ICIC Ezxpress Letters
Part B: Azl)\?lications ICIC International (©)2022 ISSN 2185-2766
Volume 13, Number 6, June 2022 pp. 639-646

IMPROVING THE PERFORMANCE OF MIXING-PROCESS
MACHINE CLASSIFICATION BASED ON FEATURE ENGINEERING
TECHNIQUES: A CASE STUDY IN RUBBER-BELT INDUSTRY

ALIF NUR IMAN, JINUK KiM, SU JEONG SON, MUHAMMAD HANIF RAMADHAN
AND HYERIM BAE*
Industrial Data Science and Engineering, Department of Industrial Engineering
Pusan National University
2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea
{ alifnuriman; jason.jinuk.kim; handsj; mhanifr }@pusan.ac.kr
*Corresponding author: hrbae@pusan.ac.kr

Received October 2021; accepted December 2021

ABSTRACT. The machine is the primary tool in the manufacturing process. The fea-
tures produced by a standard machine (in this case, a mizing machine for fabrication of
rubber belts) ordinarily are minimal and log-oriented. Additionally, because the machine
normally produces a good product rather than a not-good product, data imbalance is in-
evitable. Therefore, to develop a good machine learning model, data reconstruction is
necessary. This paper proposes feature engineering method formulated based on an ac-
tual machine data. Ezplicit, implicit, and knowledge-and-human-learning-guided feature
engineering was carried out in the present study in order to extract additional features.
In order to overcome the data tmbalance problem, the Synthetic Minority Oversampling
Technique (SMOTE) was implemented. As evaluation metrics of the proposed method,
Random Forest and eXtreme Gradient Boosting (XGBoost) were employed. The experi-
mental results showed that the proposed method improves the performance of the existing
algorithm.

Keywords: Classification, Feature engineering, Machine learning, Random Forest, SM-
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1. Introduction. With the advancement of science and technology, machines have come
to play an essential role in the manufacturing process. To ensure that machines perform
to their full potential, comprehensive analysis is required. Monitoring, prediction, and
classification of machine performance can be beneficial in improving decision making
in industrial management. The more manufacturers apply the state-of-the-art machine
learning concept in their production processes, the more likely they experience growth.

Machine learning will analyze and learn to gain knowledge and even predict information
based on data. In handling data input, it is necessary to pay attention to how data are
preprocessed. Moreover, feature data generated by machines are typically logged data
per second and separated by batches. This kind of data requires to be reconstructed
before being utilized as input into machine learning. The mixing machine considered in
the present study produces temperature, voltage, and RAM data as features. Shah et
al. [1] emphasized that features engineering is essential to the development of a successful
data-driven machine learning model.

In the machine industry, it is expected that a machine produces a good product rather
than a not-good product. However, this incurs a data imbalance problem. Krawczyk
2] analyzed the different aspects of imbalanced learning, and found that one of possible
solutions to imbalanced data problems is to focus on the structure and nature of examples
in minority classes. Recent studies on the application of Synthetic Minority Oversampling
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Technique (SMOTE) in treating imbalanced data problems have shown promising results
[3-5]. Comprehensive analysis of SMOTE by Elreedy and Atiya [6] indicated that it is an
effective method for generating additional examples from the minority class.

For analysis of classification performance, evaluation metrics are utilized. Recent stud-
ies on application eXtreme Gradient Boosting (XGBoost) and Random Forest have been
investigated. Budholiya et al. [7] applied the XGBoost classifier to predicting heart dis-
ease. Kiangala and Wang [8] implemented XGBoost and Random Forest to develop an
effective adaptive customization platform for encoding of the customized data histories of
small manufacturing plants. Both studies’ results (i.e., accuracies > 90%) were promising.
These methods, notably, are applicable to classification of mixing-machine data products.

This paper proposes a feature engineering technique to improve the performance of
machine learning models. The entire process is illustrated in Figure 1. SMOTE was im-
plemented to deal with imbalanced dataset problems. The present study collected a
dataset from the real data of the mixing process in a rubber-belt industry. XGBoost and
Random Forest were implemented as comparison models to analyze the effectiveness of
feature engineering and dataset balancing performed by the proposed method.

