

r u(x, r) s(x, r) Error ū(x, r) s̄(x, r) Error

0 0.0000000 0.0063545 6.354× 10−3 2.2000000 2.1860000 0.0140000

0.2 0.2200000 0.2243961 4.396× 10−3 1.9800000 1.9640000 0.0160000

0.4 0.4400000 0.4424377 2.438× 10−3 1.7600000 1.7410000 0.0190000

0.6 0.6600000 0.6604793 4.793× 10−4 1.5400000 1.5190000 0.0210000

0.8 0.8800000 0.8785209 1.479× 10−3 1.3200000 1.2970000 0.0230000

1 1.1000000 1.0965625 3.438× 10−3 1.1000000 1.0760000 0.0240000

Example (4): Consider NLINTGRO
y′(x, r) = g(x, r) +

∫ x

0
y2(x, r)dt, where

g(x, r) =

[(
r2 + r

)
x2 −

(
r4+2r3+r2

)
x6+

(
r2+r

)2

x6

30
+

(
r4+2r3+r2

)2

x14

163800
−

(
r2+r

)(
r4+2r3+r2

)
x10

1350

]
and

ḡ(x, r)=

[(
4− r3 + r

)
x2 −

(
16−8r3−8r+r6+2r4+r2

)
x6+

(
4−r3+r

)2

x6

30
+

(
16−8r3−8r+r6+2r4+r2

)2

x14

163800

−
(
4−r3+r

)(
16−8r3−8r+r6+2r4+r2

)
x10

1350

]
.

y0(x, 0) =
[
−x10

30
+ x2

163800
− x14

1350
; 4x2 + 16x14

163800
− 64x10

1350

]
;

y′0(x, 0) =
[
x2 − x14

1350
;x2 + 16x6

30
+ 128x14

81900
+ 16x10

1350

]
.

The exact solution y(x, r) =
[(
r2 + r

)
x2,

(
4− r3 + r

)
x2
]
[11].

Table 4. Results of Example (4)

r u(x, r) s(x, r) Error ū(x, r) s̄(x, r) Error

0 0.0000000 −3.33× 10−12 3.333× 10−12 0.0000000 3.33× 10−12 4.74× 10−12

0.2 2.4× 10−3 2.417× 10−3 1.728× 10−5 0.0024000 0.0024172 2.66× 10−7

0.4 5.6× 10−3 5.674× 10−3 7.362× 10−5 0.0056000 0.0056737 5.31× 10−6

0.6 9.6× 10−3 9.751× 10−3 1.511× 10−4 0.0096000 0.0097511 3.88× 10−5

0.8 0.0140000 0.0150000 1.986× 10−4 0.0144000 0.0145985 1.61× 10−4

1 0.0200000 0.0200000 0.0000000 0.0200000 0.0201344 4.88× 10−4

In Figures 1, 2, 3, and 4, we plot the graphs of Examples (1), (2), (3), (4) of the
approximate and exact solutions for fuzzy parameter r, 0 ≤ r ≤ 1, where s(r) approximate,
e(r) exact for upper solutions and s1(r) approximate, e1(r) exact for lower solutions.

In above examples, we use r = 0, 0.1, . . . , 1, where we calculate the error of the exact so-
lution and obtained solution of fuzzy Volterra integral equation with linear non-polynomial
spline. The tables show the convergence behavior of the method, the exact and obtained
solution of fuzzy Volterra integral equation at x = 0.1 and for r = 0, 0.1, . . . , 1 are shown
in figures.

6. Conclusion. In this work, we have considered the fuzzy Volterra integral equation
(FVIE) with parametric form. The linear non-polynomial spline has been successfully
used to obtain the approximate solutions; the trigonometric term of this spline has infinite
derivative which gets good agreement with exact solution. We derived an algorithm to
solve main classes of FVIE (linear, non-linear and integrodifferential) numerically. The
examples show that the results of the method are convergent to the exact solution. In
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Figure 1. Results of Example (1)

Figure 2. Results of Example (2)

Figure 3. Results of Example (3)

Figure 4. Results of Example (4)
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view of the results, tables and figures show that the proposed technique is a powerful
mathematical tool for solving FVIE with MathCad15 programing implementation. Also,
we can develop the method to obtain approximate solution of fuzzy integral equation of
fractional order.
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