
ICIC Express Letters
Part B: Applications ICIC International c⃝2022 ISSN 2185-2766
Volume 13, Number 7, July 2022 pp. 749–756

QUANTITATIVE ARGUMENT SUMMARIZATION
USING TEXT-TO-TEXT TRANSFER TRANSFORMER

William Harly, Hansen Riady Kwee and Derwin Suhartono∗

Computer Science Department
School of Computer Science
Bina Nusantara University

Jl. K. H. Syahdan No. 9, Kemanggisan, Palmerah, Jakarta 11480, Indonesia
{william.harly; hansen.kwee }@binus.ac.id; ∗Corresponding author: dsuhartono@binus.edu

Received August 2021; accepted November 2021

Abstract. Currently, argument mining and the related fields are expanding, generating
numerous amounts of data. Thus, a method to summarize the extracted arguments be-
comes increasingly important to create a comprehensive summary. In this work, we aim
to improve the performance of quantitative summarization where arguments are mapped
to a key point defined as a high-level argument. We cast this problem into Recognizing
Textual Entailment task and solve it with supervised learning by finetuning Text-to-Text
Transfer Transformers. Using this method, we achieved an F1-score of 98.5% using a
4-fold cross-validation method. Compared to previous work, our experiment resulted in a
17.6% increase in performance.
Keywords: Argument mining, Quantitative summarization, Text-to-Text Transfer Trans-
former, Recognizing Textual Entailment, Online discussion

1. Introduction. The Internet has been used by many people as a platform for discus-
sion due to easy access and the anonymity status gained when accessing it [1]. We can
see from Figure 1 that the number of discussions in Reddit, which is one of the popular
discussion platforms, keeps increasing each year. With so many discussions happening
on the Internet, methods that are able to extract and process arguments become increas-
ingly important. Even now, many studies have been done on this field from extracting
argument [2] to classifying argument [3]. However, even though there are many research-
es on argument mining, there are still very few research efforts that tried to show these
arguments in a simple and easy-to-understand summary.

Primarily, the research in summarization is split into two groups: extractive sum-
marization and abstractive summarization. Extractive summarization focuses on finding
important sections in the document, while abstractive summarization tries to create a
concise summary that might contain phrases that do not exist in the original text [4].
Recent works in extractive summarization consider summarization as a word or sentence
level classification problem and addressed it by calculating sentence representations using
neural architectures [5,6]. Other work tried to adopt document-level features to rank ex-
tractive summaries [7]. On the other hand, in abstractive summarization, several works
have aimed to make an abstract summary from texts by making a short representation of
a document [8] or compression of the document [9]. Abstractive summarization also has
been tried for online political debates [10].

However, these approaches are not as effective when applied in an online discussion
because an argument will often be used multiple times. This usage of the same argu-
ment multiple times often signifies the participant’s understanding of the discussion topic
and other information, such as when there is an outlier argument in the discussion that is

DOI: 10.24507/icicelb.13.07.749

749



750 W. HARLY, H. R. KWEE AND D. SUHARTONO

Figure 1. Number of posts and comments published on Reddit1

thrown around only to aggravate the discussion. However, both abstractive and extractive
methods removed this information, which reduces the comprehensiveness of the generated
summary. To work around this problem, newer research implemented a clustering algo-
rithm to group similar arguments by their similarity [11] and frames [12]. Unfortunately,
these works did not attempt to make a summary out of the created clusters.
Recent work has solved this problem by mapping the argument to a key point defined

as a high-level argument using several methods, with the best performance acquired using
transformer architecture [13]. Although this method has been further improved by swap-
ping the transformer with a more powerful one [14], there is still room for improvement by
using a newer and more powerful transformer such as Text-to-Text Transfer Transformer
[15].
In both of these previous works [13,14], they used several evaluation policies. For

example, when matching the argument to a single keypoint, the remaining suitable key
points that are not chosen by the model are regarded as a false negative. Thus, we also
try to improve on the evaluation method to better capture the performance of the model.
In summary, this work will improve previous work [13,14] on mapping argument to key

points by using a higher-performing transformer, which is Text-to-Text Transfer Trans-
former [15], and further refining the data preprocessing step. By performing these im-
provements, we were able to improve the performance on quantitative argument summa-
rization to 98.5% of F1-score.
In Section 2, we examine the works related to our research. The step of our experiment

is explained in Section 3. The result of our experiment is shown in Section 4. Finally, our
conclusions are presented in Section 5.

