M-BI-BASE GENERATOR OF ORDERED Γ-SEMIGROUPS

M. Palanikumar ${ }^{1}$, Aiyared Iampan ${ }^{2, *}$ and Lejo J. Manavalan ${ }^{3}$
${ }^{1}$ Department of Mathematics
St. Joseph College of Engineering Sriperumbudur, Chennai 602117, India
palanimaths86@gmail.com
${ }^{2}$ Fuzzy Algebras and Decision-Making Problems Research Unit
Department of Mathematics
School of Science University of Phayao
19 Moo 2, Tambon Mae Ka, Amphur Mueang, Phayao 56000, Thailand
*Corresponding author: aiyared.ia@up.ac.th
${ }^{3}$ Department of Mathematics Little Flower College
Guruvayoor, Kerala 680103, India
lejo@littleflowercollege.edu.in

Received February 2022; accepted May 2022

Abstract

In this paper, we introduce the notion of M-bi-bases of an ordered Γ-semigroup, which is a generalization of the bi-base based on a Γ-semigroup and an ordered semigroup. Some of their characterizations are obtained through M-bi-bases. Let \mathbb{W} be an M-bi-base of an ordered Γ-semigroup \mathbb{S} and $z_{1}, z_{2}, z_{3} \in \mathbb{W}$. If $z_{1} \in\left(N\left(z_{3} \times \Gamma \times z_{2}\right) \cup\right.$ $\left.z_{3} \times \Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times z_{2}\right]$, then prove that either $z_{1}=z_{2}$ or $z_{1}=z_{3}$. If \mathbb{W} is an M-bi-base of \mathbb{S} and $z_{1}, z_{2} \in \mathbb{W}$ and $z_{1} \neq z_{2}$, then show that neither $z_{1} \leq_{m b} z_{2}$, nor $z_{2} \leq_{m b} z_{1}$. In addition, we discuss an M-bi-base, which is generated by an element and a subset, and we introduce the concept of a quasi order, which is based on an M-bi-base. With the help of some examples those are discussed.

Keywords: Ordered Γ-semigroup, M-bi-ideal, M-bi-base, Quasi order

1. Introduction. Several authors and researchers have characterized the many different ideals based on Γ-semigroup [1], and Γ-semiring [2]. A partial order is a relation " \leq " which satisfies the conditions such as reflexivity, antisymmetry, and transitivity. The different classes of semigroup and Γ-semigroup have been characterized based on bi-ideal $[3,4,5]$. The origin of an ordered semigroup as a generalization of an ordinary semigroup with a partially ordered relation is constructed on a semigroup such that the relation is compatible with the operation. Sen and Seth have discussed an ordered Γ-semigroup [6] and it has been studied by several authors $[7,8,9,10]$. The notion of a bi-ideal of semirings and semigroups is a generalization of the notion of an ideal of semirings and semigroups. An ordered Γ-semigroup is a generalization of Γ-semigroups. As a result, the notion of an ordered bi-ideal of an ordered semigroup is a generalization of the notion of a bi-ideal of semigroups. The notion of bi-ideals in semigroups was introduced by Lajos [11]. The concept of a bi-ideal is a very interesting and important thing in semiring. The bi-ideal is a generalization of the left and right ideals. Many mathematicians proved important results and characterizations of algebraic structures by using various ideals. An M-bi-ideal of a semigroup is a generalization of the concept of a bi-ideal of a semigroup [12]. In the same way, the notion of an ordered M-bi-ideal of an ordered semigroup is a generalization of the ordered bi-ideal of an ordered semigroup. From a pure algebraic point of view,

DOI: 10.24507/icicelb.13.08.795
the important properties of M-bi-base have been described. Because of these motivating facts, it is natural to generalize semigroup results to Γ-semigroups and Γ-semigroups to ordered Γ-semigroups. Jantanan et al. [13] discussed the bi-base of an ordered Γ semigroup. Palanikumar and Arulmozhi discussed various ideals based on semirings and ternary semirings $[14,15,16]$. Recently, Sanpan et al. [17] discussed the new logical theory for the regularities of ordered gamma semihypergroups.

Our purpose in this paper is to examine many important results of M-bi-base of ordered Γ-semigroups and then to characterize them through M-bi-ideal and M-bi-base. Furthermore, we show how the element and subset of an ordered Γ-semigroup generate the M-bi-ideal and M-bi-base. The paper is organized into four sections as follows. Section 1 is called an introduction. In Section 2, a brief description of the ordered Γ semigroup information is given. Section 3 provided a numerical example of the M-base generator. Finally, a conclusion is provided in Section 4. The purpose of this paper is

1) To show how to generate M-bi-ideals from an ordered Γ-semigroup;
2) The relationship " \leq " based on M-bi-base is not a partial order;
3) To illustrate, the subset of M-bi-base is not an M-bi-base.
2. Background. We present a brief summary of the basic notions and concepts used in an ordered Γ-semigroup that will be of high value for our later pursuits. In this article, \mathbb{S} denotes an ordered Γ-semigroup, unless otherwise stated.

Definition 2.1. [1] Let S and Γ be two non-empty sets. Then S is called $a \Gamma$-semigroup if there exists a function from $S \times \Gamma \times S \rightarrow S$ which maps $\left(z_{1}, \xi, z_{2}\right) \rightarrow z_{1} \xi z_{2}$ satisfying the condition $\left(z_{1} \xi z_{2}\right) \nu z_{3}=z_{1} \xi\left(z_{2} \nu z_{3}\right)$ for all $z_{1}, z_{2}, z_{3} \in S$ and $\xi, \nu \in \Gamma$.

Definition 2.2. [6] The algebraic system $(\mathbb{S}, \Gamma, \leq)$ is said to be an ordered Γ-semigroup if it satisfies the following conditions:
(1) \mathbb{S} is a Γ-semigroup,
(2) \mathbb{S} is a partially ordered set (poset) elicited from " \leq ",
(3) If $s^{\prime \prime} \leq s^{\prime \prime \prime}$, then $s^{\prime \prime} \xi s^{\prime} \leq s^{\prime \prime \prime} \xi s^{\prime}$ and $s^{\prime} \xi s^{\prime \prime} \leq s^{\prime} \xi s^{\prime \prime \prime}$, for any $s^{\prime}, s^{\prime \prime}, s^{\prime \prime \prime} \in \mathbb{S}$ and $\xi \in \Gamma$.

Definition 2.3. Let $\mathbb{W} \subseteq \mathbb{S}$ be called an ordered Γ-bi-ideal if it satisfies the following conditions:
(1) \mathbb{W} is a Γ-subsemigroup,
(2) $\mathbb{W} \Gamma S \Gamma \mathbb{W} \subseteq \mathbb{W}$,
(3) If $w \in \mathbb{W}$, and $s^{\prime} \in \mathbb{S}$, such that $s^{\prime} \leq w$, then $s^{\prime} \in \mathbb{W}$.

