M-BI-BASE GENERATOR OF ORDERED Γ -SEMIGROUPS

M. Palanikumar¹, Aiyared Iampan^{2,*} and Lejo J. Manavalan³

¹Department of Mathematics St. Joseph College of Engineering Sriperumbudur, Chennai 602117, India palanimaths86@gmail.com

²Fuzzy Algebras and Decision-Making Problems Research Unit Department of Mathematics School of Science University of Phayao
19 Moo 2, Tambon Mae Ka, Amphur Mueang, Phayao 56000, Thailand *Corresponding author: aiyared.ia@up.ac.th

> ³Department of Mathematics Little Flower College Guruvayoor, Kerala 680103, India lejo@littleflowercollege.edu.in

Received February 2022; accepted May 2022

ABSTRACT. In this paper, we introduce the notion of M-bi-bases of an ordered Γ -semigroup, which is a generalization of the bi-base based on a Γ -semigroup and an ordered semigroup. Some of their characterizations are obtained through M-bi-bases. Let \mathbb{W} be an M-bi-base of an ordered Γ -semigroup \mathbb{S} and $z_1, z_2, z_3 \in \mathbb{W}$. If $z_1 \in (N(z_3 \times \Gamma \times z_2) \cup$ $z_3 \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times z_2]$, then prove that either $z_1 = z_2$ or $z_1 = z_3$. If \mathbb{W} is an M-bi-base of \mathbb{S} and $z_1, z_2 \in \mathbb{W}$ and $z_1 \neq z_2$, then show that neither $z_1 \leq_{mb} z_2$, nor $z_2 \leq_{mb} z_1$. In addition, we discuss an M-bi-base, which is generated by an element and a subset, and we introduce the concept of a quasi order, which is based on an M-bi-base. With the help of some examples those are discussed.

Keywords: Ordered Γ -semigroup, M-bi-ideal, M-bi-base, Quasi order

1. **Introduction.** Several authors and researchers have characterized the many different ideals based on Γ -semigroup [1], and Γ -semiring [2]. A partial order is a relation " \leq " which satisfies the conditions such as reflexivity, antisymmetry, and transitivity. The different classes of semigroup and Γ -semigroup have been characterized based on bi-ideal [3, 4, 5]. The origin of an ordered semigroup as a generalization of an ordinary semigroup with a partially ordered relation is constructed on a semigroup such that the relation is compatible with the operation. Sen and Seth have discussed an ordered Γ -semigroup [6] and it has been studied by several authors [7, 8, 9, 10]. The notion of a bi-ideal of semirings and semigroups is a generalization of the notion of an ideal of semirings and semigroups. An ordered Γ -semigroup is a generalization of Γ -semigroups. As a result, the notion of an ordered bi-ideal of an ordered semigroup is a generalization of the notion of a bi-ideal of semigroups. The notion of bi-ideals in semigroups was introduced by Lajos [11]. The concept of a bi-ideal is a very interesting and important thing in semiring. The bi-ideal is a generalization of the left and right ideals. Many mathematicians proved important results and characterizations of algebraic structures by using various ideals. An M-bi-ideal of a semigroup is a generalization of the concept of a bi-ideal of a semigroup [12]. In the same way, the notion of an ordered M-bi-ideal of an ordered semigroup is a generalization of the ordered bi-ideal of an ordered semigroup. From a pure algebraic point of view,

DOI: 10.24507/icicelb.13.08.795

the important properties of M-bi-base have been described. Because of these motivating facts, it is natural to generalize semigroup results to Γ -semigroups and Γ -semigroups to ordered Γ -semigroups. Jantanan et al. [13] discussed the bi-base of an ordered Γ semigroup. Palanikumar and Arulmozhi discussed various ideals based on semirings and ternary semirings [14, 15, 16]. Recently, Sanpan et al. [17] discussed the new logical theory for the regularities of ordered gamma semihypergroups.

Our purpose in this paper is to examine many important results of M-bi-base of ordered Γ -semigroups and then to characterize them through M-bi-ideal and M-bi-base. Furthermore, we show how the element and subset of an ordered Γ -semigroup generate the M-bi-ideal and M-bi-base. The paper is organized into four sections as follows. Section 1 is called an introduction. In Section 2, a brief description of the ordered Γ semigroup information is given. Section 3 provided a numerical example of the M-base generator. Finally, a conclusion is provided in Section 4. The purpose of this paper is

- 1) To show how to generate *M*-bi-ideals from an ordered Γ -semigroup;
- 2) The relationship " \leq " based on *M*-bi-base is not a partial order;
- 3) To illustrate, the subset of M-bi-base is not an M-bi-base.

2. Background. We present a brief summary of the basic notions and concepts used in an ordered Γ -semigroup that will be of high value for our later pursuits. In this article, \mathbb{S} denotes an ordered Γ -semigroup, unless otherwise stated.

Definition 2.1. [1] Let S and Γ be two non-empty sets. Then S is called a Γ -semigroup if there exists a function from $S \times \Gamma \times S \to S$ which maps $(z_1, \xi, z_2) \to z_1 \xi z_2$ satisfying the condition $(z_1\xi z_2)\nu z_3 = z_1\xi(z_2\nu z_3)$ for all $z_1, z_2, z_3 \in S$ and $\xi, \nu \in \Gamma$.

Definition 2.2. [6] The algebraic system $(\mathbb{S}, \Gamma, \leq)$ is said to be an ordered Γ -semigroup if it satisfies the following conditions:

- (1) \mathbb{S} is a Γ -semigroup,
- (2) \mathbb{S} is a partially ordered set (poset) elicited from " \leq ",
- (3) If $s'' \leq s'''$, then $s''\xi s' \leq s'''\xi s'$ and $s'\xi s'' \leq s'\xi s'''$, for any $s', s'', s''' \in \mathbb{S}$ and $\xi \in \Gamma$.

Definition 2.3. Let $\mathbb{W} \subseteq \mathbb{S}$ be called an ordered Γ -bi-ideal if it satisfies the following conditions:

- (1) \mathbb{W} is a Γ -subsemigroup,
- (2) $W\Gamma S\Gamma W \subseteq W$,
- (3) If $w \in \mathbb{W}$, and $s' \in \mathbb{S}$, such that $s' \leq w$, then $s' \in \mathbb{W}$.

Remark 2.1. [6] For $X', X'' \subseteq \mathbb{S}$,

(1) $X'\Gamma X'' = \{x'\xi x'' | x' \in X', x'' \in X'', \xi \in \Gamma\},$ (2) $(X'] = \{s \in \mathbb{S} | s \le x' \text{ for some } x' \in X'\},$ (3) $X' \subseteq (X'],$ (4) If $X' \subseteq X''$, then $(X'] \subseteq (X'']$ and $(X']\Gamma(X''] \subseteq (X'\Gamma X''].$

Lemma 2.1. For $\mathbb{W} \subseteq \mathbb{S}$ and $a \in \mathbb{S}$,

- (1) $(\mathbb{W} \cup \mathbb{W} \Gamma \mathbb{W} \cup \mathbb{W} \Gamma \mathbb{S} \Gamma \mathbb{W}]$ is a smallest Γ -bi-ideal of \mathbb{S} containing \mathbb{W} .
- (2) $\langle a \rangle_b = (a \cup a \Gamma a \cup a \Gamma \mathbb{S} \Gamma a)$ is a smallest Γ -bi-ideal of \mathbb{S} containing "a".