2. Problem Statement and Preliminaries. Previous research on summarization can
be separated into two categories based on their approach: abstractive summarization
and extractive summarization. In abstractive summarization, the generated summaries
potentially contain new phrases and sentences that may not appear in the source text
[16]. While in extractive summarization, the generated summary is created by taking
an important section from the source text [17]. However, quantitative summarization
focuses on summarizing discussion by grouping similar arguments and creating a textual
representation of each group to create a concise summary. In this section, we examine
the previous work in quantitative summarization.

1https://redditblog.com/2020/12/08/reddits-2020-year-in-review/; https://redditblog.com/2019/12/
04/reddits-2019-year-in-review/; https://redditblog.com/2018/12/04/reddit-year-in-review-2018/



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.13, NO.7, 2022 751

One such work proposed a method for automatic multi-document summarization which
consisted of two clustering stages [18]. In the first stage, the clustering is performed
on the document level based on topic similarity. For the second stage, the clustering is
performed on the sentence level based on semantic and syntactic similarity. Each cluster
is then evaluated using a summary builder checker to find the best summary based on
the coherence and readability of the generated summary.

Another work that is more focused on summarizing arguments used a similarity-based
approach to decide whether two arguments are under the same topic [11]. They used argu-
ment pairs from an argument search engine containing a lot of noise arguments unrelated
to the target topic and train a supervised similarity function based on a transformer,
which significantly improved the evaluation result compared with unsupervised methods
on the same arguments pair. This work concludes that fine-grained semantic nuances used
by the supervised method determine the similarity between arguments and not the lexical
used in the unsupervised method.

There is also another study on clustering arguments by grouping multiple arguments in
a topic into several non-overlapping frames [12]. Frame refers to a group of arguments that
focus on the same aspect. From this frame, they clustered the argument using two different
methods, first by removing an argument’s topic features, and the second uses conclusion
and premise. The result of this work shows the benefit of removing topic features and
using argument conclusions to identify the argument’s frame.

However, using only the clustering method to create quantitative summarization means
that we still need to create a textual representation from the clustering results. Thus, a
recent work introduces a new summarization method, where each cluster should represent
a pre-selected key point [13]. This research tried several approaches to solve this new task,
with the best performing model using supervised learning with pre-trained transformer
model BERT.

This work is further improved by using several other pre-trained transformer models
with a better performance compared to BERT, especially on Recognizing Textual Entail-
ment (RTE) [14]. The most notable result is obtained by using ALBERT [19] achieving an
F1 of 78.4%. Although ALBERT is able to bring a significant performance improvement,
there is still room for improvement by using a newer transformer model. In the same
research [14], they also explore the notion of automatic key point extraction by using
arguments to keypoint matching model to choose a key point with the highest level of
coverage.

Both of these works [13,14] use several evaluation policies to better suit the dataset used
due to how most arguments have at most one matched key point. For example, when
matching the argument to a single keypoint, the model will choose the best matching
key point regardless of the confidence score. However, this method can be further refined
by a more thorough preprocessing by removing excess keypoint from the argument with
multiple matching keypoint to better capture the model’s performance.

Text-to-Text Transfer Transformer. In our experiment, we use transformer, a
common approach in achieving state-of-the-art performance on various NLP tasks. The
transformer architecture consists of multiple encoder-decoder architectures that use self-
attention, a mechanism related to the different positions of a single sequence to create
a contextual embedding. This method was able to reduce sequential operation needed
and increase the number of processes that can be parallelized. Combined with transfer
learning, transformer architecture is able to achieve state-of-the-art performance [20].

The specific transformer used in this experiment is a Text-to-Text Transfer Transformer
(T5) [15]. We focused on experimenting with T5 because it is made by scaling up various
insights from previous transformers with state-of-the-art performance, thus achieving an
even better result than other transformers on various tasks, such as Recognizing Textual
Entailment and Semantic Textual Similarity. To ease the model evaluation on these various



752 W. HARLY, H. R. KWEE AND D. SUHARTONO

NLP tasks, the authors of this work cast all tasks into a “text-to-text” format, with text
as both input and output, and different prefixes on the input text for each task.

3. Methodology. Based on previous work in previous sections, we performed our re-
search according to the process shown in Figure 2. The research step is similar to prior
works on quantitative argument summarization [13,14] with a more thorough preprocess-
ing at the dataset preparation and different hyperparameters at the training phase.