Mixing Machine Data Collection Data . Classification Product Detection
Process Preprocessing Model

Proposed Feature Engineering

FI1GURE 1. Framework of the proposed method

The remaining of the paper is structured as below. Section 2 summarizes the related
work. Section 3 provides the problem statement, and Section 4 presents the proposed
method’s solutions. Section 5 discusses the experimental results, and Section 6 draws
conclusions.

2. Related Work. Relevant research on feature engineering techniques has been carried
out [9-11]. Additionaly, the applications of SMOTE have been investigated in previous
studies [3-5].

Tsay and Baldea [9] prescribed nonlinear transformations of model inputs in well-known
dimensionless quantities as feature engineering to be processed in Artificial Neural Net-
works (ANNs). They had observed that feature engineering helps to improve prediction
accuracy. Maphanga et al. [10] explicitly performed feature engineering by calculating
density functional theory from material properties as an input dataset for machine learn-
ing models. They compared several regression models including linear regression, support
vector machine, deep neural network, KNN, and Random Forest to find the best predic-
tion results. Siradjuddin et al. [11] combined feature engineering and feature learning to
classify the level dirtiness of image. They extract four features (structure, noise, diversity,
and number of regions) to represent the level of dirtiness of an image.

Wang et al. [3] combined tree-based feature selection, the Synthetic Minority Oversam-
pling Technique (SMOTE), and eXtreme Gradient Boosting (XGBoost) ensemble learning
in classifying diesel fuel brands. Goyal et al. [4] combined SMOTE and Random Forest
which incorporates entropy and data gain as function of fitness to validate and evaluate
4 standard datasets (Pima, ecoli, yeast, and segement). Raghuwanshi and Shukla [5]
proposed SMOTE based Class-Specific Extreme Learning Machine (SMOTE-CSELM).
The efficacy of SMOTE-CSELM is demonstrated by statistical test analysis. Results
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conducted by regarding combination of SMOTE were promising. Nevertheless, neither
study implemented any feature engineering methods.

3. Problem Statement. An exploratory case study was performed with an industrial
partner operating in rubber-belt production. There are several stages of that production
process, one of which is the mixing process. The mixing process carries out two essential
processes in the manufacture of rubber belts: cutting the molecular chain of raw material
rubber by using chemicals and mechanical forces to impart plasticity to the raw rubber
(Mastication) and uniformly dispersing formulation material in the masticated rubber
(Milling).

The mixing machine can be briefly illustrated as follows (see Figure 2). The ingredients
are fed into the machine, and the ramming process occurs in batches. Data such as voltage,
temperature, and RAM are recorded and represented as features utilized in machine
learning models. However, this data need to be interpreted, because the machine provides
only a log of time-series data from each batch. Thus, feature engineering techniques will
be needed to ensure reliable data for machine learning.

FI1GURE 2. Mixing machine for rubber belts

4. Proposed Feature Engineering. Feature engineering entails modification of fea-
tures in the data, usually by applying mathematical functions. Currently, there is no rule
of thumb for how feature engineering is carried out, though the approaches can be divided
into explicit feature engineering, implicit feature engineering, and knowledge-and-human-
learning-guided feature engineering.

In our current case, we use explicit feature engineering to transform new features based
on the primary features (temperature, voltage, and RAM) obtained from the machine,
implicit feature engineering to balance the amount of good and not-good products, and
knowledge and human learning guided feature engineering to get labels from the product
in each batch.

4.1. Explicit feature engineering. Explicit feature engineering applies mathematical
model functions to the transformation of features.

An example of data from a single batch is depicted in Figure 3. Based on the dataset,
the mixing process occurs around 275-350 seconds. Features temperature and voltage
can be extracted from average value while RAM by taking count continues interval of
RAM ON. We assume these three features as primary features. However, these features
are not sufficient to represent the complexity of the batch. Moreover, it shows that the
RAM condition greatly affects the temperature and voltage values. Additional features
are needed to explain the relationship between temperature, voltage, and RAM.
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FIGURE 3. Data sample of the mixing process in one sequence

Therefore, explicit feature engineering is applied based on the characteristics of the
data. We propose 25 engineering-feature results shown in Tables 1, 2, and 3. These fea-
tures characterize the existence of the primary features. Features are constructed using
mathematical functions (i.e., count, sum, max, average, difference, and flux) applied to
each primary feature. Additionally, RAM ON and OFF conditions are also considered
when transforming the temperature and voltage features.

