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Abstract. The aim of this paper is solving two-dimensional fuzzy Fredholm integral
equation of the second kind (2D-FFIE2), by proposing cubic non-polynomial spline func-
tions. The fuzzy equation is converted into two crisp equations, and then the dual system
is solved by the proposed spline. Convergence is proved by iteration method. It is accurate
and easy to apply with Math Cad 15 computation for numerical examples.
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1. Introduction. Studying fuzzy integral equations is important in solving a large pro-
portion of the problems in many topics in applied mathematics, particularly in relation
to physics, geography, medicine, and biology. Usually in many applications, some of the
parameters in our problems are represented by fuzzy number rather than crisp, and hence
it is important to develop mathematical models and numerical procedures that would ap-
propriately treat general fuzzy integral equations and solve them (see for example, [1-3]).
In connection with the application, it is appropriate to study the existence and uniqueness
of solutions by fixed point theorems and iteration methods as in [4-6].

Numerical methods were proposed to solve 2D-FFIE2. For instance, in [7] Ezzati and
Ziari determined bivariate Bernstein polynomials. In [8] Farshid et al. used triangular
functions. In [9,10] Nouriani and Ezzati introduced interpolation methods, fuzzy Lagrange
and fuzzy bicubic spline respectively to find numerical results. In [11] Ameri and Nezhad
solved fuzzy Volterra integral equations by least square approximation method.

For non-polynomial spline, in [12] Hasan presented cubic non-polynomial spline to solve
nonlinear Volterra integrodifferential equations. In [13] Ding and Wang applied mid-knot
cubic spline to obtaining numerical solution of second-order boundary value problems.
In [14,15] Hasan and Salim proposed linear non-polynomial spline to get accurate results
for solving fractional partial differential equations and two-dimensional variable order
fractional derivative, respectively.

This paper develops a simple but quite accurate numerical method for approximating
the solution of 2D-FFIE2 by non-polynomial spline functions.

The outline of this paper is organized as follows. Some basic definitions of fuzzy set
theory and non-polynomial spine are reviewed in Section 2. In Section 3, the method is
constructed. In Section 4, convergence analysis is verified. For application, two numerical
examples are presented in Section 5. Conclusions are drawn in Section 6.
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2. Preliminaries.

2.1. Basic concepts of fuzzy set theory. Basic definitions, properties and mathemat-
ical operations of fuzzy number valued functions are reviewed.

Definition 2.1. [16] A fuzzy number is a function u: R → [0, 1] satisfying the following:

1) u(x) = 0 outside of some interval [0, 1] ⊂ R;
2) u is a fuzzy convex set, that is for all x, y ∈ R and λ ∈ [0, 1], u(λx + (1 − λ)y) ≥

min(u(x), u(y)).

The set of all fuzzy numbers is denoted by Rf , the fuzzy number r ∈ [0, 1] in parametric
form is denoted by ordered pair of functions (u(r), u(r)) such that

1) u(r) nondecreasing function bounded on [0, 1];
2) u(r) nonincreasing function bounded on [0, 1];
3) u(r) ≤ u(r).

The addition and multiplication [17] operations of real numbers can be extended to
fuzzy numbers. For all u = (u(r), u(r)), v = (v(r), v(r)) and k ∈ R, we have

1) u = v iff u(r) = v(r) and u(r) = v(r);
2) u⊕ v = (u(r) + v(r), u(r) + v(r));

3) k ⊙ u =

{
ku(r), ku(r), k ≥ 0

ku(r), ku(r), k < 0
.

As a distance between fuzzy numbers, we use Hausdorff metric defined by [18]

D(u, v) = sup
r∈[0,1]

max {|u(r)− v(r)|, |u(r) + v(r)|}

Lemma 2.1. [18] The Hausdorff metric has the following properties

1) (Rf , D) is complete matric space;
2) D(u⊕ w, v ⊕ w) = D(u, v) for all u, v, w ∈ Rf ;
3) D(u⊕ v, w ⊕ e) ≤ D(u,w) +D(v, e) for all u, v, w, e ∈ Rf ;
4) D(k ⊙ u, k ⊙ v) = |k|D(u, v) for all u, v ∈ Rf and k ∈ R.

Definition 2.2. [19] Distance between fuzzy functions f , g such that f, g: [a, b] → Rf is
fuzzy real-valued functions defined by Du such that

Du = sup{D(f(x), g(x))|x ∈ [a, b]}

Definition 2.3. [19] If for every ϵ > 0, ∃δ > 0 such that D(f(x), g(x)) < ϵ whenever
x ∈ [a, b], |x − x0| < δ then f : [a, b] → Rf is referred to as fuzzy continuous function at
x0 ∈ [a, b].

