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Abstract. Convolutional neural networks (CNN) are deep learning algorithms usual-
ly used to process input images by focusing on different aspects or objects in order to
recognize one image from another. They also have a pooling layer which is normally
used to handle and avoid unnecessarily complicated calculations in order to speed up the
processing time. This research, therefore, proposes a novelty approach to improving the
performance of the pooling layer process using a 4D rank tensor. The layer was generally
formed using a 4 × 4 window size or 2 × 2 filter which was later operated on each slice
of the input. Meanwhile, the maxpool calculation with the 4D rank tensor requires more
elaboration for its application in the CNN algorithm. This method is faster by 221.01
milliseconds or 27.99%.
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1. Introduction. Convolutional neural network is one of the machine learning approach-
es usually applied for visual object recognition [1,2]. It has fewer connections and param-
eters and is also easy to train when compared to the other standard neural networks
[3]. This method relies on and uses many convolution processes in 2D (two dimensions)
through the application of arrays. Moreover, CNN has become efficient in studying data
due to its ability to extract low-level features as well as to detect and classify objects [4].
Some of its inherent architectures include LeNet [5,6], AlexNet [3], ZFNet [7], GoogleNet
[8], VGGNet [9], and ResNet [10]. Several studies have, however, been conducted to de-
velop new models with better accuracy in recognizing numbers and images. Image is the
main way for people to obtain original information [11]. Furthermore, it has been discov-
ered that CNN requires less initial processing compared to other classification algorithms
and its architecture is also divided into two parts which are the feature extraction layer
and fully connected layer. The feature extraction layer is the process of encoding an image
into a number that represents the image. This involved the utilization of the first con-
volutional layer to remove several low-level features such as the edges, corners, and lines
from the input image [12]. An example of this is the pooling layer which is also known
as subsampling and down-sampling which has the ability to discard 75% of information
without reducing and affecting the content [13]. Pooling operation also shrinks feature
map resolution and preserves critical discriminant information required for recognition.

DOI: 10.24507/icicelb.13.07.767

767



768 S. LIAWATIMENA, E. ABDURAHMAN, A. TRISETYARSO ET AL.

Furthermore, this method reduces the number of neural connections and the size of the
feature map [14] and also discards irrelevant image details.
Figure 1 shows the process involved in the reduction of the spatial dimension which

further leads to the loss of information. Meanwhile, kernel size and filter number can
significantly affect the performance [16]. A convolutional layer is usually followed by a
pooling layer. Now, the model formed becomes deeper and more complex. Of course, as
the number of layers increases, it will take more time to process. Therefore, this research
proposes an approach to improving the performance of the pooling layer process using
a 4-dimensional array through the Halide concept [17]. This method was later tested
with an input test image. In this study, researcher will increase the speed, especially
modification in max pooling method.

Figure 1. Downsampling with pooling layer [15]

2. Background Information and Related Works.

2.1. Parallel in Halide. Halide is a domain-specific language (DSL) designed for fast im-
age processing and computational photograph [18]. It allows quick operation without any
benchmarking, considers a single level of tiling and fusion, and also combines with fixed
heuristic choices for several purposes such as parallelism, vectorization, and unrolling.
The main idea in Halide is the separation of a program into the algorithm which specifies
the data to be computed, scheduled, and dictates the order of computation and storage.
Moreover, the algorithm is expressed as a purely functional and feed-forward pipeline of
arithmetic operation on multidimensional grids. This helps the user not to worry about
the low-level optimizations while writing the high-level algorithm. Furthermore, Halide is
also required to express iterative or recursive computations such as summation, histogram,
and scan [17].
Halide has recently enabled the implementation of a high-performance image processing

pipeline. Li et al. conducted an experiment [18] to extend the ability of this method to
automatically and efficiently compute the gradients of arbitrary Halide programming using
reverse-mode automatic differentiation. Moreover, this method writes codes in few lines
while PyTorch and CUDA need more codes. Halide programming language has also proven
to the trial and writing of different schedules easy towards achieving high performance.
Adams et al. also fused several parallel loops into a single one to avoid the slight overhead
involved in nested parallelism [19].

2.2. Tensor. Tensors are uniform multidimensional arrays with a uniform type [20] and
their numbers are represented by the modes or ways and orders [21]. It is important to
note that scalar mathematics is when the required index is 0, a vector is when it is 1, a
matrix is when it is 2, and a tensor is when the index is 3 or more as shown in Table 1.
The different types of tensors are, however, presented in Figure 2.
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Table 1. Scalar, vector, matrix, tensor

Index Computer science Mathematics

0 (0D) number Scalar
1 (1D) array Vector
2 (2D) array Matrix
n (nD) array Tensor

Figure 2. Tensors 1D, 2D, 3D, and 4D

Some of the vocabularies usually used in tensors include [20]

• Shape: the length of each of the axes of a tensor
• Rank: number of tensor axes
• Axis or dimension: a particular dimension of the tensor
• Size: the total number of items in the tensor or the product shape of the tensor

Sparse tensors have been observed to be increasingly used in data analysis and ma-
chine learning. A high-performance vector product known as SpTV is one of the most
fundamental operations to process sparse tensors [21]. It is also important to note that
tensors can be unfolded and represented as matrices, and their sparsity has the ability to
influence load balance.

Liawatimena et al. [22] proposed a novel way to improve the convolutional process using
a 4-dimensional array using the concepts of Halide and 4D rank tensor. This method
produced fewer loops and this means it is faster compared to the traditional way of
convolution by saving approximately 18.5% of the time.