Definition 2.4. [13] Let $\mathbb{W} \subseteq \mathbb{S}$ be called a bi-base of \mathbb{S} if it satisfies the following conditions:

(1) $\mathbb{S} = \langle \mathbb{W} \rangle_b$, (2) If $\mathbb{V} \subseteq \mathbb{W}$ such that $\mathbb{S} = \langle \mathbb{V} \rangle_b$, then $\mathbb{V} = \mathbb{W}$. 3. *M*-bi-base Generator. We communicate some results on M-bi-ideal and its generator.

Definition 3.1. Let S be an ordered Γ -semigroup, $W \subseteq S$ is called an *M*-bi-ideal of S if it satisfies the following conditions:

- (1) \mathbb{W} is a Γ -subsemigroup,
- (2) $\mathbb{W} \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S} \ M\text{-times}) \times \Gamma \times \mathbb{W} \subseteq \mathbb{W},$
- (3) If $w \in \mathbb{W}$ and $s \in \mathbb{S}$ such that $s \leq w$, then $s \in \mathbb{W}$.

Remark 3.1. For $z_1 \in S$ and N, M are positive integers, then the following statements hold:

- (1) $Nz_1 = z_1 \times \Gamma \times z_1 \times \Gamma \times \cdots \times \Gamma \times z_1$ (*N*-times),
- (2) $\mathbb{S} \times \Gamma \times \mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}$ (*M-times*) $\subseteq \mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}$ (*M-1 times*).

Theorem 3.1.

- (1) For $z_1 \in \mathbb{S}$, the *M*-bi-ideal generated by "a" is $\langle z_1 \rangle_{mb} = \{z_1 \cup N(z_1 \times \Gamma \times z_1) \cup z_1 \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S} \ M\text{-times}) \times \Gamma \times z_1\}$ and $N \ge M$, where N and M are positive integers,
- (2) For $\mathbb{W} \subseteq \mathbb{S}$, the *M*-bi-ideal generated by " \mathbb{W} " is $\langle \mathbb{W} \rangle_{mb} = \{\mathbb{W} \cup \mathbb{W} \times \Gamma \times \mathbb{W} \cup \mathbb{W} \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S} \ M\text{-times}) \times \Gamma \times \mathbb{W}\}.$

Definition 3.2. Let $\mathbb{W} \subseteq \mathbb{S}$ be called an *M*-bi-base of \mathbb{S} if it satisfies the following conditions:

(1) $\mathbb{S} = \langle \mathbb{W} \rangle_{mb}$,

(2) If
$$\mathbb{V} \subseteq \mathbb{W}$$
 such that $\mathbb{S} = \langle \mathbb{V} \rangle_{mb}$, then $\mathbb{V} = \mathbb{W}$.

Example 3.1. Let $S = \{o_1, o_2, o_3, o_4, o_5, o_6\}$ and $\Gamma = \{\xi_1, \xi_2\}$, where ξ_1, ξ_2 are defined on S with the following table.

ξ_1	01	O_2	03	o_4	O_5	06
o_1	o_1	o_1	o_1	o_1	o_1	06
02	01	o_1	01	02	03	06
03	o_1	02	03	01	01	06
o_4	o_1	o_1	01	o_4	05	06
05	01	o_4	05	o_1	o_1	06
06	06	06	06	06	06	06

ξ_2	o_1	02	03	o_4	05	06
o_1	01	o_4	o_1	o_4	04	06
02	01	02	o_1	o_4	O_4	06
03	01	o_4	03	o_4	05	06
o_4	01	o_4	o_1	o_4	04	06
05	o_1	o_4	03	o_4	05	06
06	06	06	06	06	06	o_6

 $\leq := \{(o_1, o_1), (o_1, o_6), (o_2, o_2), (o_2, o_6), (o_3, o_3), (o_3, o_6), (o_4, o_4), (o_4, o_6), (o_5, o_5), (o_5, o_6), (o_6, o_6)\}. Clearly, (\mathbb{S}, \Gamma, \leq) is an ordered Γ-semigroup. The covering relation $\leq:= \{(o_1, o_6), (o_2, o_6), (o_3, o_6), (o_4, o_6), (o_5, o_6)\}$ is represented by Figure 1. Here, <math>\mathbb{W} = \{o_4, o_5\}$ is an M-bi-base of \mathbb{S} . The set of all non-empty proper subsets of \mathbb{W} is not an M-base of \mathbb{S} .

FIGURE 1. Covering relation

Theorem 3.2. Let \mathbb{W} be an *M*-bi-base of \mathbb{S} and $z_1, z_2 \in \mathbb{W}$. If $z_1 \in (N(z_2 \times \Gamma \times z_2) \cup z_2 \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times z_2]$, then $z_1 = z_2$.

Proof: Assume that $z_1 \in (N(z_2 \times \Gamma \times z_2) \cup z_2 \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times z_2]$, and suppose that $z_1 \neq z_2$. Let $\mathbb{V} = \mathbb{W} \setminus \{z_1\}$. Obviously, $\mathbb{V} \subset \mathbb{W}$. Since $z_1 \neq z_2, z_2 \in \mathbb{V}$. To show that $\langle \mathbb{V} \rangle_{mb} = \mathbb{S}$, clearly, $\langle \mathbb{V} \rangle_{mb} \subseteq \mathbb{S}$. It remains to prove that $\mathbb{S} \subseteq \langle \mathbb{V} \rangle_{mb}$. Let $s \in \mathbb{S}$. By hypothesis, $\langle \mathbb{W} \rangle_{mb} = \mathbb{S}$ and hence $s \in (\mathbb{W} \cup \mathbb{W} \times \Gamma \times \mathbb{W} \cup \mathbb{W} \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \mathbb{W}]$. We have $s \leq w$ for some $w \in \mathbb{W} \cup \mathbb{W} \times \Gamma \times \mathbb{W} \cup \mathbb{W} \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \mathbb{W}$. We can observe the following cases.

Case-1: Let $w \in \mathbb{W}$. There are two subcases to survey.

Subcase-1(a): Let $w \neq z_1$, then $w \in \mathbb{W} \setminus \{z_1\} = \mathbb{V} \subseteq \langle \mathbb{V} \rangle_{mb}$.

Subcase-1(b): Let $w = z_1$. We have $w = z_1 \in (N(z_2 \times \Gamma \times z_2) \cup z_2 \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times z_2] \subseteq (\mathbb{V} \times \Gamma \times \mathbb{V} \cup \mathbb{V} \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \mathbb{V}] \subseteq \langle \mathbb{V} \rangle_{mb}.$

Case-2: Let $w \in \mathbb{W} \times \Gamma \times \mathbb{W}$. Then $w = w_1 \times \xi \times w_2$, for some $w_1, w_2 \in \mathbb{W}$ and $\xi \in \Gamma$. Then there are four subcases to regard.