2.2. A review of one-dimensional non-polynomial spline. The partition ∆ =
{x0, x1, . . . , xn} of [a, b] ∈ R. Let S∆ denote the set of piecewise polynomials on subin-
terval Ii = [xi, xi+1] of partition ∆. Consider the grid point xi on interval [a, b] such
that

a = x0 < x1 < · · · < xn = b with xi = x0 + ih, i = 0, 1, . . . , n and h =
b− a

n
The non-polynomial spline function obtained by the segment Si(x) has the form: cos kx

+sin kx+Pn−2(x), where Pn−2(x) =
∑n−2

i=0 lix
i polynomial of degree n− 2 and a trigono-

metric part cos kx and sin kx with a free parameter k.

Definition 2.4. [20] For each segment [xi, xi+1], i = 0, 1, . . . , n − 1, the cubic non-
polynomial Si(x) has the form ai cos k(x− xi) + bi sin k(x− xi) + ci(x− xi) + di where ai,
bi, ci, di are constant coefficients.
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3. The Method. We define two dimensional nonpolynomial spline functions as follows:

Sm,n(x, y) =
m∑
i=0

n∑
j=0

cijSi(x)⊗ Sj(y), ∀(x, y) ∈ [a, b]2, ∀(m,n) ∈ N2 (1)

where ⊗ denotes the Kronecker product of Si(x), Sj(y) and cij are constant coefficients.
Si(x) and Sj(y) are cubic non-polynomial spline as in Definition 2.4.

The 2D-FFIE2 is defined by

u(x, y) = f(x, y)⊕ λ⊗
∫ b

a

∫ b

a

K(x, y, s, t)⊗ u(s, t)dsdt, (x, y) ∈ E (2)

where λ > 0, K is crisp given function on E × E, where E = [a, b]2. u(x, y) and f(x, y)
are continuous fuzzy real-valued functions.

By the parametric form, let
(
f(x, y, r), f(x, y, r)

)
and (u(x, y, r), u(x, y, r)), 0 ≤ r ≤ 1,

be parametric form of fuzzy functions f(x, y) and u(x, y), respectively. Substituting these
forms into (2), we have

(u(x, y, r), u(x, y, r))

=
(
f(x, y, r), f(x, y, r)

)
⊕ λ⊗

∫ b

a

∫ b

a

K(x, y, s, t)⊗ (u(s, t, r), u(s, t, r)) dsdt (3)

By substituting (1) in (2) with a = 0, b = 1, λ = 1 and m = n, we have
n∑

i=0

n∑
j=0

cijSi(x)⊗ Sj(y)

= f(x, y)⊕
∫ 1

0

∫ 1

0

K(x, y, s, t)⊗
n∑

i=0

n∑
j=0

cijSi(s)⊗ Sj(t)dsdt

By letting
∑n

i=0

∑n
j=0 cijSi(x)⊗ Sj(y) = Sij(x, y), then the approximate solution is

Sij(x, y) = f(x, y)⊕
∫ 1

0

∫ 1

0

K(x, y, s, t)⊗ Sij(s, t)dsdt (4)

The approximate solution Sij(x, y) at arbitrary points of Equation (4) can be written
in the form

Sij(x, y) = f(x, y)⊕
∫ 1

0

∫ 1

0

K(x, y, s, t)⊗ Sij(s, t)dsdt

Sij(x, y) = f(x, y) ⊕
∫ 1

0

∫ 1

0

K(x, y, s, t)⊗ Sij(s, t)dsdt

If we substitute x and y with assumed collocation points xp = p+0.2
n+1

, p = 0, 1, 2, . . . , n

and yq =
q+0.2

q
, q = 0, 1, 2, . . . , n, respectively.

Then (4) can be represented by dual fuzzy linear system AC = F . A = apqij , p, q =

0, 1, 2, . . . , n, and i, j = 0, 1, 2, . . . , n, is (n+ 1)2 × (n+ 1)2 fuzzy matrix, where apqij =

Si(xp)⊗Sj(yq). F is (n+ 1)2 × 1 fuzzy vectors, since F = (f(0, 0) . . . f(0, 1) . . . f(1, 0) . . .
f(1, 1))T . C = cij, i, j = 0, 1, . . . , n are unknown coefficients to be determined.