TABLE 1. Proposed feature engineering based on RAM

Features Description

Feature 1 | Count continues interval for RAM ON in single batch
Feature 2 | Sum cumulated time for RAM ON in single batch
Feature 3 | Sum cumulated time for RAM OFF in single batch
Feature 4 | Max cumulated time for RAM ON in single batch
Feature 5 | Max cumulated time for RAM OFF in single batch

TABLE 2. Proposed feature engineering based on temperature

Features
Feature 6
Feature 7

Description
Average temperature in single batch
Average temperature in single batch when RAM ON

Feature &

Feature 9

Feature 10
Feature 11
Feature 12
Feature 13
Feature 14
Feature 15
Feature 16

Average temperature in single batch when RAM OFF

Max temperature in single batch when RAM ON

Max temperature in single batch when RAM OFF

Difference max-min of temperature in single batch when RAM ON
Average variation rate of temperature in single batch when RAM ON
Maximum variation rate of temperature in single batch when RAM ON
Heat flux in single batch

Heat flux in single batch when RAM ON

Heat flux in single batch when RAM OFF
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TABLE 3. Proposed feature engineering based on voltage

Features Description

Feature 17 | Average voltage in single batch

Feature 18 | Average voltage in single batch when RAM ON

Feature 19 | Average voltage in single batch when RAM OFF

Feature 20 | Max voltage in single batch when RAM ON

Feature 21 | Max voltage in single batch when RAM OFF

Feature 22 | Difference max-min of voltage in single batch when RAM ON
Feature 23 | Physics flux in single batch

Feature 24 | Physics flux in single batch when RAM ON

Feature 25 | Physics flux in single batch when RAM OFF

4.2. Implicit feature engineering. Several machine learning methods have implicit-
ly implemented feature engineering, such as Principal Component Analysis (PCA) for
dimensionality reduction, and kernel K-means clustering.

As we determined that the amount of data does not balance between good and not-good
products in the current dataset, the oversampling technique was applied to meeting this
challenge. Oversampling is a technique that generates new data in order to balance the
quantity of data categories. One such technique, SMOTE, works by selecting adjacent
data samples and then drawing a line connecting the data. A new sample continues to be
generated based on the lines thus formed, until the minority class is equal to the majority
class.

4.3. Knowledge-and-human-learning-guided feature engineering. Knowledge and
human learning are acquired through experience and exploration.

In this case study, there were four indicators to determine rubber quality: Hardness,
D2MN (Mooney Viscometer), M1T10 (number of seconds to reach 10% point), and M1T90
(number of seconds to reach 90% point). The value of each property must be within the
range shown in Table 4. If one quality indicator is insufficient, the product will be labeled
as not-good.

TABLE 4. Standard range of quality indicators

Hardness | D2MN | M1T10 M1T90
80+ 3 854+10 [4:104+£40]11:104+ K0

4.4. Data classification. The classification techniques were carried out using Random
Forest and XGBoost with the same parameter values.

The first model is a Random Forest with parameters of 10 max depth and 100 number
of trees. Primary features (voltage, temperature, and RAM) and 25 engineering-features
are compared as the model’s input. The performance of SMOTE is also analyzed for each
input model.

The second model uses XGBoost, which has the same parameters as Random Forest in
the first model. The model’s input and performance of SMOTE were also carried out to
determine the performance of this model.

Accuracy, sensitivity, specificity, and Fl-score, as given in Equations (1), (2), (3), and
(4) below, are used as evaluation metrics. True Positive (TP) and True Negative (TN) are
good and not-good products, respectively, that are successfully identified. False Positive
(FP) indicates a good product identified as a not-good product, and False Negative (FN),
a not-good product identified as a good product.

TP + TN (1)
TP + TN + FP + FN

Accuracy =
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TP
ity = L 5
Sensitivity TP+ PN (2)
. TN
Specificity = TN + FP (3)
2TP
F1- = 4
SO QTP+ FP+ FN 4)

Accuracy means the ratio of all data identified as good products to all data identified
as not-good products. Sensitivity is the ratio of identified good products to total number
of good products. Specificity is the ratio of identified not-good products to products that
should be identified as not-good products. The F1-score is the harmonic mean of precision
and recall in identifying products as not-good.