Subcase-2(a): Let $w_1 = z_1$ and $w_2 = z_1$. Now, $w = w_1 \times \xi \times w_2 = z_1 \times \xi \times z_1 \subseteq ((N(z_2 \times \Gamma \times z_2) \cup z_2 \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times z_2) \times \Gamma \times (N(z_2 \times \Gamma \times z_2) \cup z_2 \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times z_2)) \subseteq (\mathbb{V} \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \mathbb{V}] \subseteq (\mathbb{V})_{mb}$. **Subcase-2(b):** Let $w_1 \neq z_1$ and $w_2 = z_1$. Now, $w = w_1 \times \xi \times w_2 \subseteq ((\mathbb{W} \setminus \{z_1\}) \times \Gamma \times (N(z_2 \times \Gamma \times z_2))) \subseteq (\mathbb{V} \times \Gamma \times z_2) \subseteq (\mathbb{V} \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \mathbb{V}] \subseteq (\mathbb{V} \times \Gamma \times z_2) \cup z_2 \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times z_2) \subseteq (\mathbb{V} \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \mathbb{V}]$

Subcase-2(c): Let $w_1 = z_1$ and $w_2 \neq z_1$. Now, $w = w_1 \times \xi \times w_2 \subseteq ((N(z_2 \times \Gamma \times z_2) \cup z_2 \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times z_2) \times \Gamma \times (\mathbb{W} \setminus \{z_1\})] \subseteq (\mathbb{W} \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \mathbb{W}] \subseteq \langle \mathbb{W} \rangle_{mb}.$

Subcase-2(d): Let $w_1 \neq z_1$ and $w_2 \neq z_1$ and $\mathbb{V} = \mathbb{W} \setminus \{z_1\}$. Now, $w = w_1 \times \xi \times w_2 \in (\mathbb{W} \setminus \{z_1\}) \times \Gamma \times (\mathbb{W} \setminus \{z_1\}) = \mathbb{V} \times \Gamma \times \mathbb{V} \subseteq \langle \mathbb{V} \rangle_{mb}$.

Case-3: Let $w \in \mathbb{W} \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \mathbb{W}$. Then $w = w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \xi_n \times s_n) \times \nu \times w_4$ for some $w_3, w_4 \in \mathbb{W}, s_1, s_2, \dots, s_n \in \mathbb{S}$ and $\xi, \nu, \xi_1, \xi_2, \dots, \xi_n \in \Gamma$. There are four subcases to examine.

Subcase-3(a): Let $w_3 = z_1$ and $w_4 = z_1$. Now, $w = w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \xi_n \times s_n) \times \nu \times w_4 = z_1 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \xi_n \times s_n) \times \nu \times z_1 \subseteq ((N(z_2 \times \Gamma \times z_2) \cup z_2 \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times z_2) \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times (N(z_2 \times \Gamma \times z_2) \cup z_2 \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \mathbb{S}) \times \Gamma \times z_2)] \subseteq (\mathbb{V} \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \mathbb{V}] \subseteq (\mathbb{V})_{mb}.$

Subcase-3(b): Let $w_3 \neq z_1$ and $w_4 = z_1$. Now, $w = w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \xi_n \times s_n) \times \nu \times w_4 \subseteq ((\mathbb{W} \setminus \{z_1\}) \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times (N(z_2 \times \Gamma \times z_2) \cup z_2 \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times z_2)] \subseteq (\mathbb{V} \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \mathbb{V}] \subseteq \langle \mathbb{V} \rangle_{mb}.$

Subcase-3(c): Let $w_3 = z_1$ and $w_4 \neq z_1$. Now, $w = w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \xi_n \times s_n) \times \nu \times w_4 \subseteq ((N(z_2 \times \Gamma \times z_2) \cup z_2 \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times z_2) \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times z_2) \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \mathbb{S}) \times \Gamma \times (\mathbb{W} \setminus \{z_1\})] \subseteq (\mathbb{W} \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \mathbb{W}] \subseteq (\mathbb{W})_{mb}.$

Subcase-3(d): Let $w_3 \neq z_1$ and $w_4 \neq z_1$ and $\mathbb{V} = \mathbb{W} \setminus \{z_1\}$. Now, $w = w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \xi_n \times s_n) \times \nu \times w_4 \subseteq (\mathbb{V} \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \mathbb{V}] \subseteq \langle \mathbb{V} \rangle_{mb}$. For all the cases, we have $\mathbb{S} \subseteq \langle \mathbb{V} \rangle_{mb}$. Thus, $\mathbb{S} = \langle \mathbb{V} \rangle_{mb}$. It is a contradiction, hence $z_1 = z_2$.

Theorem 3.3. Let \mathbb{W} be an *M*-bi-base of \mathbb{S} and $z_1, z_2, z_3 \in \mathbb{W}$. If $z_1 \in (N(z_3 \times \Gamma \times z_2) \cup z_3 \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times z_2]$, then $z_1 = z_2$ or $z_1 = z_3$.

Proof: Proof follows from Theorem 3.2.

Definition 3.3. For any $s_1, s_2 \in \mathbb{S}$, $s_1 \leq_{mb} s_2 \iff \langle s_1 \rangle_{mb} \subseteq \langle s_2 \rangle_{mb}$ is called a quasi order on \mathbb{S} .

Remark 3.2. The order \leq_{mb} is not a partial order of S.

Example 3.2. By Example 3.1, Clearly, $\langle o_2 \rangle_{mb} \subseteq \langle o_6 \rangle_{mb}$ and $\langle o_6 \rangle_{mb} \subseteq \langle o_2 \rangle_{mb}$ but $o_2 \neq o_6$. Hence, \leq_{mb} is not a partial order on \mathbb{S} . If \mathbb{V} is an *M*-bi-base of \mathbb{S} , then $\langle \mathbb{V} \rangle_{mb} = \mathbb{S}$. Let $s \in \mathbb{S}$. Then $s \in \langle \mathbb{V} \rangle_{mb}$ and so $s \in \langle z_1 \rangle_{mb}$ for some $z_1 \in \mathbb{V}$. This implies $\langle s \rangle_{mb} \subseteq \langle z_1 \rangle_{mb}$. Hence, $s \leq_{mb} z_1$.

Remark 3.3. If \mathbb{W} is an *M*-bi-base of \mathbb{S} , then for any $s \in \mathbb{S}$, there exists $z_1 \in \mathbb{W}$ such that $s \leq_{mb} z_1$.

Lemma 3.1. Let \mathbb{W} be an M-bi-base of \mathbb{S} . If $z_1, z_2 \in \mathbb{W}$ such that $z_1 \neq z_2$, then neither $z_1 \leq_{mb} z_2$, nor $z_2 \leq_{mb} z_1$.

Proof: Assume that $z_1, z_2 \in \mathbb{W}$ such that $z_1 \neq z_2$. Suppose that $z_1 \leq_{mb} z_2$. Let $\mathbb{V} = \mathbb{W} \setminus \{z_1\}$. Then $z_2 \in \mathbb{V}$. Let $s \in \mathbb{S}$. By Remark 3.3, there exists $z_3 \in \mathbb{W}$ such that $s \leq_{mb} z_3$. We think about two cases. If $z_3 \neq z_1$, then $z_3 \in \mathbb{V}$; thus, $\langle s \rangle_{mb} \subseteq \langle z_3 \rangle_{mb} \subseteq \langle \mathbb{V} \rangle_{mb}$. Hence, $\mathbb{S} = \langle \mathbb{V} \rangle_{mb}$, which is a contradiction. If $z_3 = z_1$, then $s \leq_{mb} z_2$. Hence, $s \in \langle \mathbb{V} \rangle_{mb}$, since $z_2 \in \mathbb{V}$. Hence, $\mathbb{S} = \langle \mathbb{V} \rangle_{mb}$, which is a contradiction. Similarly to prove other case.