Remark 2.1. [6] For $X^{\prime}, X^{\prime \prime} \subseteq \mathbb{S}$,
(1) $X^{\prime} \Gamma X^{\prime \prime}=\left\{x^{\prime} \xi x^{\prime \prime} \mid x^{\prime} \in X^{\prime}, x^{\prime \prime} \in X^{\prime \prime}, \xi \in \Gamma\right\}$,
(2) $\left(X^{\prime}\right]=\left\{s \in \mathbb{S} \mid s \leq x^{\prime}\right.$ for some $\left.x^{\prime} \in X^{\prime}\right\}$,
(3) $X^{\prime} \subseteq\left(X^{\prime}\right]$,
(4) If $\overline{X^{\prime}} \subseteq X^{\prime \prime}$, then $\left(X^{\prime}\right] \subseteq\left(X^{\prime \prime}\right]$ and $\left(X^{\prime}\right] \Gamma\left(X^{\prime \prime}\right] \subseteq\left(X^{\prime} \Gamma X^{\prime \prime}\right]$.

Lemma 2.1. For $\mathbb{W} \subseteq \mathbb{S}$ and $a \in \mathbb{S}$,
(1) $(\mathbb{W} \cup \mathbb{W} \Gamma \mathbb{W} \cup \mathbb{W} \Gamma \mathbb{S} \Gamma \mathbb{W}]$ is a smallest Γ-bi-ideal of \mathbb{S} containing \mathbb{W}.
(2) $\langle a\rangle_{b}=(a \cup a \Gamma a \cup a \Gamma \mathbb{S} \Gamma a]$ is a smallest Γ-bi-ideal of \mathbb{S} containing " a ".

Definition 2.4. [13] Let $\mathbb{W} \subseteq \mathbb{S}$ be called a bi-base of \mathbb{S} if it satisfies the following conditions:
(1) $\mathbb{S}=\langle\mathbb{W}\rangle_{b}$,
(2) If $\mathbb{V} \subseteq \mathbb{W}$ such that $\mathbb{S}=\langle\mathbb{V}\rangle_{b}$, then $\mathbb{V}=\mathbb{W}$.
3. \boldsymbol{M}-bi-base Generator. We communicate some results on M-bi-ideal and its generator.

Definition 3.1. Let \mathbb{S} be an ordered Γ-semigroup, $\mathbb{W} \subseteq \mathbb{S}$ is called an M-bi-ideal of \mathbb{S} if it satisfies the following conditions:
(1) \mathbb{W} is a Γ-subsemigroup,
(2) $\mathbb{W} \times \Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S} M$-times $) \times \Gamma \times \mathbb{W} \subseteq \mathbb{W}$,
(3) If $w \in \mathbb{W}$ and $s \in \mathbb{S}$ such that $s \leq w$, then $s \in \mathbb{W}$.

Remark 3.1. For $z_{1} \in \mathbb{S}$ and N, M are positive integers, then the following statements hold:
(1) $N z_{1}=z_{1} \times \Gamma \times z_{1} \times \Gamma \times \cdots \times \Gamma \times z_{1}$ (N-times),
(2) $\mathbb{S} \times \Gamma \times \mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}(M$-times $) \subseteq \mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}$ (M-1 times).

Theorem 3.1.

(1) For $z_{1} \in \mathbb{S}$, the M-bi-ideal generated by " a " is $\left\langle z_{1}\right\rangle_{m b}=\left\{z_{1} \cup N\left(z_{1} \times \Gamma \times z_{1}\right) \cup z_{1} \times\right.$ $\Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S} M$-times $\left.) \times \Gamma \times z_{1}\right\}$ and $N \geq M$, where N and M are positive integers,
(2) For $\mathbb{W} \subseteq \mathbb{S}$, the M-bi-ideal generated by "W" is $\langle\mathbb{W}\rangle_{m b}=\{\mathbb{W} \cup \mathbb{W} \times \Gamma \times \mathbb{W} \cup \mathbb{W} \times$ $\Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S} M$-times $) \times \Gamma \times \mathbb{W}\}$.
Definition 3.2. Let $\mathbb{W} \subseteq \mathbb{S}$ be called an M-bi-base of \mathbb{S} if it satisfies the following conditions:
(1) $\mathbb{S}=\langle\mathbb{W}\rangle_{m b}$,
(2) If $\mathbb{V} \subseteq \mathbb{W}$ such that $\mathbb{S}=\langle\mathbb{V}\rangle_{m b}$, then $\mathbb{V}=\mathbb{W}$.

Example 3.1. Let $\mathbb{S}=\left\{o_{1}, o_{2}, o_{3}, o_{4}, o_{5}, o_{6}\right\}$ and $\Gamma=\left\{\xi_{1}, \xi_{2}\right\}$, where ξ_{1}, ξ_{2} are defined on \mathbb{S} with the following table.

ξ_{1}	O_{1}	O_{2}	O_{3}	O_{4}	O_{5}	O_{6}
o_{1}	O_{1}	O_{1}	O_{1}	O_{1}	O_{1}	O_{6}
O_{2}	O_{1}	o_{1}	o_{1}	O_{2}	O_{3}	O_{6}
O_{3}	O_{1}	O_{2}	O_{3}	O_{1}	O_{1}	O_{6}
O_{4}	O_{1}	O_{1}	O_{1}	O_{4}	O_{5}	O_{6}
O_{5}	O_{1}	O_{4}	O_{5}	O_{1}	O_{1}	O_{6}
O_{6}						

ξ_{2}	O_{1}	O_{2}	O_{3}	O_{4}	O_{5}	O_{6}
o_{1}	o_{1}	O_{4}	O_{1}	O_{4}	O_{4}	O_{6}
O_{2}	o_{1}	O_{2}	o_{1}	O_{4}	O_{4}	O_{6}
O_{3}	o_{1}	O_{4}	O_{3}	O_{4}	O_{5}	O_{6}
O_{4}	O_{1}	O_{4}	O_{1}	O_{4}	O_{4}	O_{6}
O_{5}	o_{1}	O_{4}	O_{3}	O_{4}	O_{5}	O_{6}
O_{6}						

$\leq:=\left\{\left(o_{1}, o_{1}\right),\left(o_{1}, o_{6}\right),\left(o_{2}, o_{2}\right),\left(o_{2}, o_{6}\right),\left(o_{3}, o_{3}\right),\left(o_{3}, o_{6}\right),\left(o_{4}, o_{4}\right),\left(o_{4}, o_{6}\right),\left(o_{5}, o_{5}\right),\left(o_{5}, o_{6}\right),\left(o_{6}\right.\right.$, $\left.\left.o_{6}\right)\right\}$. Clearly, $(\mathbb{S}, \Gamma, \leq)$ is an ordered Γ-semigroup. The covering relation $\leq:=\left\{\left(o_{1}, o_{6}\right)\right.$, $\left.\left(o_{2}, o_{6}\right),\left(o_{3}, o_{6}\right),\left(o_{4}, o_{6}\right),\left(o_{5}, o_{6}\right)\right\}$ is represented by Figure 1. Here, $\mathbb{W}=\left\{o_{4}, o_{5}\right\}$ is an M-bi-base of \mathbb{S}. The set of all non-empty proper subsets of \mathbb{W} is not an M-base of \mathbb{S}.

Figure 1. Covering relation

Theorem 3.2. Let \mathbb{W} be an M-bi-base of \mathbb{S} and $z_{1}, z_{2} \in \mathbb{W}$. If $z_{1} \in\left(N\left(z_{2} \times \Gamma \times z_{2}\right) \cup\right.$ $\left.z_{2} \times \Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times z_{2}\right]$, then $z_{1}=z_{2}$.