By solving the dual fuzzy linear system (4), the unknown coefficients cij can be found.
So, we obtain the approximate solution of 2D-FFIE2.
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4. Convergence Theorem. Convergence for the numerical solution of two-dimensional
Volterra integral equations is verified by Katani and Shahmorad in [21] by using Gronwall
inequality. In this section, the convergence and uniqueness of fuzzy solution for 2D-FFIE2
are proved by using Picard’s iterative method. In the following theorem, for a given value
u0(x, y, r), the Picard’s iteration for (3) is defined by

un+1(x, y, r) = f(x, y, r) + λ

∫ d

c

∫ b

a

K(x, y, s, t)un(s, t, r)dsdt, n = 0, 1, . . . (5)

where u(x, y, r) = (u(x, y, r), u(x, y, r)) and f(x, y, r) =
(
f(x, y, r), f(x, y, r)

)
Theorem 4.1. Let f(x, y, r)be a fuzzy continuous and bounded over E, and let K(x, y, s, t)
be a continuous function and satisfies Lipschitz condition L over E × E. Then a unique
fuzzy solution of (3) and the Picard’s iteration are uniformly convergent to exact solution
u(x, y, r).

Proof: Since K(x, y, s, t) is continuous over E × E, there exists a constant M > 0,
such that |K(x, y, s, t)u(s, t, r)| ≤ M , if u(x, y, r) is bounded say, α < u(x, y, r) < β. To
ensure that

|un+1(x, y, r)− f(x, y, r)| ≤ |λ|
∫ d

c

∫ b

a

|K(x, y, s, t)un(s, t, r)|dsdt ≤ |λ|MST

where S = d− c and T = b−a, then un+1(x, y, r) is bounded. By the bounds of f(x, y, r),
there exist integers m1 and m2, such that m1 < f(x, y, r) < m2; thus, we have

α < m1 − |λ|MST < |un+1(x, y, r)| < |λ|MST +m2 < β

Now, we follow a procedure to get convergence of the sequence un(s, t, r) to the unique
solution of (3). by the Picard’s iteration in (5), we have for n = 1

|u2(x, y, r)− u1(x, y, r)| = |λ|
∫ d

c

∫ b

a

|K(x, y, s, t)u1(s, t, r)−K(x, y, s, t)u0(s, t, r)|

≤ |λ|L
∫ d

c

∫ b

a

|u1(s, t, r)− u0(s, t, r)|dsdt

≤ |λ|L|β − α|ST
for n = m

|um+1(x, y, r)− um(x, y, r)| ≤ |β − α|(|λ|LST )
m

m!m!
for n = m+ 1

|um+2(x, y, r)− um+1(x, y, r)| ≤ |λ|L
∫ d

c

∫ b

a

|um+1(s, t, r)− um(s, t, r)|dsdt

≤ |λ|L
∫ d

c

∫ b

a

|β − α|(|λ|LST )
m

m!m!
dsdt

≤ |β − α| (|λ|LST )m+1

(m+ 1)!(m+ 1)!
(6)

In (6) replace m+ 1 by n, then

|un+1(x, y, r)− un(x, y, r)| ≤ |β − α|(|λ|LST )
n

n!n!
∀ n ∈ N

which implies that the series:
∑∞

n=1(un+1(x, y, r)− un(x, y, r)) is absolutly and uniformly

convergent. On the other hand, u(x, y, r) = u1(x, y, r) +
∑n−1

i=1 ui+1(x, y, r) − ui(x, y, r).
Then limn→∞ un(x, y, r) exists for all (x, y) ∈ E. Let limn→∞ un(x, y, r) = u(x, y, r).
Then, we have

lim
n→∞

K(x, y, s, t)un(x, y, r) = K(x, y, s, t)u(x, y, r)
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and so

lim
n→∞

un(x, y, r) = f(x, y) + λ

∫ d

c

∫ b

a

K(x, y, s, t)u(s, t, r)dsdt = u(x, y, r)

That is, u(x, y, r) is the unique solution of (3).

5. Numerical Examples. To solve 2D-FFIE2 by the proposed method, two examples
are tested. Tables 1 and 2 show the exact solution and numerical solution with absolute
error ξ = |u− S|, ξ =

∣∣u− S
∣∣ of exact and approximate solutions. In Example 5.1, we

compare the results of the proposed method with method of [7] and for Example 5.2 with
method of [22].