Lemma 3.2. Let \mathbb{W} be an *M*-bi-base of \mathbb{S} and $z_1, z_2, z_3 \in \mathbb{W}$ and $s \in \mathbb{S}$.

- (1) If $z_1 \in (\{z_2 \times \xi \times z_3\} \cup N(\{z_2 \times \xi \times z_3\} \times \Gamma \times \{z_2 \times \xi \times z_3\}) \cup \{z_2 \times \xi \times z_3\} \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \{z_2 \times \xi \times z_3\}]$, then $z_1 = z_2$ or $z_1 = z_3$,
- $(2) If z_1 \in (\{z_2 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \dots \times \xi_n \times s_n) \times \nu \times z_3\} \cup N(\{z_2 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \dots \times \xi_n \times s_n) \times \nu \times z_3\} \times \Gamma \times \{z_2 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \dots \times \xi_n \times s_n) \times \nu \times z_3\}) \cup \{z_2 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \dots \times \xi_n \times s_n) \times \nu \times z_3\} \times \Gamma \times (\mathbb{S} \times \Gamma \times \dots \times \Gamma \times \mathbb{S}) \times \Gamma \times \{z_2 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \dots \times \xi_n \times s_n) \times \nu \times z_3\}], then z_1 = z_2 \text{ or } z_1 = z_3.$

Proof: (1) Suppose that $z_1 \neq z_2$ and $z_1 \neq z_3$. Let $\mathbb{V} = \mathbb{W} \setminus \{z_1\}$. Clearly, $\mathbb{V} \subset \mathbb{W}$. Since $z_1 \neq z_2$ and $z_1 \neq z_3$ imply $z_2, z_3 \in \mathbb{V}$. To prove that $\langle \mathbb{W} \rangle_{mb} \subseteq \langle \mathbb{V} \rangle_{mb}$, it suffices to determine that $\mathbb{W} \subseteq \langle \mathbb{V} \rangle_{mb}$. Let $v \in \mathbb{W}$, if $v \neq z_1$ that $v \in \mathbb{V}$ and hence $v \in \langle \mathbb{V} \rangle_{mb}$. If $v = z_1$, then $v = z_1 \in (\{z_2 \times \xi \times z_3\} \cup N(\{z_2 \times \xi \times z_3\} \times \Gamma \times \{z_2 \times \xi \times z_3\}) \cup \{z_2 \times \xi \times z_3\} \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \{z_2 \times \xi \times z_3\}] \subseteq (\mathbb{V} \times \Gamma \times \mathbb{V}) \cup \mathbb{V} \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \mathbb{V} \subseteq \langle \mathbb{V} \rangle_{mb}$. Thus, $\mathbb{W} \subseteq \langle \mathbb{V} \rangle_{mb}$. This implies $\langle \mathbb{W} \rangle_{mb} \subseteq \langle \mathbb{V} \rangle_{mb}$. Since \mathbb{W} is an M-bi-base of \mathbb{S} and $\mathbb{S} = \langle \mathbb{W} \rangle_{mb} \subseteq \langle \mathbb{V} \rangle_{mb} \subseteq \mathbb{S}$. Therefore, $\mathbb{S} = \langle \mathbb{V} \rangle_{mb}$, which is a contradiction. Hence, $z_1 = z_2$ or $z_1 = z_3$.

(2) Suppose that $z_1 \neq z_2$ and $z_1 \neq z_3$. Let $\mathbb{V} = \mathbb{W} \setminus \{z_1\}$. Clearly, $\mathbb{V} \subset \mathbb{W}$. Since $z_1 \neq z_2$ and $z_1 \neq z_3$, imply $z_2, z_3 \in \mathbb{V}$. To prove that $\langle \mathbb{W} \rangle_{mb} \subseteq \langle \mathbb{V} \rangle_{mb}$, it remains to prove that $\mathbb{W} \subseteq \langle \mathbb{V} \rangle_{mb}$. Let $v \in \mathbb{W}$, if $v \neq z_1$ that $v \in \mathbb{V}$ and so $v \in \langle \mathbb{V} \rangle_{mb}$. If $v = z_1$, then $v = z_1 \in (\{z_2 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \xi_n \times s_n) \times \nu \times z_3\} \cup N(\{z_2 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \xi_n \times s_n) \times \nu \times z_3\} \cup N(\{z_2 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \xi_n \times s_n) \times \nu \times z_3\}) \cup$ $\{z_2 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \xi_n \times s_n) \times \nu \times z_3\} \times \Gamma \times \{z_2 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \xi_n \times s_n) \times \nu \times z_3\} \cup [\{z_2 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \xi_n \times s_n) \times \nu \times z_3\}] \subseteq (\mathbb{V} \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \{z_2 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \xi_n \times s_n) \times \nu \times z_3\}] \subseteq (\mathbb{V} \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \mathbb{V}] \subseteq$ $\langle \mathbb{V} \rangle_{mb}$. Thus, $\mathbb{W} \subseteq \langle \mathbb{V} \rangle_{mb}$. This implies $\langle \mathbb{W} \rangle_{mb} \subseteq \langle \mathbb{V} \rangle_{mb}$. Since \mathbb{W} is an M-bi-base of \mathbb{S} and $\mathbb{S} = \langle \mathbb{W} \rangle_{mb} \subseteq \langle \mathbb{V} \rangle_{mb} \subseteq \mathbb{S}$, $\mathbb{S} = \langle \mathbb{V} \rangle_{mb}$, which is a contradiction. Hence, $z_1 = z_2$ or $z_1 = z_3$.

Lemma 3.3. Let \mathbb{W} be an *M*-bi-base of \mathbb{S} ,

(1) If $z_1 \neq z_2$ and $z_1 \neq z_3$, then $z_1 \not\leq_{mb} z_2 \times \xi \times z_3$,

(2) If $z_1 \neq z_2$ and $z_1 \neq z_3$, then $z_1 \not\leq_{mb} z_2 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \xi_n \times s_n) \times \nu \times z_3$, for $z_1, z_2, z_3 \in \mathbb{W}$, $\xi, \xi_i, \nu \in \Gamma$ and $s_i \in \mathbb{S}$, $i = 1, 2, \ldots, n$.

Proof: (1) For any $z_1, z_2, z_3 \in \mathbb{W}$, let $z_1 \neq z_2$ and $z_1 \neq z_3$. Suppose that $z_1 \leq_{mb} z_2 \times \xi \times z_3$ and $z_1 \in \langle z_1 \rangle_{mb} \subseteq \{(z_2 \times \xi \times z_3)\}_{mb} = (\{(z_2 \times \xi \times z_3)\} \cup N(\{(z_2 \times \xi \times z_3)\} \times \Gamma \times \{(z_2 \times \xi \times z_3)\}) \cup \{(z_2 \times \xi \times z_3)\} \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \{(z_2 \times \xi \times z_3)\}\}$. By Lemma 3.2(1), it follows that $z_1 = z_2$ or $z_1 = z_3$, which is a contradiction.