Proof: Assume that $z_{1} \in\left(N\left(z_{2} \times \Gamma \times z_{2}\right) \cup z_{2} \times \Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times z_{2}\right]$, and suppose that $z_{1} \neq z_{2}$. Let $\mathbb{V}=\mathbb{W} \backslash\left\{z_{1}\right\}$. Obviously, $\mathbb{V} \subset \mathbb{W}$. Since $z_{1} \neq z_{2}, z_{2} \in \mathbb{V}$. To show that $\langle\mathbb{V}\rangle_{m b}=\mathbb{S}$, clearly, $\langle\mathbb{V}\rangle_{m b} \subseteq \mathbb{S}$. It remains to prove that $\mathbb{S} \subseteq\langle\mathbb{V}\rangle_{m b}$. Let $s \in \mathbb{S}$. By hypothesis, $\langle\mathbb{W}\rangle_{m b}=\mathbb{S}$ and hence $s \in(\mathbb{W} \cup \mathbb{W} \times \Gamma \times \mathbb{W} \cup \mathbb{W} \times \Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times$ $\Gamma \times \mathbb{W}]$. We have $s \leq w$ for some $w \in \mathbb{W} \cup \mathbb{W} \times \Gamma \times \mathbb{W} \cup \mathbb{W} \times \Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \mathbb{W}$. We can observe the following cases.
Case-1: Let $w \in \mathbb{W}$. There are two subcases to survey.
Subcase-1(a): Let $w \neq z_{1}$, then $w \in \mathbb{W} \backslash\left\{z_{1}\right\}=\mathbb{V} \subseteq\langle\mathbb{V}\rangle_{m b}$.
Subcase-1(b): Let $w=z_{1}$. We have $w=z_{1} \in\left(N\left(z_{2} \times \Gamma \times z_{2}\right) \cup z_{2} \times \Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times\right.$ $\left.\Gamma \times \mathbb{S}) \times \Gamma \times z_{2}\right] \subseteq(\mathbb{V} \times \Gamma \times \mathbb{V} \cup \mathbb{V} \times \Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \mathbb{V}] \subseteq\langle\mathbb{V}\rangle_{m b}$.
Case-2: Let $w \in \mathbb{W} \times \Gamma \times \mathbb{W}$. Then $w=w_{1} \times \xi \times w_{2}$, for some $w_{1}, w_{2} \in \mathbb{W}$ and $\xi \in \Gamma$. Then there are four subcases to regard.
Subcase-2(a): Let $w_{1}=z_{1}$ and $w_{2}=z_{1}$. Now, $w=w_{1} \times \xi \times w_{2}=z_{1} \times \xi \times z_{1} \subseteq$ $\left(\left(N\left(z_{2} \times \Gamma \times z_{2}\right) \cup z_{2} \times \Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times z_{2}\right) \times \Gamma \times\left(N\left(z_{2} \times \Gamma \times z_{2}\right) \cup z_{2} \times\right.\right.$ $\left.\left.\Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times z_{2}\right)\right] \subseteq(\mathbb{V} \times \Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \mathbb{V}] \subseteq\langle\mathbb{V}\rangle_{m b}$.
Subcase-2(b): Let $w_{1} \neq z_{1}$ and $w_{2}=z_{1}$. Now, $w=w_{1} \times \xi \times w_{2} \subseteq\left(\left(\mathbb{W} \backslash\left\{z_{1}\right\}\right) \times \Gamma \times\left(N\left(z_{2}\right.\right.\right.$ $\left.\left.\left.\times \Gamma \times z_{2}\right) \cup z_{2} \times \Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times z_{2}\right)\right] \subseteq(\mathbb{V} \times \Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \mathbb{V}]$ $\subseteq\langle\mathbb{V}\rangle_{m b}$.
Subcase-2(c): Let $w_{1}=z_{1}$ and $w_{2} \neq z_{1}$. Now, $w=w_{1} \times \xi \times w_{2} \subseteq\left(\left(N\left(z_{2} \times \Gamma \times z_{2}\right) \cup z_{2}\right.\right.$ $\left.\left.\times \Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times z_{2}\right) \times \Gamma \times\left(\mathbb{W} \backslash\left\{z_{1}\right\}\right)\right] \subseteq(\mathbb{V} \times \Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \mathbb{V}]$ $\subseteq\langle\mathbb{V}\rangle_{m b}$.
Subcase-2(d): Let $w_{1} \neq z_{1}$ and $w_{2} \neq z_{1}$ and $\mathbb{V}=\mathbb{W} \backslash\left\{z_{1}\right\}$. Now, $w=w_{1} \times \xi \times w_{2} \in$ $\left(\mathbb{W} \backslash\left\{z_{1}\right\}\right) \times \Gamma \times\left(\mathbb{W} \backslash\left\{z_{1}\right\}\right)=\mathbb{V} \times \Gamma \times \mathbb{V} \subseteq\langle\mathbb{V}\rangle_{m b}$.
Case-3: Let $w \in \mathbb{W} \times \Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \mathbb{W}$. Then $w=w_{3} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times\right.$ $\left.\cdots \times \xi_{n} \times s_{n}\right) \times \nu \times w_{4}$ for some $w_{3}, w_{4} \in \mathbb{W}, s_{1}, s_{2}, \ldots, s_{n} \in \mathbb{S}$ and $\xi, \nu, \xi_{1}, \xi_{2}, \ldots, \xi_{n} \in \Gamma$. There are four subcases to examine.
Subcase-3(a): Let $w_{3}=z_{1}$ and $w_{4}=z_{1}$. Now, $w=w_{3} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times$ $\nu \times w_{4}=z_{1} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times \nu \times z_{1} \subseteq\left(\left(N\left(z_{2} \times \Gamma \times z_{2}\right) \cup z_{2} \times \Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times\right.\right.$ $\left.\Gamma \times \mathbb{S}) \times \Gamma \times z_{2}\right) \times \Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times\left(N\left(z_{2} \times \Gamma \times z_{2}\right) \cup z_{2} \times \Gamma \times(\mathbb{S} \times \Gamma \times\right.$ $\left.\left.\cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times z_{2}\right)\right] \subseteq(\mathbb{V} \times \Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \mathbb{V}] \subseteq\langle\mathbb{V}\rangle_{m b}$.
Subcase-3(b): Let $w_{3} \neq z_{1}$ and $w_{4}=z_{1}$. Now, $w=w_{3} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times\right.$ $\left.s_{n}\right) \times \nu \times w_{4} \subseteq\left(\left(\mathbb{W} \backslash\left\{z_{1}\right\}\right) \times \Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times\left(N\left(z_{2} \times \Gamma \times z_{2}\right) \cup z_{2} \times \Gamma \times\right.\right.$ $\left.\left.(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times z_{2}\right)\right] \subseteq(\mathbb{V} \times \Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \mathbb{V}] \subseteq\langle\mathbb{V}\rangle_{m b}$.
Subcase-3(c): Let $w_{3}=z_{1}$ and $w_{4} \neq z_{1}$. Now, $w=w_{3} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times\right.$ $\left.s_{n}\right) \times \nu \times w_{4} \subseteq\left(\left(N\left(z_{2} \times \Gamma \times z_{2}\right) \cup z_{2} \times \Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times z_{2}\right) \times \Gamma \times(\mathbb{S} \times \Gamma \times\right.$ $\left.\cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times\left(\mathbb{W} \backslash\left\{z_{1}\right\}\right)\right] \subseteq(\mathbb{V} \times \Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \mathbb{V}] \subseteq\langle\mathbb{V}\rangle_{m b}$.
Subcase-3(d): Let $w_{3} \neq z_{1}$ and $w_{4} \neq z_{1}$ and $\mathbb{V}=\mathbb{W} \backslash\left\{z_{1}\right\}$. Now, $w=w_{3} \times \xi \times\left(s_{1} \times\right.$ $\left.\xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times \nu \times w_{4} \subseteq(\mathbb{V} \times \Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \mathbb{V}] \subseteq\langle\mathbb{V}\rangle_{m b}$. For all the cases, we have $\mathbb{S} \subseteq\langle\mathbb{V}\rangle_{m b}$. Thus, $\mathbb{S}=\langle\mathbb{V}\rangle_{m b}$. It is a contradiction, hence $z_{1}=z_{2}$.