5. Results. The method is implemented using the python programming language with
the help of the sklearn library to build a classification model. Classification models are
implemented using XGBoost and Random Forest as metrics to measure the performance
of the proposed engineering features. The dataset used is the log mixing process from a
partner rubber-belt industry company which consists of 2914 records. The classification
results were analyzed to evaluate the proposed feature engineering performance in terms
of accuracy, specificity, sensitivity, and F'1-score.

5.1. Data preprocessing. As explained, raw data from machines have to be prepro-
cessed before application to machine learning models. The explicit feature engineering
technique was applied as described in Section 4.1. Twenty-five features were produced in
the process. Then, 70% of the data were used for training and 30% for testing. Three
primary features, namely RAM ON count, average temperature all time, and average
voltage categorized without engineering features, were used for comparative purposes.

The labels that are obtained through the process of knowledge-and-human-learning-
guided feature engineering, standard machines tend to produce good products, and so it
is natural that not-good products are rarely obtained. Implicit feature engineering has
been implemented by applying the SMOTE technique to balancing the amount of data
on good and not-good products in the training set.

5.2. Random Forest results. In this experiment, the Random Forest algorithm was
applied as a classifier. The number of trees and the max depth were 100 and 10, respec-
tively. We examined the performance without feature engineering (3 primary features)
and the proposed method (25 engineered features). In addition, in both experiments, we
also applied SMOTE.

As shown in Table 5, the proposed feature engineering improved all of the evaluation
metrics. However, the implementation of SMOTE slightly reduces the accuracy, specifici-
ty, and F1l-score of the proposed method. The reduced performance occurs because the
false positive value is increasing. That means a product that is non-good is classified as
good. Nevertheless, the proposed feature engineering was demonstrably better with than
without feature engineering.

TABLE 5. Classification results in Random Forest

Technique Accuracy | Sensitivity | Specificity | F1-score
Without Feature Engineering 87.31% 85.62% 89.06% 87.29%
Without Feature Engineering + SMOTE | 88.00% 86.52% 89.53% 88.00%
Proposed Feature Engineering 90.40% 87.64% 93.25% 90.28%
Proposed Feature Engineering + SMOTE | 90.06% 87.64% 92.42% 89.97%
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5.3. XGBoost results. In the second experiment, the XGBoost classifier was applied.
The experiment was carried out with the same hyperparameters and under the same
conditions as was the first experiment.

Similarly to the first experiment, the proposed feature engineering improved the re-
sults, as indicated by the highest evaluation metric shown in Table 6. Interestingly, the
implementation of SMOTE reduces the performance of without feature engineering. This
occurs because the implementation of SMOTE increases both false negative and false
positive values.

TABLE 6. Classification results in XGBoost

Technique Accuracy | Sensitivity | Specificity | F1-score
Without Feature Engineering 87.66% 86.52% 88.83% 87.70%
Without Feature Engineering + SMOTE | 86.97% 85.39% 88.60% 86.96%
Proposed Feature Engineering 90.29% 87.42% 93.25% 90.15%
Proposed Feature Engineering + SMOTE | 90.51% 87.64% 93.48% 90.38%

Based on the overall results presented in Tables 5 and 6, it was concluded that the pro-
posed feature engineering could significantly improve classification results in both Ran-
dom Forest and XGBoost. However, the implementation of SMOTE has imprecise results
between improving/reducing the classification results.

6. Conclusions. The proposed feature engineering method improves classification re-
sults significantly. Machine learning obtained additional information from the features
that the explicit feature engineering process had provided. Based on all of the results,
the evaluation metrics including accuracy, sensitivity, specificity, and F1l-score were all
increased by 2%-3% in XGBoost and Random Forest classification.

In overcoming dataset imbalance, the implementation of SMOTE does not provide sub-
stantial results. This happens because diversity in the minority class is not as important
as a majority class. Thus, the oversampling technique will either cause the algorithm to
fit the noise or incorporate minor classification data, which will impact the result of eval-
uation metrics, even though it slightly increases the performance of the proposed feature
engineering only in the XGBoost model.

In the future, we will apply the proposed feature engineering to several types of ma-
chines. Our aim will be to find the rule of thumb on which features should be produced
by feature engineering. Detailed analyses on the importance of each feature also will be
needed.
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