Figure 2. Step of argument summarization research

3.1. Dataset preparation. The dataset used was the IBM Debater(R)-ArgKP dataset
[13], which is a subset of the IBM ArgQ-Rank-30kArgs dataset [21]. The ArgKP dataset
contains 24,093 argument and keypoint pairs, which is composed of 6,515 unique argu-
ments related to 28 controversial topics. From these 6,515 unique arguments, not all
of them are matched to exactly one key point (having more than one key point or no
matching key point). The dataset consists of five fields depicted in Table 1.

Table 1. Fields of each instance in the dataset

Label Description
topic The title of the debate with the stance

argument A pro or con argument related to the topic
key point A candidate key point
label 1 if a keypoint represents the argument, 0 otherwise

This dataset is preprocessed by removing unused fields such as topic and stance. After-
ward, unnecessary symbols are also removed, and all letters are changed into lowercase.
The preprocessed dataset is split accordingly to perform 4-fold cross-validation, each fold
consists of 7 test topics, 4 development topics, and 17 train topics. Finally, several ver-
sions of the test datasets are made by filtering the dataset to match the evaluation policy
explained in the evaluation section as follows:
a) Multiple keypoint dataset, a version where the dataset contains arguments with one,

multiple, or no matching key points;
b) Single keypoint dataset, a version where the dataset contains only arguments with

one matching keypoint. This dataset is made by removing arguments with no matching
key points and removing excess matching key points from the test dataset;
c) One or no keypoint dataset, a version where the dataset contains arguments with

one or no matching keypoint. This dataset is made by removing excess matching keypoint
from the test dataset.

3.2. Training phase. All the training is done in the cloud using Tensor Processing Unit
(TPUv2-8) and Cloud Storage provided by Google. We used the T5 library2 that is im-
plemented using TensorFlow mesh [22], allowing for TPU utilization to shorten training
time. The text-to-text models used for this experiment are T5-base (220M parameter),
T5-large (770M parameter), and T5-3B checkpoint3 (2.8B parameter) after pre-trained for

2https://github.com/google-research/text-to-text-transfertransformer
3gs://t5-data/pretrained models



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.13, NO.7, 2022 753

1 million steps. Compared to previous work [14] which uses BERT-large (336M parame-
ter), RoBERTa-large (355M parameter), and ALBERT-xxlarge-v1 (223M parameter), the
number of parameters of the text-to-text model does not differ significantly, especially on
the base version of the text-to-text model.

We then used the provided T5 checkpoints without any modification. We convert our
task to T5 RTE task format with a maximum input sequence length of 128. The model
is fine-tuned using AdaFactor optimizer [23] and 0.1 probability for each dropout layer in
the model [15]. The fine-tuning is performed for 27,000 steps with a batch size of 16 and a
constant learning rate of 3e-4 when the sign of overfitting started to appear on validation
data. A few examples of the input-output in T5 RTE format are shown in Figure 3.

Figure 3. A few examples of the input-output in T5 RTE format

3.3. Evaluation. After the training phase, we run each model on the test dataset to
perform a prediction on the given argument and key point pair. Alongside the prediction,
we also measure the confidence score of the model in the form of log-likelihood using the
provided utilities in the T5 library. And then, we perform the following step to acquire
the model performance.

Step 1: Using the Loglikelihood of each prediction, we convert it back into probability (P )
using the equation

P = eLoglikelihood (1)

Step 2: Using the probability (P ) and the original model prediction output (y), we cal-
culate the match score between an argument with a candidate keypoint using
Equation (2).

f(P, y) =


0.5 +

1

2
P, y = entailment

0.5− 1

2
P, y = not entailment

(2)

Step 3: We then implemented a moving threshold [24] by selecting the threshold t that
maximizes the F1-score on the positive class over the development set using the
resulting match score. This is done to negate the imbalance proportion of the
class in the training dataset.

Step 4: From the resulting match score, the final prediction of the model is made based
on the following selection policies used in previous work [13].
a) Threshold (TH) policy matches each argument in the test data to multiple key

points with a match score above a certain threshold t. This policy may lead
to an argument with no matching key point.

b) Best Match (BM) policy groups the test data by argument and matches each
argument with one key point with the highest match score. This policy is best
used when each argument must have one matching key point.



754 W. HARLY, H. R. KWEE AND D. SUHARTONO

c) Best Match + Threshold (BM+TH) policy groups the test data by argument
and matches each argument to one key point with the highest match score and
above a certain threshold t. This policy is best used when each argument has
either one or no matching key point.