Theorem 3.3. Let \mathbb{W} be an M-bi-base of \mathbb{S} and $z_{1}, z_{2}, z_{3} \in \mathbb{W}$. If $z_{1} \in\left(N\left(z_{3} \times \Gamma \times z_{2}\right) \cup\right.$ $\left.z_{3} \times \Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times z_{2}\right]$, then $z_{1}=z_{2}$ or $z_{1}=z_{3}$.

Proof: Proof follows from Theorem 3.2.
Definition 3.3. For any $s_{1}, s_{2} \in \mathbb{S}$, $s_{1} \leq_{m b} s_{2} \Longleftrightarrow\left\langle s_{1}\right\rangle_{m b} \subseteq\left\langle s_{2}\right\rangle_{m b}$ is called a quasi order on \mathbb{S}.

Remark 3.2. The order $\leq_{m b}$ is not a partial order of \mathbb{S}.
Example 3.2. By Example 3.1, Clearly, $\left\langle o_{2}\right\rangle_{m b} \subseteq\left\langle o_{6}\right\rangle_{m b}$ and $\left\langle o_{6}\right\rangle_{m b} \subseteq\left\langle o_{2}\right\rangle_{m b}$ but $o_{2} \neq o_{6}$. Hence, $\leq_{m b}$ is not a partial order on \mathbb{S}.

If \mathbb{V} is an M-bi-base of \mathbb{S}, then $\langle\mathbb{V}\rangle_{m b}=\mathbb{S}$. Let $s \in \mathbb{S}$. Then $s \in\langle\mathbb{V}\rangle_{m b}$ and so $s \in\left\langle z_{1}\right\rangle_{m b}$ for some $z_{1} \in \mathbb{V}$. This implies $\langle s\rangle_{m b} \subseteq\left\langle z_{1}\right\rangle_{m b}$. Hence, $s \leq_{m b} z_{1}$.

Remark 3.3. If \mathbb{W} is an M-bi-base of \mathbb{S}, then for any $s \in \mathbb{S}$, there exists $z_{1} \in \mathbb{W}$ such that $s \leq_{m b} z_{1}$.

Lemma 3.1. Let \mathbb{W} be an M-bi-base of \mathbb{S}. If $z_{1}, z_{2} \in \mathbb{W}$ such that $z_{1} \neq z_{2}$, then neither $z_{1} \leq_{m b} z_{2}$, nor $z_{2} \leq_{m b} z_{1}$.

Proof: Assume that $z_{1}, z_{2} \in \mathbb{W}$ such that $z_{1} \neq z_{2}$. Suppose that $z_{1} \leq_{m b} z_{2}$. Let $\mathbb{V}=$ $\mathbb{W} \backslash\left\{z_{1}\right\}$. Then $z_{2} \in \mathbb{V}$. Let $s \in \mathbb{S}$. By Remark 3.3, there exists $z_{3} \in \mathbb{W}$ such that $s \leq_{m b} z_{3}$. We think about two cases. If $z_{3} \neq z_{1}$, then $z_{3} \in \mathbb{V}$; thus, $\langle s\rangle_{m b} \subseteq\left\langle z_{3}\right\rangle_{m b} \subseteq\langle\mathbb{V}\rangle_{m b}$. Hence, $\mathbb{S}=\langle\mathbb{V}\rangle_{m b}$, which is a contradiction. If $z_{3}=z_{1}$, then $s \leq_{m b} z_{2}$. Hence, $s \in\langle\mathbb{V}\rangle_{m b}$, since $z_{2} \in \mathbb{V}$. Hence, $\mathbb{S}=\langle\mathbb{V}\rangle_{m b}$, which is a contradiction. Similarly to prove other case.

Lemma 3.2. Let \mathbb{W} be an M-bi-base of \mathbb{S} and $z_{1}, z_{2}, z_{3} \in \mathbb{W}$ and $s \in \mathbb{S}$.
(1) If $z_{1} \in\left(\left\{z_{2} \times \xi \times z_{3}\right\} \cup N\left(\left\{z_{2} \times \xi \times z_{3}\right\} \times \Gamma \times\left\{z_{2} \times \xi \times z_{3}\right\}\right) \cup\left\{z_{2} \times \xi \times z_{3}\right\} \times \Gamma \times\right.$ $\left.(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times\left\{z_{2} \times \xi \times z_{3}\right\}\right]$, then $z_{1}=z_{2}$ or $z_{1}=z_{3}$,
(2) If $z_{1} \in\left(\left\{z_{2} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times \nu \times z_{3}\right\} \cup N\left(\left\{z_{2} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times\right.\right.\right.\right.$ $\left.\left.\left.\xi_{n} \times s_{n}\right) \times \nu \times z_{3}\right\} \times \Gamma \times\left\{z_{2} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times \nu \times z_{3}\right\}\right) \cup\left\{z_{2} \times\right.$ $\left.\xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times \nu \times z_{3}\right\} \times \Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times\left\{z_{2} \times\right.$ $\left.\left.\xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times \nu \times z_{3}\right\}\right]$, then $z_{1}=z_{2}$ or $z_{1}=z_{3}$.