(2) For any $z_1, z_2, z_3 \in \mathbb{W}$, let $z_1 \neq z_2$ and $z_1 \neq z_3$. Suppose that $z_1 \leq_{mb} z_2 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \xi_n \times s_n) \times \nu \times z_3$, we have $z_1 \in \langle z_1 \rangle_{mb} \subseteq \{(z_2 \times \Gamma \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \xi_n \times s_n) \times \nu \times z_3)\}_{mb} = (\{(z_2 \times \Gamma \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \xi_n \times s_n) \times \nu \times z_3)\}_{mb} = (\{(z_2 \times \Gamma \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \xi_n \times s_n) \times \nu \times z_3)\} \times \Gamma \times \{(z_2 \times \Gamma \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \xi_n \times s_n) \times \nu \times z_3)\} \times \Gamma \times \{(z_2 \times \Gamma \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \xi_n \times s_n) \times \nu \times z_3)\}$

 $\{z_n \times s_n\} \times \nu \times z_3\} \cup \{(z_2 \times \Gamma \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \xi_n \times s_n) \times \nu \times z_3)\} \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \{(z_2 \times \Gamma \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \xi_n \times s_n) \times \nu \times z_3)\}\}$. By Lemma 3.2(2), it follows that $z_1 = z_2$ or $z_1 = z_3$, which is a contradict to our handling.

Theorem 3.4. Let \mathbb{W} be an *M*-bi-base of \mathbb{S} if and only if \mathbb{W} satisfies the following holds.

- (1) For any $s \in \mathbb{S}$,
 - (1.1) there exists $z_2 \in \mathbb{W}$ such that $s \leq_{mb} z_2$ (or),
 - (1.2) there exists $w_1, w_2 \in \mathbb{W}$ such that $s \leq_{mb} w_1 \times \xi \times w_2$ (or),
 - (1.3) there exists $w_3, w_4 \in \mathbb{W}$ such that $s \leq_{mb} w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \xi_n \times s_n) \times \nu \times w_4$,
- (2) If $z_1 \neq z_2$ and $z_1 \neq z_3$, then $z_1 \not\leq_{mb} z_2 \times \xi \times z_3$, for any $z_1, z_2, z_3 \in \mathbb{W}$,
- (3) If $z_1 \neq z_2$ and $z_1 \neq z_3$, then $z_1 \not\leq_{mb} z_2 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \xi_n \times s_n) \times \nu \times z_3$, for any $z_1, z_2, z_3 \in \mathbb{W}$, $s_i \in \mathbb{S}$ and $\xi_i, \xi, \nu \in \Gamma$, $i = 1, 2, \dots, n$.

Proof: Assuming that \mathbb{W} is an *M*-bi-base of \mathbb{S} , then $\mathbb{S} = \langle \mathbb{W} \rangle_{mb}$. To prove (1), let $s \in \mathbb{S}, s \in (\mathbb{W} \cup \mathbb{W} \times \Gamma \times \mathbb{W} \cup \mathbb{W} \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \mathbb{W}]$. We have $s \leq w$ for some $w \in \mathbb{W} \cup \mathbb{W} \times \Gamma \times \mathbb{W} \cup \mathbb{W} \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \mathbb{W}$, and we think about the following three cases.

Case-1: Let $w \in \mathbb{W}$. Then $w = z_2$ for some $z_2 \in \mathbb{W}$. This implies $\langle w \rangle_{mb} \subseteq \langle z_2 \rangle_{mb}$. Hence, $w \leq_{mb} z_2$. Since $s \leq w$ for some $w \in \langle z_2 \rangle_{mb}$, to find out $\langle s \rangle_{mb} \subseteq \langle z_2 \rangle_{mb}$, now, $s \cup N(s \times \Gamma \times s) \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times s \subseteq \langle z_2 \rangle_{mb} \cup N(\langle z_2 \rangle_{mb} \times \Gamma \times \langle z_2 \rangle_{mb})$ $\cup \langle z_2 \rangle_{mb} \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \langle z_2 \rangle_{mb} \subseteq z_2 \cup N(z_2 \times \xi \times z_2) \cup z_2 \times \xi \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times S) \times \Gamma \times s \subseteq \langle z_2 \rangle_{mb} \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times s) \times \Gamma \times s \subseteq \langle z_2 \rangle_{mb}$ and hence $s \leq_{mb} z_2$.

Case-2: Let $w \in \mathbb{W} \times \Gamma \times \mathbb{W}$. Then $w = w_1 \times \xi \times w_2$ for some $w_1, w_2 \in \mathbb{W}$ and $\xi \in \Gamma$. This implies $\langle w \rangle_{mb} \subseteq \langle w_1 \times \xi \times w_2 \rangle_{mb}$. Hence, $w \leq_{mb} w_1 \times \xi \times w_2$. Since $s \leq w$ for some $w \in \langle w_1 \times \xi \times w_2 \rangle_{mb}$, we have $s \in \langle w_1 \times \xi \times w_2 \rangle_{mb}$. We determine that $\langle s \rangle_{mb} \subseteq \langle w_1 \times \xi \times w_2 \rangle_{mb}$. Now, $s \cup N(s \times \Gamma \times s) \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times s \subseteq \langle w_1 \times \xi \times w_2 \rangle_{mb} \cup N(\langle w_1 \times \xi \times w_2 \rangle_{mb} \times \Gamma \times \langle w_1 \times \xi \times w_2 \rangle_{mb}) \cup \langle w_1 \times \xi \times w_2 \rangle_{mb} \times \Gamma \times \langle w_1 \times \xi \times w_2 \rangle_{mb} \cup \langle w_1 \times \xi \times w_2 \rangle_{mb} \times \Gamma \times \langle w_1 \times \xi \times w_2 \rangle_{mb} \cup \langle w_1 \times \xi \times w_2 \rangle_{mb} \times \Gamma \times \langle w_1 \times \xi \times w_2 \rangle_{mb} \cup \langle w_1 \times \xi \times w_2 \rangle_{mb} \times \Gamma \times \langle w_1 \times \xi \times w_2 \rangle_{mb} \cup \langle w_1 \times \xi \times w_2 \rangle_{mb} \times \Gamma \times \langle w_1 \times \xi \times w_2 \rangle_{mb} \cup \langle w_1 \times \xi \times w_2 \rangle_{mb} \times \Gamma \times \langle w_1 \times \xi \times w_2 \rangle_{mb} \cup \langle w_1 \times \xi \times w_2 \rangle_{mb} \times \Gamma \times \langle w_1 \times \xi \times w_2 \rangle_{mb} \cup \langle w_1 \times \xi \times w_2 \rangle_{mb} \times \Gamma \times \langle w_1 \times \xi \times w_2 \rangle_{mb} \cup \langle w_1 \times \xi \times w_2 \rangle_{mb} \times \Gamma \times \langle w_1 \times \xi \times w_2 \rangle_{mb} \cup \langle w_1 \times \xi \times w_2 \rangle_{mb} \times \Gamma \times \langle w_1 \times \xi \times w_2 \rangle_{mb} \cup \langle w_1 \times \xi \times w_2 \rangle_{mb} \times \Gamma \times \langle w_1 \times \xi \times w_2 \rangle_{mb} \cup \langle w_1 \times \xi \times w_2 \rangle_{mb} \times \Gamma \times \langle w_1 \times \xi \times w_2 \rangle_{mb} \cup \langle w_1 \times \xi \times w_2 \rangle_{mb} \times \Gamma \times \langle w_1 \times \xi \times w_2 \rangle_{mb} \cup \langle w_1 \times \xi \times w_2 \rangle_{mb} \times \Gamma \times \langle w_1 \times \xi \times w_2 \rangle_{mb} \cup \langle w_1 \times \xi \times w_2 \rangle_{mb} \times \Gamma \times \langle w_1 \times \xi \times w_2 \rangle_{mb} \cup \langle w_1 \times \xi \times w_2 \rangle_{mb} \otimes \langle w_1 \times \xi \times w_2 \rangle_{mb} \times \Gamma \times \langle w_1 \times \xi \times w_2 \rangle_{mb} \cup \langle w_1 \times \xi \times w_2 \rangle_{mb} \times \langle w_1 \times \xi \times w_2 \rangle_{mb} \cup \langle w_1 \times \xi \times w_2 \rangle_{mb}$. Hence, $s \leq w_1 \times \xi \times w_2$.