Using the final prediction of the models, we evaluate each model by measuring accuracy,
precision, recall, and F1 [25] of all folds on the positive class, before averaging them to
get the final model performance.

4. Main Results. Table 2 shows our result on matching the argument to key points with
several policies using a Text-to-Text Transfer Transformer compared to the best method
from previous works [13,14]. All of the results are acquired by averaging the performance
matrix across the different folds.

Table 2. Argument to key point matching results, across different evalu-
ation policies

Model Selection policy Accuracy Precision Recall F1

BERT-large [13]
TH 0.867 0.677 0.700 0.685
BM 0.879 0.705 0.716 0.710

BM+TH 0.893 0.788 0.665 0.721

ALBERT-xxlarge-v1 [14]
TH 0.909 0.779 0.794 0.784
BM 0.908 0.778 0.785 0.780

BM+TH 0.926 0.877 0.751 0.809

RoBERTa-large [14]
TH 0.897 0.731 0.803 0.765
BM 0.895 0.745 0.753 0.749

BM+TH 0.913 0.849 0.711 0.773

T5-base
TH 0.944 0.789 0.999 0.881
BM 0.980 0.960 0.960 0.960

BM+TH 0.974 0.914 0.959 0.935

T5-large
TH 0.949 0.856 0.932 0.881
BM 0.981 0.962 0.962 0.962

BM+TH 0.971 0.946 0.907 0.921

T5-3B
TH 0.963 0.877 0.964 0.914
BM 0.992 0.985 0.985 0.985

BM+TH 0.983 0.966 0.952 0.957

Using the text-to-text model, we were able to outperform previous work across all
the performance metrics. The smallest T5 model (T5-base) used in this experiment has
a similar amount of parameters with ALBERT-xxlarge-v1, but is still able to improve
performance on all metrics. We also observe that the performance increase with the
number of parameters in the T5 model.
These performance increases are in line with our conjecture since T5 is a better model

not only because it is a scaled-up model but also built based on insights from other current
state-of-the-art transformers. The use of the predefined format for T5 RTE task also eases
the downstream process of Recognizing Textual Entailment task to mapping argument
with key points.
Our method is able to achieve significantly higher performance on selecting a single

matching key point (BM) even with the same model size compared to previous work [14].
This is due to our preprocess where we remove arguments with no matching key point
and removing excess matching key points from test data. Additionally, this preprocessing
also resulted in the value of precision, recall, and F1 to have the same value on the single
matching key point due to the nature of force matching of argument to a single key point,
resulting in the same amount of false positive and false negative.



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.13, NO.7, 2022 755

5. Conclusion. Based on the result of the experiment, it can be concluded that we
can achieve higher performance in quantitative summarization by mapping arguments
to key points using Text-to-Text Transfer Transformer (T5), which is a scaled-up model
built based on insights from other current state-of-the-art transformers. We were able to
increase the performance of the task compared to previous work with 13.0% on multiple
key points, 20.5% on a single key point, and 14.8% on a single or no key point measured
by F1.

Although the text-to-text model has yielded a high performance, there is still room for
improvement and further research. In this research paper, we only experimented using
T5-3B with 3 billion parameters, while the original paper reports a higher performance
on the T5-11B with 11 billion parameters. Future work also can experiment on using
our method for automatic keypoint extraction to further improve the automation of the
argument summarization process.

REFERENCES

[1] E. M. Onyema, E. C. Deborah, A. O. Alsayed, N. N. Quadri and S. Sanobe, Online discussion forum
as a tool for interactive learning and communication, International Journal of Recent Technology
and Engineering (IJRTE), vol.8, no.4, pp.4852-4859, 2019.

[2] I. Persing and V. Ng, Unsupervised argumentation mining in student essays, Proc. of the 12th
Conference on Language Resources and Evaluation (LREC2020), pp.6795-6803, 2020.

[3] R. Winata, E. G. Haryono and D. Suhartono, Towards better argument component classification in
English essays, ICIC Express Letters, Part B: Applications, vol.12, no.2, pp.111-119, 2021.

[4] D. Huang, L. Cui, S. Yang, G. Bao, K. Wang, J. Xie and Y. Zhang, What have we achieved on text
summarization?, Proc. of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp.446-469, 2020.

[5] R. Nallapati, F. Zhai and B. Zhou, SummaRuNNer: A recurrent neural network based sequence
model for extractive summarization of documents, Proc. of the 31st AAAI Conference on Artificial
Intelligence, pp.3075-3081, 2017.