Proof: (1) Suppose that $z_{1} \neq z_{2}$ and $z_{1} \neq z_{3}$. Let $\mathbb{V}=\mathbb{W} \backslash\left\{z_{1}\right\}$. Clearly, $\mathbb{V} \subset \mathbb{W}$. Since $z_{1} \neq z_{2}$ and $z_{1} \neq z_{3}$ imply $z_{2}, z_{3} \in \mathbb{V}$. To prove that $\langle\mathbb{W}\rangle_{m b} \subseteq\langle\mathbb{V}\rangle_{m b}$, it suffices to determine that $\mathbb{W} \subseteq\langle\mathbb{V}\rangle_{m b}$. Let $v \in \mathbb{W}$, if $v \neq z_{1}$ that $v \in \mathbb{V}$ and hence $v \in\langle\mathbb{V}\rangle_{m b}$. If $v=z_{1}$, then $v=z_{1} \in\left(\left\{z_{2} \times \xi \times z_{3}\right\} \cup N\left(\left\{z_{2} \times \xi \times z_{3}\right\} \times \Gamma \times\left\{z_{2} \times \xi \times z_{3}\right\}\right) \cup\left\{z_{2} \times \xi \times z_{3}\right\} \times \Gamma \times\right.$ $\left.(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times\left\{z_{2} \times \xi \times z_{3}\right\}\right] \subseteq(\mathbb{V} \times \Gamma \times \mathbb{V}) \cup \mathbb{V} \times \Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \mathbb{V} \subseteq$ $\langle\mathbb{V}\rangle_{m b}$. Thus, $\mathbb{W} \subseteq\langle\mathbb{V}\rangle_{m b}$. This implies $\langle\mathbb{W}\rangle_{m b} \subseteq\langle\mathbb{V}\rangle_{m b}$. Since \mathbb{W} is an M-bi-base of \mathbb{S} and $\mathbb{S}=\langle\mathbb{W}\rangle_{m b} \subseteq\langle\mathbb{V}\rangle_{m b} \subseteq \mathbb{S}$. Therefore, $\mathbb{S}=\langle\mathbb{V}\rangle_{m b}$, which is a contradiction. Hence, $z_{1}=z_{2}$ or $z_{1}=z_{3}$.
(2) Suppose that $z_{1} \neq z_{2}$ and $z_{1} \neq z_{3}$. Let $\mathbb{V}=\mathbb{W} \backslash\left\{z_{1}\right\}$. Clearly, $\mathbb{V} \subset \mathbb{W}$. Since $z_{1} \neq z_{2}$ and $z_{1} \neq z_{3}$, imply $z_{2}, z_{3} \in \mathbb{V}$. To prove that $\langle\mathbb{W}\rangle_{m b} \subseteq\langle\mathbb{V}\rangle_{m b}$, it remains to prove that $\mathbb{W} \subseteq\langle\mathbb{V}\rangle_{m b}$. Let $v \in \mathbb{W}$, if $v \neq z_{1}$ that $v \in \mathbb{V}$ and so $v \in\langle\mathbb{V}\rangle_{m b}$. If $v=z_{1}$, then $v=z_{1} \in\left(\left\{z_{2} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times \nu \times z_{3}\right\} \cup N\left(\left\{z_{2} \times \xi \times\left(s_{1} \times \xi_{1} \times\right.\right.\right.\right.$ $\left.\left.\left.s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times \nu \times z_{3}\right\} \times \Gamma \times\left\{z_{2} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times \nu \times z_{3}\right\}\right) \cup$ $\left\{z_{2} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times \nu \times z_{3}\right\} \times \Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times\left\{z_{2}\right.$ $\left.\left.\times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times \nu \times z_{3}\right\}\right] \subseteq(\mathbb{V} \times \Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \mathbb{V}] \subseteq$ $\langle\mathbb{V}\rangle_{m b}$. Thus, $\mathbb{W} \subseteq\langle\mathbb{V}\rangle_{m b}$. This implies $\langle\mathbb{W}\rangle_{m b} \subseteq\langle\mathbb{V}\rangle_{m b}$. Since \mathbb{W} is an M-bi-base of \mathbb{S} and $\mathbb{S}=\langle\mathbb{W}\rangle_{m b} \subseteq\langle\mathbb{V}\rangle_{m b} \subseteq \mathbb{S}, \mathbb{S}=\langle\mathbb{V}\rangle_{m b}$, which is a contradiction. Hence, $z_{1}=z_{2}$ or $z_{1}=z_{3}$.

Lemma 3.3. Let \mathbb{W} be an M-bi-base of \mathbb{S},
(1) If $z_{1} \neq z_{2}$ and $z_{1} \neq z_{3}$, then $z_{1} \not \mathbb{Z}_{m b} z_{2} \times \xi \times z_{3}$,
(2) If $z_{1} \neq z_{2}$ and $z_{1} \neq z_{3}$, then $z_{1} \not Z_{m b} z_{2} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times \nu \times z_{3}$, for $z_{1}, z_{2}, z_{3} \in \mathbb{W}, \xi, \xi_{i}, \nu \in \Gamma$ and $s_{i} \in \mathbb{S}, i=1,2, \ldots, n$.