Case-3: Let $w \in \mathbb{W} \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \mathbb{W}$. Then $w = w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \mathbb{S}) \times \Gamma \times \mathbb{W}$. $\cdots \times \xi_n \times s_n \times \nu \times w_4$ for some $w_3, w_4 \in \mathbb{W}$. This implies $\langle w \rangle_{mb} \subseteq \langle w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times y_3 \times \xi_1 \times \xi_1 \times y_3 \times \xi_1 \times \xi_1 \times \xi_1 \times y_3 \times \xi_1 \times \xi$ $\cdots \times \xi_n \times s_n \times \nu \times w_4 \rangle_{mb}$. Hence, $w \leq_{mb} \langle w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \xi_n \times s_n) \times \nu \times w_4 \rangle_{mb}$. Since $s \leq w$ for some $w \in \langle w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \xi_n \times s_n) \times \nu \times w_4 \rangle_{mb}$, we have $s \in \langle w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \xi_n \times s_n) \times \nu \times w_4 \rangle_{mb}$. To prove that $\langle s \rangle_{mb} \subseteq$ $\langle w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \xi_n \times s_n) \times \nu \times w_4 \rangle_{mb}$. Now, $s \cup N(s \times \Gamma \times s) \times \Gamma \times v_4$ $(\mathbb{S} \times \Gamma \times \dots \times \Gamma \times \mathbb{S}) \times \Gamma \times s \subseteq \langle w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \dots \times \xi_n \times s_n) \times \nu \times w_4 \rangle_{mb} \cup$ $\xi_n \times s_n) \times \nu \times w_4 \rangle_{mb}) \cup \langle w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \dots \times \xi_n \times s_n) \times \nu \times w_4 \rangle_{mb} \times \Gamma \times (\mathbb{S} \times \Gamma \times \dots \times \Gamma \times \mathbb{S}) \times \mathbb{S} \times \mathbb{S}$ $\mathbb{S}) \times \Gamma \times \langle w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \dots \times \xi_n \times s_n) \times \nu \times w_4 \rangle_{mb} \subseteq (\{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \dots \times \xi_n \times s_n) \times v \times w_4 \rangle_{mb})$ $s_n) \times \nu \times w_4 \} \cup N(\{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \dots \times \xi_n \times s_n) \times \nu \times w_4\} \times \Gamma \times \{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \dots \times \xi_n \times s_n) \times \nu \times w_4\} \times \Gamma \times \{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \dots \times \xi_n \times s_n) \times \nu \times w_4\} \times \Gamma \times \{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \dots \times \xi_n \times s_n) \times \nu \times w_4\} \times \Gamma \times \{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \dots \times \xi_n \times s_n) \times \nu \times w_4\} \times \Gamma \times \{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \dots \times \xi_n \times s_n) \times \nu \times w_4\}$ $\cdots \times \xi_n \times s_n) \times \nu \times w_4 \}) \cup \{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \xi_n \times s_n) \times \nu \times w_4\} \times \Gamma \times (\mathbb{S})$ $\times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \xi_n \times s_n) \times \nu \times w_4\}$]. Hence, $(s \cup N(s \times \Gamma \times s) \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times s] \subseteq (\{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times s_1\} \subseteq (\{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times s_1\} \subseteq (\{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times s_1\} \subseteq (\{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times s_1\} \subseteq (\{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times s_1\} \subseteq (\{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times s_1\} \subseteq (\{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times s_1\} \subseteq (\{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times s_1\} \subseteq (\{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times s_1\} \subseteq (\{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times s_1\} \subseteq (\{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \mathbb{S}) \times \Gamma \times s_1\} \subseteq (\{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \mathbb{S}) \times \Gamma \times s_1\} \subseteq (\{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \mathbb{S}) \times \Gamma \times s_1\} \subseteq (\{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \mathbb{S}) \times \Gamma \times s_1\} \subseteq (\{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \mathbb{S}) \times \Gamma \times s_1\}$ $\xi_n \times s_n) \times \nu \times w_4 \} \cup N(\{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \dots \times \xi_n \times s_n) \times \nu \times w_4\} \times \Gamma \times \{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \dots \times \xi_n \times s_n) \times v \times w_4\} \times \Gamma \times \{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \dots \times \xi_n \times s_n) \times v \times w_4\}$ $(s_1 \times \xi_1 \times s_2 \times \dots \times \xi_n \times s_n) \times \nu \times w_4\}) \cup \{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \dots \times \xi_n \times s_n) \times \nu \times w_4\}) \cup \{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \dots \times \xi_n \times s_n) \times v \times w_4\}) \cup \{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \dots \times \xi_n \times s_n) \times v \times w_4\}$ $w_4\} \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \xi_n \times s_n) \times \nu \times w_4\}].$ This implies $\langle s \rangle_{mb} \subseteq \langle w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \xi_n \times s_n) \times \nu \times w_4 \rangle_{mb}$. Hence,

 $s \leq_{mb} w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \xi_n \times s_n) \times \nu \times w_4$. By Lemma 3.3(1) and Lemma 3.3(2), prove (2) and (3), respectively.