[6] J. Xu and G. Durrett, Neural extractive text summarization with syntactic compression, Proc. of the
2019 Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp.3292-3303, 2019.

[7] M. Zhong, P. Liu, Y. Chen, D. Wang, X. Qiu and X. Huang, Extractive summarization as text
matching, Proc. of the 58th Annual Meeting of the Association for Computational Linguistics,
pp.6197-6208, 2020.

[8] L. Wang and W. Ling, Neural network-based abstract generation for opinions and arguments, Proc.
of the 2016 Conference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pp.47-57, 2016.

[9] J. Zhou and A. Rush, Simple unsupervised summarization by contextual matching, Proc. of the 57th
Annual Meeting of the Association for Computational Linguistics, pp.5101-5106, 2019.

[10] C. Egan, A. Siddharthan and A. Wyner, Summarising the points made in online political debates,
Proc. of the 3rd Workshop on Argument Mining (ArgMining2016), pp.134-143, 2016.

[11] N. Reimers, B. Schiller, T. Beck, J. Daxenberger, C. Stab and I. Gurevych, Classification and
clustering of arguments with contextualized word embeddings, Proc. of the 57th Annual Meeting of
the Association for Computational Linguistics, pp.567-578, 2019.

[12] Y. Ajjour, M. Alshomary, H. Wachsmuth and B. Stein, Modeling frames in argumentation, Proc. of
the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp.2922-2932, 2019.

[13] R. Bar-Haim, L. Eden, R. Friedman, Y. Kantor, D. Lahav and N. Slonim, From arguments to key
points: Towards automatic, Proc. of the 58th Annual Meeting of the Association for Computational
Linguistics, pp.4029-4039, 2020.

[14] R. Bar-Haim, Y. Kantor, L. Eden, R. Friedman, D. Lahav and N. Slonim, Quantitative argument
summarization and beyond: Cross-domain key point analysis, Proc. of the 2020 Conference on
Empirical Methods in Natural Language Processing, pp.39-49, 2020.

[15] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li and P. J. Liu,
Exploring the limits of transfer learning with a unified text-to-text transformer, Journal of Machine
Learning Research, vol.21, pp.1-67, 2020.



756 W. HARLY, H. R. KWEE AND D. SUHARTONO

[16] L. Liu, Y. Lu, M. Yang and Q. Qu, Generative adversarial network for abstractive text summariza-
tion, The 32nd AAAI Conference on Artificial Intelligence (AAAI-18), pp.8109-8110, 2018.

[17] N. Moratanch and S. Chitrakala, A survey on extractive text summarization, 2017 International
Conference on Computer, Communication and Signal Processing (ICCCSP), pp.1-6, 2017.

[18] K. A. Maria, K. M. Jaber and M. N. Ibrahim, A new model for Arabic multi-document text sum-
marization, International Journal of Innovative Computing, Information and Control, vol.14, no.4,
pp.1443-1452, 2018.

[19] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma and R. Soricut, ALBERT: A lite BERT for
self-supervised learning of language representations, The 8th International Conference on Learning
Representations (ICLR2020), 2020.

[20] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, A. N. Gomez, L. Kaiser and I. Polosukhin, Atten-
tion is all you need, The 31st Conference on Neural Information Processing Systems (NIPS2017),
2017.

[21] S. Gretz, R. Friedman, E. Cohen-Karlik, A. Toledo, D. Lahav, R. Aharonov and N. Slonim, A large-
scale dataset for argument quality ranking: Construction and analysis, Proc. of the AAAI Conference
on Artificial Intelligence, vol.34, no.5, pp.7805-7813, 2020.

[22] N. Shazeer, Y. Cheng, N. Parmar, D. Tran, A. Vaswani, P. Koanantakool, P. Hawkins, H. Lee, M.
Hong, C. Young, R. Sepassi and B. Hechtman, Mesh-TensorFlow: Deep learning for supercomputers,
arXiv.org, arXiv: 1811.02084, 2018.

[23] N. Shazeer and M. Stern, AdaFactor: Adaptive learning rates with sublinear memory cost, CoRR,
2018.

[24] F. Provost, Machine learning from imbalanced data sets 101, The AAAI 2000 Workshop on Imbal-
anced Data, 2000.

[25] D. Powers, Evaluation: From Precision, Recall and F-Factor to ROC, Informedness, Markedness &
Correlation, Mach. Learn. Technol., 2008.