2.3. Big O notation. Big O notation is a mathematical notation which describes the
limiting function’s behavior when its argument tends towards a specific value or infinity
[23]. It was invented as Bachmann-Landau or asymptotic notation by Paul Bachmann,
Edmund Landau, and others. The notation is commonly referred to as “Big O squared”,
and written as O(n2) notation where n is used to represent the size of the input.

Algorithm analysis is an essential part of computational complexity theory [24] which
provides theoretical estimates for resources such as space and time devoted to solving a
given computational problem. However, time complexity describes the amount of time
it takes an algorithm or a program to complete its process or execution and is usually
expressed using Big Omega (Ω) and Big Theta (Θ). Figure 3 shows the complexity of
Big O [25] which is marked with different colors where red means very complex and green
means not complex.
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Figure 3. (color online) Big O complexity graph

3. Method. According to Giusti et al. [26], the benefit of using a pooling layer is as-
sociated with its ability to handle complications and avoid unnecessary calculations in
order to speed up the processing time. This process is needed to produce a faster result
for object detection and image classification. However, the most essential aspect of CNN
modeling is the selection of the types of pooling layers to be used [27] due to its ability to
act on each stack in the feature map and reduces its size. It is generally formed using a 2
× 2 filter applied with a stride of 2 and operates on each slice of the input. For example,
an image of size 224 × 224 pixels is expected to have an output size of 112 × 112 using
a 2 × 2 pooling size with a stride of 2 as shown in Figure 1. Moreover, the input image
dimension is represented as W × H × D where W is width, H is the height, and D is
the depth. The image dimensions produced after the application of the pooling layer are,
therefore, shown in Equations (1) and (2).

NewWidth =
(InputWidth − FilterWidth)

Stride
+ 1 (1)

NewHeight =
(InputHeight − FilterHeight)

Stride
+ 1 (2)

Figure 4 shows the traditional method of maxpool in the pooling layer which uses 4 ×
4 size considered as the four maxpools of a 2 × 2 filter. Meanwhile, the method proposed
was based on the multiplication from this traditional maxpool.

Figure 4. Output feature after max-pooling application
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Figure 5 shows the multiplication of the traditional method into 16 × 16 size to produce
16 maxpools with a 2 × 2 filter. The number of values produced from the process increased
four times compared to the traditional method. Moreover, the traditional Maxpool2D
process is indicated in Figure 6 and the layer with one input/output feature map and
pseudocode is observed. A 2 × 2 maxpooling kernel extracts the maximum value from a
2 × 2 region on feature map 1 to feature map 2 and discards other values assuming the
pooling layer is connected to one input and one output feature map. This paper proposes
Maxpool2D4DT algorithm as shown in Figure 6.

Figure 5. 16 maxpool in a 2-axis tensor shape [16, 16]

A method was proposed to calculate the maxpool and a tile block consisting of 16
maxpool 4D tensor was called in line with [1, 4, 4, 2, 2]. This size was explained using its
1 column maxpool, 4 rows maxpool, a depth of 4, and a filter size of 2 × 2 as indicated
in Figure 7.

The calculation process of the proposed method is presented in Figures 8 and 9 and the
first four rows and four columns were observed to be maxed pool with a 2 × 2 filter with a
2-axis shape tensor. This was called a one maxpool. A traditional maxpool process with
a 2 × 2 filter usually produces 4 maximum values, but the proposed method produced 16
values in one single process.

The method was called Maxpool2D4DT which means maxpool with 2 × 2 filter and
4D-ranked tensor model. However, the difference between this method and the traditional
maxpool algorithm is the number of iterations. For example, there is a 16 × 16 window
size with a filter of 2 × 2, and the traditional maxpool needs at least 16 iterations to
obtain 16 values while the method developed requires just one single process to obtain
these values. This means it speeds up the process to obtain maximum values using only
one iteration. Moreover, it does not need to re-calculate the remaining columns and this
also shows it is very faster than the usual method. It is important to note that the method
was designed based on a Halide concept known as the parallelization function.

4. Results. The method developed was run using python and the process was compared
with the usual method. The results presented in Figure 10 show the output size was
208 × 208 which is half of the original size [28,29]. This was, therefore, followed by edge
detection and comparison with the traditional method.
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Figure 6. Maxpool2D and Maxpool2D4DT algorithm

Figure 11 shows the Maxpool2D and Maxpool2D4DT process time and in average the
Maxpool2D4DT 221.01 ms or 27.99% faster than the Maxpool2D. Maxpool2D4DT is
faster because our method calculates the value faster with fewer iterations than Max-
pool2D. Our method can get the value faster because we have calculated the value before.
As we have mentioned before in Section 3, our method does not re-calucalte the column
that already has been calculated. This concept is called parallelization in Halide.

5. Conclusion. This research describes the process of developing max pooling using a
python programming language. It was discovered that the proposed method was able to
save up to 27.99% of the time for several resolution input images when compared with the
original maxpool method. This means it is faster because there is no need to focus on the
remaining columns. It is also important to note that the difference of 546.09 milliseconds
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Figure 7. Tile block of a 16 maxpool in 4-axis shape

Figure 8. (color online) Maxpool2D4DT processes red and yellow cell

was recorded for one-time use of the maxpool layer. Meanwhile, the training model usually
requires thousands of iterations depending on the amount of the data and the accuracy to
be achieved. This means a model normally requires more than one maxpool layer and each
convolutional layer is usually followed by a pooling layer. The model is also observed to be
currently getting deeper, thereby, making the number of layers reach hundreds. Therefore,
it is recommended that further studies increase the calculation at the inner looping from
16 to 64 values at a single-cell process in order to calculate 256 values altogether in a
block.
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Figure 9. (color online) Maxpool2D4DT processes green and blue cell

Figure 10. Maxpool2D and Maxpool2D4DT output

Figure 11. Maxpool2D and Maxpool2D4DT process time
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