Conversely, assume that (1), (2) and (3) hold. To prove that \mathbb{W} is an *M*-bi-base of S. Determine that $\mathbb{S} = \langle \mathbb{W} \rangle_{mb}$. Clearly, $\langle \mathbb{W} \rangle_{mb} \subseteq \mathbb{S}$. By (1), $\mathbb{S} \subseteq \langle \mathbb{W} \rangle_{mb}$ and $\mathbb{S} = \langle \mathbb{W} \rangle_{mb}$. It remains to find out \mathbb{W} is a minimal subset of \mathbb{S} , $\mathbb{S} = \langle \mathbb{W} \rangle_{mb}$. Suppose that $\mathbb{S} = \langle \mathbb{W} \rangle_{mb}$ for some $\mathbb{V} \subset \mathbb{W}$. Since, $\mathbb{V} \subset \mathbb{W}$, there exists $z_2 \in \mathbb{W} \setminus \mathbb{V}$. Since $z_2 \in \mathbb{W} \subseteq \mathbb{S} = \langle \mathbb{V} \rangle_{mb}$ and $z_2 \notin \mathbb{V}$, it follows that $z_2 \in (\mathbb{V} \times \Gamma \times \mathbb{V} \cup \mathbb{V} \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \mathbb{V}]$. Since $z_2 \in (\mathbb{V} \times \Gamma \times \mathbb{V} \cup \mathbb{V} \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \mathbb{V}]$, it implies $z_2 \leq w$ for some $w \in \mathbb{V} \times \Gamma \times \mathbb{V} \cup \mathbb{V} \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \mathbb{V}$. There are two cases to observe. **Case-1:** Let $w \in \mathbb{V} \times \Gamma \times \mathbb{V}$. Then $w = w_1 \times \xi \times w_2$ for some $w_1, w_2 \in \mathbb{V}$ and $\xi \in \Gamma$. We have $w_1, w_2 \in \mathbb{W}$. Since $z_2 \notin \mathbb{V}$, $z_2 \neq w_1$ and $z_2 \neq w_2$. Since $w = w_1 \times \xi \times w_2$, $\langle w \rangle_{mb} \subseteq \langle w_1 \times \xi \times w_2 \rangle_{mb}$. Hence, $w \leq_{mb} w_1 \times \xi \times w_2$. Since $z_2 \leq w$ for some $w \in w_1$ $\langle w_1 \times \xi \times w_2 \rangle_{mb}$, we have $z_2 \in \langle w_1 \times \xi \times w_2 \rangle_{mb}$. To prove that $\langle z_2 \rangle_{mb} \subseteq \langle w_1 \times \xi \times w_2 \rangle_{mb}$. Now, $z_2 \cup N(z_2 \times \xi \times z_2) \cup z_2 \times \xi \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times z_2 \subseteq \langle w_1 \times \xi \times v_1 \rangle = 0$ $w_2\rangle_{mb} \cup N(\langle w_1 \times \xi \times w_2 \rangle_{mb} \times \Gamma \times \langle w_1 \times \xi \times w_2 \rangle_{mb}) \cup \langle w_1 \times \xi \times w_2 \rangle_{mb} \times \Gamma \times (\mathbb{S} \times \Gamma \times \mathbb{S})$ $\cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \langle w_1 \times \xi \times w_2 \rangle_{mb} \subseteq (\{w_1 \times \xi \times w_2\} \cup N(\{w_1 \times \xi \times w_2\} \times \Gamma \times \{w_1 \times \xi \times w_2\})) \times \Gamma \times \{w_1 \times \xi \times w_2\} \cup N(\{w_1 \times \xi \times w_2\} \times \Gamma \times \{w_1 \times \xi \times w_2\}) \times \Gamma \times \{w_1 \times \xi \times w_2\} \cup N(\{w_1 \times \xi \times w_2\} \times \Gamma \times \{w_1 \times \xi \times w_2\}) \times \Gamma \times \{w_1 \times \xi \times w_2\} \cup N(\{w_1 \times \xi \times w_2\} \times \Gamma \times \{w_1 \times \xi \times w_2\}) \times \Gamma \times \{w_1 \times \xi \times w_2\} \cup N(\{w_1 \times \xi \times w_2\} \times \Gamma \times \{w_1 \times \xi \times w_2\}) \times \Gamma \times \{w_1 \times \xi \times w_2\} \cup N(\{w_1 \times \xi \times w_2\} \times \Gamma \times \{w_1 \times \xi \times w_2\}) \times \Gamma \times \{w_1 \times \xi \times w_2\} \cup N(\{w_1 \times \xi \times w_2\} \times \Gamma \times \{w_1 \times \xi \times w_2\}) \times \Gamma \times \{w_1 \times \xi \times w_2\} \cup N(\{w_1 \times \xi \times w_2\} \times \Gamma \times \{w_1 \times \xi \times w_2\}) \times \Gamma \times \{w_1 \times \xi \times w_2\} \cup N(\{w_1 \times \xi \times w_2\} \times \Gamma \times \{w_1 \times \xi \times w_2\}) \times \Gamma \times \{w_1 \times \xi \times w_2\} \cup N(\{w_1 \times \xi \times w_2\} \times \Gamma \times \{w_1 \times \xi \times w_2\})$ $\{\xi \times w_2\} \cup \{w_1 \times \xi \times w_2\} \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \{w_1 \times \xi \times w_2\}$. Hence, $w_2\} \times \Gamma \times \{w_1 \times \xi \times w_2\}) \cup \{w_1 \times \xi \times w_2\} \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \{w_1 \times \xi \times w_2\}].$ This implies $\langle z_2 \rangle_{mb} \subseteq \langle w_1 \times \xi \times w_2 \rangle_{mb}$. Hence, $z_2 \leq_{mb} w_1 \times \xi \times w_2$. This contradicts (2). **Case-2:** Let $w \in \mathbb{V} \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \mathbb{V}$. Then $w = w_3 \times \xi \times (s_1 \times \cdots \times \Gamma \times \mathbb{S})$ $\xi_1 \times s_2 \times \cdots \times \xi_n \times s_n \times \nu \times w_4$ for some $w_3, w_4 \in \mathbb{V}, s_i \in \mathbb{S}$ and $\xi_i, \xi, \nu \in \Gamma, i = 0$ $1, 2, \ldots, n$. We have $w_3, w_4 \in \mathbb{W}$. Since $z_2 \notin \mathbb{V}, z_2 \neq w_3$ and $z_2 \neq w_4$. Since w = 1 $\xi_n \times s_n$ $\times \nu \times w_4$ \rangle_{mb} . Hence, $w \leq_{mb} w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \xi_n \times s_n) \times \nu \times w_4$. Since $z_2 \leq w$ for some $w \in \langle w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \xi_n \times s_n) \times \nu \times w_4 \rangle_{mb}$, we have $z_2 \in \langle w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \xi_n \times s_n) \times \nu \times w_4 \rangle_{mb}$. We determine that $\langle z_2 \rangle_{mb} \subseteq \langle w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \xi_n \times s_n) \times \nu \times w_4 \rangle_{mb}$. Now, $z_2 \cup N(z_2 \times \xi \times z_2)$ $\cup z_2 \times \xi \times (\mathbb{S} \times \Gamma \times \dots \times \Gamma \times \mathbb{S}) \times \Gamma \times z_2 \subseteq \langle w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \dots \times \xi_n \times s_n) \times \nu \times w_4 \rangle_{mb}$ $\cdots \times \xi_n \times s_n) \times \nu \times w_4 \rangle_{mb}) \cup \langle w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \xi_n \times s_n) \times \nu \times w_4 \rangle_{mb} \otimes w_4 \rangle_{$ $\Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \langle w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \xi_n \times s_n) \times \nu \times w_4 \rangle_{mb} \subseteq$ $(\{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \dots \times \xi_n \times s_n) \times \nu \times w_4\} \cup N(\{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \dots \times \xi_n \times s_n) \times \nu \times w_4\} \cup N(\{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \dots \times \xi_n \times s_n) \times \nu \times w_4\})$ $\cdots \times \xi_n \times s_n) \times \nu \times w_4 \times \Gamma \times \{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \xi_n \times s_n) \times \nu \times w_4\}) \cup$ $\{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \dots \times \xi_n \times s_n) \times \nu \times w_4\} \times \Gamma \times (\mathbb{S} \times \Gamma \times \dots \times \Gamma \times \mathbb{S}) \times \Gamma \times \{w_3 \times \xi \times (s_1 \times \xi_1 \times$ $\xi_1 \times s_2 \times \cdots \times \xi_n \times s_n \times \nu \times w_4$]. Hence, $(z_2 \cup N(z_2 \times \xi \times z_2) \cup z_2 \times \xi \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma$ $\times z_2] \subseteq (\{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \dots \times \xi_n \times s_n) \times \nu \times w_4\} \cup N(\{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \dots \times \xi_n \times s_n) \times \nu \times w_4\}) \cup N(\{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \dots \times \xi_n \times s_n) \times \nu \times w_4\}) \cup N(\{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \dots \times \xi_n \times s_n) \times \nu \times w_4\}) \cup N(\{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \dots \times \xi_n \times s_n) \times \nu \times w_4\}) \cup N(\{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \dots \times \xi_n \times s_n) \times \nu \times w_4\}) \cup N(\{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \dots \times \xi_n \times s_n) \times \nu \times w_4\}) \cup N(\{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \dots \times \xi_n \times s_n) \times \nu \times w_4\}) \cup N(\{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \dots \times \xi_n \times s_n) \times \nu \times w_4\}) \cup N(\{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \dots \times \xi_n \times s_n) \times \nu \times w_4\}) \cup N(\{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \dots \times \xi_n \times g_n \times w_4))$ $\xi_n \times s_n) \times \nu \times w_4 \} \times \Gamma \times \{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \dots \times \xi_n \times s_n) \times \nu \times w_4\}) \cup \{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \dots \times \xi_n \times s_n) \times v \times w_4\}) \cup \{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \dots \times \xi_n \times s_n) \times v \times w_4\}) \cup \{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \dots \times \xi_n \times s_n) \times v \times w_4\}) \cup \{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \dots \times \xi_n \times s_n) \times v \times w_4\}) \cup \{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \dots \times \xi_n \times s_n) \times v \times w_4\}) \cup \{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \dots \times \xi_n \times s_n) \times v \times w_4\}$ $\xi_1 \times s_2 \times \cdots \times \xi_n \times s_n) \times \nu \times w_4 \} \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times \{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \cdots \times f_n \times \mathbb{S}) \times \Gamma \times \{w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \cdots \times f_n \times \mathbb{S}) \times \Gamma \times (w_3 \times \xi \times g_n \times g_n$ $\xi_n \times s_n \times \nu \times w_4$]. This implies $\langle z_2 \rangle_{mb} \subseteq \langle w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \xi_n \times s_n) \times \nu \times w_4 \rangle_{mb}$. Hence, $z_2 \leq_{mb} w_3 \times \xi \times (s_1 \times \xi_1 \times s_2 \times \cdots \times \xi_n \times s_n) \times \nu \times w_4$, which is a contradiction to (3). Therefore, \mathbb{W} is an *M*-bi-base of \mathbb{S} .