Proof: (1) For any $z_{1}, z_{2}, z_{3} \in \mathbb{W}$, let $z_{1} \neq z_{2}$ and $z_{1} \neq z_{3}$. Suppose that $z_{1} \leq_{m b}$ $z_{2} \times \xi \times z_{3}$ and $z_{1} \in\left\langle z_{1}\right\rangle_{m b} \subseteq\left\{\left(z_{2} \times \xi \times z_{3}\right)\right\}_{m b}=\left(\left\{\left(z_{2} \times \xi \times z_{3}\right)\right\} \cup N\left(\left\{\left(z_{2} \times \xi \times z_{3}\right)\right\} \times\right.\right.$ $\left.\left.\Gamma \times\left\{\left(z_{2} \times \xi \times z_{3}\right)\right\}\right) \cup\left\{\left(z_{2} \times \xi \times z_{3}\right)\right\} \times \Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times\left\{\left(z_{2} \times \xi \times z_{3}\right)\right\}\right]$. By Lemma 3.2(1), it follows that $z_{1}=z_{2}$ or $z_{1}=z_{3}$, which is a contradiction.
(2) For any $z_{1}, z_{2}, z_{3} \in \mathbb{W}$, let $z_{1} \neq z_{2}$ and $z_{1} \neq z_{3}$. Suppose that $z_{1} \leq_{m b} z_{2} \times \xi \times$ $\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times \nu \times z_{3}$, we have $z_{1} \in\left\langle z_{1}\right\rangle_{m b} \subseteq\left\{\left(z_{2} \times \Gamma \times\left(s_{1} \times \xi_{1} \times s_{2} \times\right.\right.\right.$ $\left.\left.\left.\cdots \times \xi_{n} \times s_{n}\right) \times \nu \times z_{3}\right)\right\}_{m b}=\left(\left\{\left(z_{2} \times \Gamma \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times \nu \times z_{3}\right)\right\} \cup\right.$ $N\left(\left\{\left(z_{2} \times \Gamma \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times \nu \times z_{3}\right)\right\} \times \Gamma \times\left\{\left(z_{2} \times \Gamma \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times\right.\right.\right.\right.$
$\left.\left.\left.\left.\xi_{n} \times s_{n}\right) \times \nu \times z_{3}\right)\right\}\right) \cup\left\{\left(z_{2} \times \Gamma \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times \nu \times z_{3}\right)\right\} \times \Gamma \times(\mathbb{S} \times \Gamma \times$ $\left.\cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times\left\{\left(z_{2} \times \Gamma \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times \nu \times z_{3}\right)\right\}\right]$. By Lemma 3.2(2), it follows that $z_{1}=z_{2}$ or $z_{1}=z_{3}$, which is a contradict to our handling.
Theorem 3.4. Let \mathbb{W} be an M-bi-base of \mathbb{S} if and only if \mathbb{W} satisfies the following holds.
(1) For any $s \in \mathbb{S}$,
(1.1) there exists $z_{2} \in \mathbb{W}$ such that $s \leq_{m b} z_{2}$ (or),
(1.2) there exists $w_{1}, w_{2} \in \mathbb{W}$ such that $s \leq_{m b} w_{1} \times \xi \times w_{2}$ (or),
(1.3) there exists $w_{3}, w_{4} \in \mathbb{W}$ such that $s \leq_{m b} w_{3} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times\right.$ $\left.s_{n}\right) \times \nu \times w_{4}$,
(2) If $z_{1} \neq z_{2}$ and $z_{1} \neq z_{3}$, then $z_{1} \mathbb{Z}_{m b} z_{2} \times \xi \times z_{3}$, for any $z_{1}, z_{2}, z_{3} \in \mathbb{W}$,
(3) If $z_{1} \neq z_{2}$ and $z_{1} \neq z_{3}$, then $z_{1} \not Z_{m b} z_{2} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times \nu \times z_{3}$, for any $z_{1}, z_{2}, z_{3} \in \mathbb{W}, s_{i} \in \mathbb{S}$ and $\xi_{i}, \xi, \nu \in \Gamma, i=1,2, \ldots, n$.
Proof: Assuming that \mathbb{W} is an M-bi-base of \mathbb{S}, then $\mathbb{S}=\langle\mathbb{W}\rangle_{m b}$. To prove (1), let $s \in \mathbb{S}, s \in(\mathbb{W} \cup \mathbb{W} \times \Gamma \times \mathbb{W} \cup \mathbb{W} \times \Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \mathbb{W}]$. We have $s \leq w$ for some $w \in \mathbb{W} \cup \mathbb{W} \times \Gamma \times \mathbb{W} \cup \mathbb{W} \times \Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \mathbb{W}$, and we think about the following three cases.
Case-1: Let $w \in \mathbb{W}$. Then $w=z_{2}$ for some $z_{2} \in \mathbb{W}$. This implies $\langle w\rangle_{m b} \subseteq\left\langle z_{2}\right\rangle_{m b}$. Hence, $w \leq_{m b} z_{2}$. Since $s \leq w$ for some $w \in\left\langle z_{2}\right\rangle_{m b}$, to find out $\langle s\rangle_{m b} \subseteq\left\langle z_{2}\right\rangle_{m b}$, now, $s \cup N(s \times \Gamma \times s) \times \Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times s \subseteq\left\langle z_{2}\right\rangle_{m b} \cup N\left(\left\langle z_{2}\right\rangle_{m b} \times \Gamma \times\left\langle z_{2}\right\rangle_{m b}\right)$ $\cup\left\langle z_{2}\right\rangle_{m b} \times \Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times\left\langle z_{2}\right\rangle_{m b} \subseteq z_{2} \cup N\left(z_{2} \times \xi \times z_{2}\right) \cup z_{2} \times \xi \times(\mathbb{S} \times \Gamma \times$ $\cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times z_{2}$. We have $(s \cup N(s \times \Gamma \times s) \times \Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times s] \subseteq$ $\left(z_{2} \cup N\left(z_{2} \times \xi \times z_{2}\right) \cup z_{2} \times \xi \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times z_{2}\right]$. Thus, $\langle s\rangle_{m b} \subseteq\left\langle z_{2}\right\rangle_{m b}$ and hence $s \leq_{m b} z_{2}$.
Case-2: Let $w \in \mathbb{W} \times \Gamma \times \mathbb{W}$. Then $w=w_{1} \times \xi \times w_{2}$ for some $w_{1}, w_{2} \in \mathbb{W}$ and $\xi \in \Gamma$. This implies $\langle w\rangle_{m b} \subseteq\left\langle w_{1} \times \xi \times w_{2}\right\rangle_{m b}$. Hence, $w \leq_{m b} w_{1} \times \xi \times w_{2}$. Since $s \leq w$ for some $w \in\left\langle w_{1} \times \xi \times w_{2}\right\rangle_{m b}$, we have $s \in\left\langle w_{1} \times \xi \times w_{2}\right\rangle_{m b}$. We determine that $\langle s\rangle_{m b} \subseteq\left\langle w_{1} \times \xi \times w_{2}\right\rangle_{m b}$. Now, $s \cup N(s \times \Gamma \times s) \times \Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times s \subseteq$ $\left\langle w_{1} \times \xi \times w_{2}\right\rangle_{m b} \cup N\left(\left\langle w_{1} \times \xi \times w_{2}\right\rangle_{m b} \times \Gamma \times\left\langle w_{1} \times \xi \times w_{2}\right\rangle_{m b}\right) \cup\left\langle w_{1} \times \xi \times w_{2}\right\rangle_{m b} \times \Gamma \times$ $(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times\left\langle w_{1} \times \xi \times w_{2}\right\rangle_{m b} \subseteq\left(\left\{w_{1} \times \xi \times w_{2}\right\} \cup N\left(\left\{w_{1} \times \xi \times w_{2}\right\} \times \Gamma \times\right.\right.$ $\left.\left.\left\{w_{1} \times \xi \times w_{2}\right\}\right) \cup\left\{w_{1} \times \xi \times w_{2}\right\} \times \Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times\left\{w_{1} \times \xi \times w_{2}\right\}\right]$. Hence, $(s \cup N(s \times \Gamma \times s) \times \Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times s] \subseteq\left(\left\{w_{1} \times \xi \times w_{2}\right\} \cup N\left(\left\{w_{1} \times \xi \times\right.\right.\right.$ $\left.\left.\left.w_{2}\right\} \times \Gamma \times\left\{w_{1} \times \xi \times w_{2}\right\}\right) \cup\left\{w_{1} \times \xi \times w_{2}\right\} \times \Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times\left\{w_{1} \times \xi \times w_{2}\right\}\right]$. This implies $\langle s\rangle_{m b} \subseteq\left\langle w_{1} \times \xi \times w_{2}\right\rangle_{m b}$. Hence, $s \leq_{m b} w_{1} \times \xi \times w_{2}$.
Case-3: Let $w \in \mathbb{W} \times \Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \mathbb{W}$. Then $w=w_{3} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times\right.$ $\left.\cdots \times \xi_{n} \times s_{n}\right) \times \nu \times w_{4}$ for some $w_{3}, w_{4} \in \mathbb{W}$. This implies $\langle w\rangle_{m b} \subseteq\left\langle w_{3} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times\right.\right.$ $\left.\left.\cdots \times \xi_{n} \times s_{n}\right) \times \nu \times w_{4}\right\rangle_{m b}$. Hence, $w \leq_{m b}\left\langle w_{3} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times \nu \times w_{4}\right\rangle_{m b}$. Since $s \leq w$ for some $w \in\left\langle w_{3} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times \nu \times w_{4}\right\rangle_{m b}$, we have $s \in\left\langle w_{3} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times \nu \times w_{4}\right\rangle_{m b}$. To prove that $\langle s\rangle_{m b} \subseteq$ $\left\langle w_{3} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times \nu \times w_{4}\right\rangle_{m b} . \quad$ Now, $s \cup N(s \times \Gamma \times s) \times \Gamma \times$ $(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times s \subseteq\left\langle w_{3} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times \nu \times w_{4}\right\rangle_{m b} \cup$ $N\left(\left\langle w_{3} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times \nu \times w_{4}\right\rangle_{m b} \times \Gamma \times\left\langle w_{3} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times\right.\right.\right.$ $\left.\left.\left.\xi_{n} \times s_{n}\right) \times \nu \times w_{4}\right\rangle_{m b}\right) \cup\left\langle w_{3} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times \nu \times w_{4}\right\rangle_{m b} \times \Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times$ $\mathbb{S}) \times \Gamma \times\left\langle w_{3} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times \nu \times w_{4}\right\rangle_{m b} \subseteq\left(\left\{w_{3} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times\right.\right.\right.$ $\left.\left.s_{n}\right) \times \nu \times w_{4}\right\} \cup N\left(\left\{w_{3} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times \nu \times w_{4}\right\} \times \Gamma \times\left\{w_{3} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times\right.\right.\right.$ $\left.\left.\left.\cdots \times \xi_{n} \times s_{n}\right) \times \nu \times w_{4}\right\}\right) \cup\left\{w_{3} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times \nu \times w_{4}\right\} \times \Gamma \times(\mathbb{S}$ $\left.\times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times\left\{w_{3} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times \nu \times w_{4}\right\}\right]$. Hence, $(s \cup N(s \times \Gamma \times s) \times \Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times s] \subseteq\left(\left\{w_{3} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times\right.\right.\right.$ $\left.\left.\xi_{n} \times s_{n}\right) \times \nu \times w_{4}\right\} \cup N\left(\left\{w_{3} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times \nu \times w_{4}\right\} \times \Gamma \times\left\{w_{3} \times \xi \times\right.\right.$ $\left.\left.\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times \nu \times w_{4}\right\}\right) \cup\left\{w_{3} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times \nu \times\right.$ $\left.\left.w_{4}\right\} \times \Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times\left\{w_{3} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times \nu \times w_{4}\right\}\right]$. This implies $\langle s\rangle_{m b} \subseteq\left\langle w_{3} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times \nu \times w_{4}\right\rangle_{m b}$. Hence,
$s \leq_{m b} w_{3} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times \nu \times w_{4}$. By Lemma 3.3(1) and Lemma $3.3(2)$, prove (2) and (3), respectively.

