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Abstract. Due to a wide range of shapes, colors, and other characteristics of recyclable
garbage, the classification based on machine vision shows poor real-time capability and
lower accuracy, making it hard to meet the needs of practical application in industry. In
this paper, we propose the Slight-SqueezeNet-IGN by integrating the improved SqueezeNet
with IG-module. First, to avoid excessive loss of image features caused by the SqueezeNet,
the Slight-SqueezeNet is constructed by changing first Convolutional layer and Maxpooling
layer of the SqueezeNet. Second, the IG-module is proposed to increase the model’s ability
of feature extraction by concurrently designing the IN (Instance Normalization) and GN
(Group Normalization). Finally, we integrate the IG-module into Slight-SqueezeNet to
form Slight-SqueezeNet-IGN. The experimental results demonstrate that compared with
AlexNet and VGG16, Slight-SqueezeNet-IGN can achieve higher accuracy with fewer
parameters, showing strong practicability in recyclable garbage classification.
Keywords: IG-module, Slight-SqueezeNet-IGN, Recyclable garbage classification

1. Introduction. With the rapid development of machine vision and artificial intelli-
gence, using machines to replace manual work will be a trend in the domain of garbage
classification. Due to the variety and shape of recyclable garbage, there is no mature visual
processing product that meets the requirements of sorting accuracy, especially the visual
recognition technology collaborated with industrial mechanical arm in real time. Recent
years have witnessed remarkable achievements of deep learning technology in the field
of image recognition. Therefore, many scholars have applied this technology to garbage
classification with some problems remaining unsolved. On the TrashNet dataset, Rabano
et al. [1] applied a smaller network MobileNet [2] to achieving an accuracy of 87.2%; Ruiz
et al. [3] used ResNet [4] to achieve an average accuracy of 88.66%; Aral et al. [5] em-
ployed DenseNet121 and DenseNet169 [6] to increase accuracy to an average of 95%; and
Ozkaya and Seyfi [7] adopted GoogleNet [8] with Support Vector Machine (SVM) [9] to
achieve an accuracy of 97.86%. However, there are several problems. For one thing, the
large convolutional neural network is applied to garbage. It is difficult to meet the require-
ments of timeliness. At the same time, the smaller convolutional neural network cannot
meet the accuracy requirements. And, the above experimental results are all obtained
from the TrashNet dataset with a single background, which is difficult to meet the actual
requirements of the industrial application under complex background.
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Our contributions can be summarized as follows.
1) We form the recyclable garbage classification dataset with complex background by in-

tegrating the Huawei dataset with complex background into the TrashNet dataset. Com-
pared with the TrashNet dataset, this dataset can more meet the needs of industrial
applications.
2) An improved method of SqueezeNet is proposed, which can effectively improve the

recognition ability of SqueezeNet.
3) A new model IG-module is proposed. It can improve the performance of the model

without adding too many parameters.
4) In combination with the above two improvements, we propose a new smaller model

called Slight-SqueezeNet-IGN. It can solve the industrial application difficulties caused
by the large model and the insufficient generalization ability.

2. Theory Introduction and Related Work.

2.1. SqueezeNet. SqueezeNet is a smaller Convolutional Neural Network (CNN) pro-
posed by Iandola based on the Inception model. The number of parameters is only 0.72 M,
which is equivalent to 1/50 of the number of AlexNet [11,12] parameters, but the accuracy
of Top-1 and Top-5 in ImageNet is similar to AlexNet. The model structure is shown in
Figure 1.