Theorem 3.5. Let \mathbb{W} be an *M*-bi-base of \mathbb{S} . Then \mathbb{W} is an ordered Γ -subsemigroup of \mathbb{S} if and only if $w_1 \times \xi \times w_2 = w_1$ or $w_1 \times \xi \times w_2 = w_2$, for any $w_1, w_2 \in \mathbb{W}$ and $\xi \in \Gamma$.

Proof: If \mathbb{W} is an ordered Γ -subsemigroup of \mathbb{S} , then $w_1 \times \xi \times w_2 \in \mathbb{W}$. Since $w_1 \times \xi \times w_2 \in (N(w_1 \times \Gamma \times w_2) \cup w_1 \times \Gamma \times (\mathbb{S} \times \Gamma \times \cdots \times \Gamma \times \mathbb{S}) \times \Gamma \times w_2]$, it follows by Lemma 3.3 that $w_1 \times \xi \times w_2 = w_1$ or $w_1 \times \xi \times w_2 = w_2$.

4. Conclusion. We have introduced the M-bi-base of an ordered Γ -semigroup and discussed some characterizations of the M-bi-base. We have discussed some of their basic properties and characterized some of their properties using M-bi-ideal and its generator.

It was also presented the M-base of an ordered Γ -semigroup generated by an element and a subset. In the future, we will characterize some more classes of the Γ -semigroup and ordered Γ -semigroup based on M-left-base, and M-right-base, respectively. Moreover, some other classes of the various tri-bases and various tri-M-bases will be studied. Their study with regard to the ordered Γ -hyper semigroup based on bi-base and M-bi-base will be explored.

Acknowledgment. The authors would like to thank the anonymous referee who provided useful and detailed comments on a previous/earlier version of the manuscript.

REFERENCES

- [1] M. K. Sen and N. K. Saha, On F-semigroup, Bull. Cal. Math. Soc., vol.78, no.3, pp.180-186, 1986.
- [2] M. M. K. Rao, Γ-semirings, Southeast Asian Bull. Math., vol.19, no.1, pp.49-54, 1995.
- [3] K. M. Kapp, On bi-ideals and quasi-ideals in semigroups, *Publ. Math. Debrecen*, vol.16, pp.179-185, 1969.
- [4] K. M. Kapp, Bi-ideals in associative rings and semigroups, Acta Sci. Math., vol.33, nos.3-4, pp.307-314, 1972.
- [5] Y. Kemprasit, Quasi-ideals and bi-ideals in semigroups and rings, Proc. of Int. Conf. Algebra Appl., pp.30-46, 2002.
- [6] M. K. Sen and A. Seth, On po-Γ-semigroups, Bull. Cal. Math. Soc., vol.85, no.5, pp.445-450, 1993.
- [7] A. Iampan and M. Siripitukdet, On minimal and maximal ordered left ideals in ordered Γ-semigroups, *Thai J. Math.*, vol.2, no.2, pp.275-282, 2004.
- [8] A. Iampan, Characterizing ordered bi-ideals in ordered Γ-semigroups, Iran. J. Math. Sci. Inform., vol.4, no.1, pp.17-25, 2009.
- [9] A. Iampan, Characterizing ordered quasi-ideals of ordered Γ-semigroups, Kragujevac J. Math., vol.35, no.1, pp.13-23, 2011.
- [10] Y. I. Kwon and S. K. Lee, The weakly semi-prime ideals of ordered Γ-semigroups, Kangweon Kyungki Math. J., vol.5, no.2, pp.135-139, 1997.
- [11] S. Lajos, On the bi-ideals in semigroups, Proc. of Japan Acad., vol.45, pp.710-712, 1969.
- [12] M. Munir, On M-bi-ideals in semigroups, Bull. Int. Math. Virtual Inst., vol.8, pp.461-467, 2018.
- [13] W. Jantanan, M. Latthi and J. Puifai, On bi-base of ordered Γ-semigroups, Naresuan Univ. J.: Sci. Technol., vol.30, no.3, pp.75-84, 2022.
- [14] M. Palanikumar and K. Arulmozhi, On various tri-ideals in ternary semirings, Bull. Int. Math. Virtual Inst., vol.11, no.1, pp.79-90, 2021.
- [15] M. Palanikumar and K. Arulmozhi, On various almost ideals of semirings, Ann. Commun. Math., vol.4, no.1, pp.17-25, 2021.
- [16] M. Palanikumar and K. Arulmozhi, m-ideals and its generators of ternary semigroups, Ann. Commun. Math., vol.4, no.2, pp.164-171, 2021.
- [17] H. Sanpan, N. Lekkoksung, S. Lekkoksung and W. Samormob, Characterizations of some regularities of ordered Γ-semihypergroups in terms of interval-valued Q-fuzzy Γ-hyperideals, International Journal of Innovative Computing, Information and Control, vol.17, no.4, pp.1391-1400, 2021.

802