Example 5.1. Consider the following 2D-FFIE2 in (3) with

f(x, y, r) = x sin
(y
2

) (
r2 + r

)
, f(x, y, r) = x sin

(y
2

) (
4− r3 − r

)
λ = 1, and K(x, y, s, t) = x2ys for 0 ≤ x, y, s, t ≤ 1. The exact solution [7] is

u(x, y, r) =

(
x sin

(y
2

)
− 16

21

(
cos

(
1

2

)
− 1

)
x2y

)(
r2 + r

)
u(x, y, r) =

(
x sin

(y
2

)
− 16

21

(
cos

(
1

2

)
− 1

)
x2y

)(
4− r3 − r

)
From Table 1, we can find that the absolute errors ξ and ξ̄ of the numerical solutions

are in good agreement with exact solution. By comparing the proposed method with fuzzy
bivariate Bernstein polynomials [7], we see that the proposed method has a higher accuracy
and much smaller error with less collocation points.

Table 1. Numerical results for Example 5.1 in x = 0.3, y = 0.6

Exact solution Approximate solution
Errors of

the present method

Errors of

method [7]

r u(x, y, r), u(x, y, r) Sij(x, y, r), Sij(x, y, r) ξ ξ ξ ξ

0.0 (0.000, 0.375) (0.000, 0.375) 0 1.874× 10−4 0.0000 0.0002

0.2 (0.022, 0.355) (0.022, 0.355) 1.124× 10−5 1.776× 10−4 0.0000 0.0002

0.4 (0.052, 0.331) (0.052, 0.331) 2.623× 10−5 1.656× 10−4 0.0000 0.0002

0.6 (0.090, 0.298) (0.090, 0.298) 4.497× 10−5 1.492× 10−4 0.0001 0.0002

0.8 (0.135, 0.252) (0.135, 0.252) 6.746× 10−5 1.259× 10−4 0.0001 0.0002

1.0 (0.187, 0.187) (0.187, 0.187) 4.213× 10−5 9.369× 10−5 0.0001 0.0001

Example 5.2. Consider the following 2D-FFIE2 in (3) with

f(x, y, r) = (2r cos(1− r)− 1)

(
1 + x2 + y − 13

24
(x+ y)

)
f(x, y, r) =

(
2− sin

(rπ
2

))(
1 + x2 + y − 13

24
(x+ y)

)
λ = 1, and K(x, y, s, t) = (x+ y)st for 0 ≤ x, y, s, t ≤ 1. The exact solution [22] is

u(x, y, r) = (2r cos(1− r)− 1)
(
x2 + y + 1

)
u(x, y, r) =

(
2− sin

(rπ
2

)) (
x2 + y + 1

)
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From Table 2 we can find that the absolute errors ξ and ξ̄ of the numerical solutions
are in good agreement with exact solution. By comparing the proposed method with fuzzy
bivariate Bernstein polynomials [22], we see that the proposed method has a higher accu-
racy.

Table 2. Numerical results for Example 5.2 in x = 0.5, y = 0.5

Exact solution Approximate solution
Errors of

the present method

Errors of

method [22]

r u(x, y, r), u(x, y, r) Sij(x, y, r), Sij(x, y, r) ξ ξ ξ ξ

0.0 (−1.750, 3.500) (−1.750, 3.499) 4.547× 10−4 9.095× 10−4 1.0× 10−3 2.2× 10−3

0.2 (−1.262, 2.959) (−1.265, 2.958) 3.28× 10−4 7.689× 10−4 7.8× 10−4 6.4× 10−3

0.4 (−0.595, 2.471) (−0.594, 2.471) 1.545× 10−4 6.422× 10−4 1.3× 10−4 8.1× 10−3

0.6 (0.184, 2.084) (0.184, 2.084) 4.787× 10−4 5.416× 10−4 6.1× 10−4 7.3× 10−3

0.8 (0.994, 1.836) (0.994, 1.835) 2.583× 10−4 4.77× 10−4 1.8× 10−3 4.7× 10−3

1.0 (1.750, 1.750) (1.750, 1.750) 4.547× 10−4 4.547× 10−4 1.0× 10−3 4.0× 10−3

6. Conclusion. In this work, non-polynomial spline method approaches the solution
of linear 2D-FFIE2. By this method, the original equation is converted into two crisp
2D-FFIE2. Convergence of the exact solution and uniqueness are proved by Picard’s
iterations in Theorem 4.1. The efficiency of this method is illustrated by tables of the
numerical examples which is compared with results of methods in [7] and [22].
This idea can be continued in studying other types of fuzzy integral equations, such as

nonlinear equations, or equation with singular kernel.
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