Figure 1. Structure of the SqueezeNet

Figure 2. Structure of the fire module

In Figure 2, H represents the height of the feature image, W represents the width of the
feature image, and C represents the number of channels of the feature image. Compared
with the traditional CNN, the most important change is the proposed fire module. The
structure of the fire module is shown in Figure 2, which contains two parts: the squeeze
layer and the expand layer. In the squeeze layer, e convolution kernels of size 1 are used to
decrease the dimensions of input images, and in the expand layer, e1 convolution kernels
of size 1 and e2 convolution kernels of size 3 are used to increase the dimensions of output
images.
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2.2. IG-modules. IG-module is a normalization method that combines instance nor-
malization [13,14] and group normalization [15]. I is the abbreviation of IN (Instance
Normalization) layer. IN can accelerate model convergence while maintaining the inde-
pendence between images. Therefore, IN is used to preserve most of the features of the
input image. In the early stage, it was mostly used in image style transfer. G is the ab-
breviation of GN (Group Normalization) layer. The GN can normalize the feature image
without being affected by the parameter of batch. So GN is used to learn new features
and to distinguish individual samples easily. However, it also makes the model vulnerable
to the influence of image appearance transformation. The use of the IN weakens individ-
ual differences while reducing the amount of useful information in the image. Because
both approaches have their limitations, IN and GN are combined to form the IG-module
in this paper. The IG-module is used to reduce the loss of image characteristic informa-
tion because it maintains a certain degree of appearance invariance while maintaining
the differences of the input images. Therefore, the use of IG-module is conducive to the
improvement of model generalization ability.

The calculation formulas for IN and GN are as follows.

x̂ =
1

σi

(xi − µi) (1)

Here x is the feature computed by a layer, and i is an index. In the case of 2D images,
i = (iN ; iC; iH; iW ) is a 4D vector indexing the features in (N ;C;H;W ) order, where N
is the batch axis, C is the channel axis, and H and W are the spatial height and width
axes. µ and σ in (1) are the mean and standard deviation (std) computed by

µi =
1

m

∑
k∈Si

xk (2)

σi =

√
1

m

∑
k∈Si

(xk − µi)2 + ϵ (3)

where ϵ is a small constant, Si is the set of pixels in which the mean and std are computed,
and m is the size of the set.

GN refers to the standardization of several channels on the same layer of the same
picture, among which these channels are called a group. Its Si is calculated in this way.

Si =

{
kN = iN ,

⌊
kC
C/G

⌋
=

⌊
iC

C/G

⌋}
(4)

IN standardizes the individual channels of a single picture. The formula for calculating
Si is as follows.

Si = {kN = iN , kC = iC} (5)

Finally, both IN and GN learn a per-channel linear transform to compensate for the
possible loss of representational ability.

yi = γx̂i + β (6)

where γ and β are trainable scale and shift (indexed by iC in all case, which we omit for
simplifying notations).

2.3. Improvement strategy and integration strategy. The Slight-SqueezeNet-IGN
in this paper is proposed after the improvement and integration of the smaller SqueezeNet.

Step1: The error rate of the model will increase due to excessive loss of image infor-
mation caused by the SqueezeNet. Therefore, to reduce the loss of image information and
increase the generalization performance of the model, slight modification and deletion of
the SqueezeNet are made to form a novel Slight-SqueezeNet model in this paper. The
improvement strategies of SqueezeNet are as follows.
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1) Slight-SqueezeNet-1: proposed by removing the first Maxpooling layer.
2) Slight-SqueezeNet-2: proposed by removing the Maxpooling layer after the eighth

fire module in SqueezeNet.
3) Slight-SqueezeNet-3: proposed by changing the step size of the first Convolutional

layer of SqueezeNet to 1 and deleting its first Maxpooling layer.
4) Slight-SqueezeNet-4: proposed by changing the step size in the first Convolutional

layer of SqueezeNet to 1 and removing the Maxpooling layer after the eighth fire module.
5) Slight-SqueezeNet-5: The kernel size in the first Convolutional layer of the Squeeze-

Net is changed to 5, the step size is changed to 1, and the zero-padding is deleted. Then
a zero-padding of the last Maxpooling layer is deleted.
6) Slight-SqueezeNet-6: Firstly, the kernel size in the first Convolutional layer of

SqueezeNet is changed to 5, the step size is changed to 1, and the zero-padding is deleted.
Secondly, a zero-padding of the last Maxpooling layer is deleted. Thirdly, the first Max-
pooling layer in the SqueezeNet is removed.
Step2: To increase the capability of feature extraction and generalization of the model,

IG-module is fused into the Slight-SqueezeNet formed after Step1. The structures formed
by different fusion strategies are shown in Figure 3.
1) Slight-SqueezeNet-IGN-1: proposed after fusing the IG-module into the squeeze layer

of the fire module.
2) Slight-SqueezeNet-IGN-2: proposed after fusing the IG-module into the branch of

kernel size 1 of the expand layer of the fire module.
3) Slight-SqueezeNet-IGN-3: proposed after fusing the IG-module into the branch of

kernel size 3 of the expand layer of the fire module.