Conversely, assume that (1), (2) and (3) hold. To prove that \mathbb{W} is an M-bi-base of \mathbb{S}. Determine that $\mathbb{S}=\langle\mathbb{W}\rangle_{m b}$. Clearly, $\langle\mathbb{W}\rangle_{m b} \subseteq \mathbb{S}$. By $(1), \mathbb{S} \subseteq\langle\mathbb{W}\rangle_{m b}$ and $\mathbb{S}=\langle\mathbb{W}\rangle_{m b}$. It remains to find out \mathbb{W} is a minimal subset of $\mathbb{S}, \mathbb{S}=\langle\mathbb{W}\rangle_{m b}$. Suppose that $\mathbb{S}=\langle\mathbb{V}\rangle_{m b}$ for some $\mathbb{V} \subset \mathbb{W}$. Since, $\mathbb{V} \subset \mathbb{W}$, there exists $z_{2} \in \mathbb{W} \backslash \mathbb{V}$. Since $z_{2} \in \mathbb{W} \subseteq \mathbb{S}=\langle\mathbb{V}\rangle_{m b}$ and $z_{2} \notin \mathbb{V}$, it follows that $z_{2} \in(\mathbb{V} \times \Gamma \times \mathbb{V} \cup \mathbb{V} \times \Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \mathbb{V}]$. Since $z_{2} \in(\mathbb{V} \times \Gamma \times \mathbb{V} \cup \mathbb{V} \times \Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \mathbb{V}]$, it implies $z_{2} \leq w$ for some $w \in \mathbb{V} \times \Gamma \times \mathbb{V} \cup \mathbb{V} \times \Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \mathbb{V}$. There are two cases to observe. Case-1: Let $w \in \mathbb{V} \times \Gamma \times \mathbb{V}$. Then $w=w_{1} \times \xi \times w_{2}$ for some $w_{1}, w_{2} \in \mathbb{V}$ and $\xi \in \Gamma$. We have $w_{1}, w_{2} \in \mathbb{W}$. Since $z_{2} \notin \mathbb{V}, z_{2} \neq w_{1}$ and $z_{2} \neq w_{2}$. Since $w=w_{1} \times \xi \times w_{2}$, $\langle w\rangle_{m b} \subseteq\left\langle w_{1} \times \xi \times w_{2}\right\rangle_{m b}$. Hence, $w \leq_{m b} w_{1} \times \xi \times w_{2}$. Since $z_{2} \leq w$ for some $w \in$ $\left\langle w_{1} \times \xi \times w_{2}\right\rangle_{m b}$, we have $z_{2} \in\left\langle w_{1} \times \xi \times w_{2}\right\rangle_{m b}$. To prove that $\left\langle z_{2}\right\rangle_{m b} \subseteq\left\langle w_{1} \times \xi \times w_{2}\right\rangle_{m b}$. Now, $z_{2} \cup N\left(z_{2} \times \xi \times z_{2}\right) \cup z_{2} \times \xi \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times z_{2} \subseteq\left\langle w_{1} \times \xi \times\right.$ $\left.w_{2}\right\rangle_{m b} \cup N\left(\left\langle w_{1} \times \xi \times w_{2}\right\rangle_{m b} \times \Gamma \times\left\langle w_{1} \times \xi \times w_{2}\right\rangle_{m b}\right) \cup\left\langle w_{1} \times \xi \times w_{2}\right\rangle_{m b} \times \bar{\Gamma} \times(\mathbb{S} \times \Gamma \times$ $\cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times\left\langle w_{1} \times \xi \times w_{2}\right\rangle_{m b} \subseteq\left(\left\{w_{1} \times \xi \times w_{2}\right\} \cup N\left(\left\{w_{1} \times \xi \times w_{2}\right\} \times \Gamma \times\left\{w_{1} \times\right.\right.\right.$ $\left.\left.\left.\xi \times w_{2}\right\}\right) \cup\left\{w_{1} \times \xi \times w_{2}\right\} \times \Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times\left\{w_{1} \times \xi \times w_{2}\right\}\right]$. Hence, $\left(z_{2} \cup N\left(z_{2} \times \xi \times z_{2}\right) \cup z_{2} \times \xi \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times z_{2}\right] \subseteq\left(\left\{w_{1} \times \xi \times w_{2}\right\} \cup N\left(\left\{w_{1} \times \xi \times\right.\right.\right.$ $\left.\left.\left.w_{2}\right\} \times \Gamma \times\left\{w_{1} \times \xi \times w_{2}\right\}\right) \cup\left\{w_{1} \times \xi \times w_{2}\right\} \times \Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times\left\{w_{1} \times \xi \times w_{2}\right\}\right]$. This implies $\left\langle z_{2}\right\rangle_{m b} \subseteq\left\langle w_{1} \times \xi \times w_{2}\right\rangle_{m b}$. Hence, $z_{2} \leq_{m b} w_{1} \times \xi \times w_{2}$. This contradicts (2). Case-2: Let $w \in \mathbb{V} \times \Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \mathbb{V}$. Then $w=w_{3} \times \xi \times\left(s_{1} \times\right.$ $\left.\xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times \nu \times w_{4}$ for some $w_{3}, w_{4} \in \mathbb{V}, s_{i} \in \mathbb{S}$ and $\xi_{i}, \xi, \nu \in \Gamma, i=$ $1,2, \ldots, n$. We have $w_{3}, w_{4} \in \mathbb{W}$. Since $z_{2} \notin \mathbb{V}, z_{2} \neq w_{3}$ and $z_{2} \neq w_{4}$. Since $w=$ $w_{3} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times \nu \times w_{4},\langle w\rangle_{m b} \subseteq\left\langle w_{3} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times\right.\right.$ $\left.\left.\xi_{n} \times s_{n}\right) \times \nu \times w_{4}\right\rangle_{m b}$. Hence, $w \leq_{m b} w_{3} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times \nu \times w_{4}$. Since $z_{2} \leq w$ for some $w \in\left\langle w_{3} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times \nu \times w_{4}\right\rangle_{m b}$, we have $z_{2} \in\left\langle w_{3} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times \nu \times w_{4}\right\rangle_{m b}$. We determine that $\left\langle z_{2}\right\rangle_{m b} \subseteq\left\langle w_{3} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times \nu \times w_{4}\right\rangle_{m b}$. Now, $z_{2} \cup N\left(z_{2} \times \xi \times z_{2}\right)$ $\cup z_{2} \times \xi \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times z_{2} \subseteq\left\langle w_{3} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times \nu \times w_{4}\right\rangle_{m b}$ $\cup N\left(\left\langle w_{3} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times \nu \times w_{4}\right\rangle_{m b} \times \Gamma \times\left\langle w_{3} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times\right.\right.\right.$ $\left.\left.\left.\cdots \times \xi_{n} \times s_{n}\right) \times \nu \times w_{4}\right\rangle_{m b}\right) \cup\left\langle w_{3} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times \nu \times w_{4}\right\rangle_{m b} \times$ $\Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times\left\langle w_{3} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times \nu \times w_{4}\right\rangle_{m b} \subseteq$ $\left(\left\{w_{3} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times \nu \times w_{4}\right\} \cup N\left(\left\{w_{3} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times\right.\right.\right.\right.$ $\left.\left.\left.\cdots \times \xi_{n} \times s_{n}\right) \times \nu \times w_{4}\right\} \times \Gamma \times\left\{w_{3} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times \nu \times w_{4}\right\}\right) \cup$ $\left\{w_{3} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times \nu \times w_{4}\right\} \times \Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times\left\{w_{3} \times \xi \times\left(s_{1} \times\right.\right.$ $\left.\left.\left.\xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times \nu \times w_{4}\right\}\right]$. Hence, $\left(z_{2} \cup N\left(z_{2} \times \xi \times z_{2}\right) \cup z_{2} \times \xi \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma\right.$ $\left.\times z_{2}\right] \subseteq\left(\left\{w_{3} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times \nu \times w_{4}\right\} \cup N\left(\left\{w_{3} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times\right.\right.\right.\right.$ $\left.\left.\left.\xi_{n} \times s_{n}\right) \times \nu \times w_{4}\right\} \times \Gamma \times\left\{w_{3} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times \nu \times w_{4}\right\}\right) \cup\left\{w_{3} \times \xi \times\left(s_{1} \times\right.\right.$ $\left.\left.\xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times \nu \times w_{4}\right\} \times \Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times\left\{w_{3} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times\right.\right.$ $\left.\left.\left.\xi_{n} \times s_{n}\right) \times \nu \times w_{4}\right\}\right]$. This implies $\left\langle z_{2}\right\rangle_{m b} \subseteq\left\langle w_{3} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times \nu \times w_{4}\right\rangle_{m b}$. Hence, $z_{2} \leq_{m b} w_{3} \times \xi \times\left(s_{1} \times \xi_{1} \times s_{2} \times \cdots \times \xi_{n} \times s_{n}\right) \times \nu \times w_{4}$, which is a contradiction to (3). Therefore, \mathbb{W} is an M-bi-base of \mathbb{S}.

Theorem 3.5. Let \mathbb{W} be an M-bi-base of \mathbb{S}. Then \mathbb{W} is an ordered Γ-subsemigroup of \mathbb{S} if and only if $w_{1} \times \xi \times w_{2}=w_{1}$ or $w_{1} \times \xi \times w_{2}=w_{2}$, for any $w_{1}, w_{2} \in \mathbb{W}$ and $\xi \in \Gamma$.

Proof: If \mathbb{W} is an ordered Γ-subsemigroup of \mathbb{S}, then $w_{1} \times \xi \times w_{2} \in \mathbb{W}$. Since $w_{1} \times \xi \times$ $w_{2} \in\left(N\left(w_{1} \times \Gamma \times w_{2}\right) \cup w_{1} \times \Gamma \times(\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times w_{2}\right]$, it follows by Lemma 3.3 that $w_{1} \times \xi \times w_{2}=w_{1}$ or $w_{1} \times \xi \times w_{2}=w_{2}$.
4. Conclusion. We have introduced the M-bi-base of an ordered Γ-semigroup and discussed some characterizations of the M-bi-base. We have discussed some of their basic properties and characterized some of their properties using M-bi-ideal and its generator.

It was also presented the M-base of an ordered Γ-semigroup generated by an element and a subset. In the future, we will characterize some more classes of the Γ-semigroup and ordered Γ-semigroup based on M-left-base, and M-right-base, respectively. Moreover, some other classes of the various tri-bases and various tri- M-bases will be studied. Their study with regard to the ordered Γ-hyper semigroup based on bi-base and M-bi-base will be explored.

Acknowledgment. The authors would like to thank the anonymous referee who provided useful and detailed comments on a previous/earlier version of the manuscript.

REFERENCES

[1] M. K. Sen and N. K. Saha, On 「-semigroup, Bull. Cal. Math. Soc., vol.78, no.3, pp.180-186, 1986.
[2] M. M. K. Rao, Г-semirings, Southeast Asian Bull. Math., vol.19, no.1, pp.49-54, 1995.
[3] K. M. Kapp, On bi-ideals and quasi-ideals in semigroups, Publ. Math. Debrecen, vol.16, pp.179-185, 1969.
[4] K. M. Kapp, Bi-ideals in associative rings and semigroups, Acta Sci. Math., vol.33, nos.3-4, pp.307314, 1972.
[5] Y. Kemprasit, Quasi-ideals and bi-ideals in semigroups and rings, Proc. of Int. Conf. Algebra Appl., pp.30-46, 2002.
[6] M. K. Sen and A. Seth, On po-「-semigroups, Bull. Cal. Math. Soc., vol.85, no.5, pp.445-450, 1993.
[7] A. Iampan and M. Siripitukdet, On minimal and maximal ordered left ideals in ordered Γ-semigroups, Thai J. Math., vol.2, no.2, pp.275-282, 2004.
[8] A. Iampan, Characterizing ordered bi-ideals in ordered Γ-semigroups, Iran. J. Math. Sci. Inform., vol.4, no.1, pp.17-25, 2009.
[9] A. Iampan, Characterizing ordered quasi-ideals of ordered Γ-semigroups, Kragujevac J. Math., vol.35, no.1, pp.13-23, 2011.
[10] Y. I. Kwon and S. K. Lee, The weakly semi-prime ideals of ordered Γ-semigroups, Kangweon Kyungki Math. J., vol.5, no.2, pp.135-139, 1997.
[11] S. Lajos, On the bi-ideals in semigroups, Proc. of Japan Acad., vol.45, pp.710-712, 1969.
[12] M. Munir, On M-bi-ideals in semigroups, Bull. Int. Math. Virtual Inst., vol.8, pp.461-467, 2018.
[13] W. Jantanan, M. Latthi and J. Puifai, On bi-base of ordered Γ-semigroups, Naresuan Univ. J.: Sci. Technol., vol.30, no.3, pp.75-84, 2022.
[14] M. Palanikumar and K. Arulmozhi, On various tri-ideals in ternary semirings, Bull. Int. Math. Virtual Inst., vol.11, no.1, pp.79-90, 2021.
[15] M. Palanikumar and K. Arulmozhi, On various almost ideals of semirings, Ann. Commun. Math., vol.4, no.1, pp.17-25, 2021.
[16] M. Palanikumar and K. Arulmozhi, m-ideals and its generators of ternary semigroups, Ann. Commun. Math., vol.4, no.2, pp.164-171, 2021.
[17] H. Sanpan, N. Lekkoksung, S. Lekkoksung and W. Samormob, Characterizations of some regularities of ordered Γ-semihypergroups in terms of interval-valued Q-fuzzy Γ-hyperideals, International Journal of Innovative Computing, Information and Control, vol.17, no.4, pp.1391-1400, 2021.