Figure 3. Structures of different mix strategies of the Slight-SqueezeNet-IGN

3. Experimental Results and Analysis.

3.1. CIFAR10. It contains 10 categories: airplane, car, bird, cat, dog, deer, frog, horse,
boat, and truck. Each category contains 6000 color pictures, and the size of each picture
is 32× 32, totaling 60000 images. Training set, validation set, and test set constitute the
dataset, of which 40000 are training set, 10000 validation set, and 10000 test set. On
the training set, the image is standardized, flipped horizontally, translated and so on.
However, on the validation set and the test set, only normalization is done.

3.2. Recyclable Waste Dataset. The dataset in this paper comes from the TrashNet
dataset [16] and the Huawei dataset. Because the TrashNet cannot meet the practical
application needs of the industry due to a small amount of data and a single background,
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Huawei dataset and TrashNet are integrated to form the Recyclable Waste Dataset with
the complex background [17]. And five categories of images (fabric, metal, glass, paper,
and plastics) are filtered out.

3.3. Experimental environment settings and model parameter settings. The
Keras and Tensorflow are used as the deep learning open-source framework in this paper.
The Central Processing Unit (CPU) is Inter(R) Core (TM) i7-7700. The GPU (Graphics
Processing Unit) is NVIDIA GeForce GTX 1050Ti (4 GB). The Stochastic Gradient
Descent (SGD) is chosen as optimize function, the epochs are setting to 300 times, the
initial learning rate to 0.1 and minimum learning rate to 0.001.

3.4. Experimental analysis. In this section, we carry out experiments with three dif-
ferent purposes to prove the effectiveness of the improved models and their practicability
in the field of recyclable garbage classification. The results are as follows.

3.4.1. Experiment 1 result analysis. On the CIFAR10 dataset, experiment 1 compares six
models proposed according to the improvement strategy with the SqueezeNet from four
aspects: accuracy, parameter quantity, floating point operations (FLOPs), and time/one
iteration. The distribution of the four aspects of each model is shown in Table 1. In Figure
4, the variety rule of accuracy is shown.

Table 1. Comparison of models of the Slight-SqueezeNet

CNN architecture Accuracy Parameters FLOPs Time/one iteration
SqueezeNet 79.12% 741088 3687435 47 ms

Slight-SqueezeNet-1 87.06% 741088 3687435 63 ms
Slight-SqueezeNet-2 84.13% 741088 3687435 46 ms
Slight-SqueezeNet-3 87.44% 741088 3687435 174 ms
Slight-SqueezeNet-4 85.91% 741088 3687435 74 ms
Slight-SqueezeNet-5 87.22% 745696 3710475 64 ms
Slight-SqueezeNet-6 87.06% 745696 3710475 136 ms
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Figure 4. Left: The accuracy of the models on the validation set; Right:
Accuracy and time distribution of the models

From Table 1, the accuracy of the SqueezeNet is only 79.12%, and six Slight-SqueezeNet
formed after Step1 exceed the SqueezeNet. Meanwhile, both the number of parameters
and the complexity of the model do not increase significantly. The result verifies the
effectiveness of the improvement strategy Step1 proposed.
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Among all the models, the Slight-SqueezeNet-3 has the highest accuracy, but the train-
ing time increases by more than three times compared to the original one. Therefore, if
the improvement strategy is adopted, it will consume a lot of training time, which is not
conducive to the follow-up work. It can be seen that from Table 1 Slight-SqueezeNet-5
shows great advantages with the accuracy of 87.22%. Firstly, the accuracy of Slight-
SqueezeNet-5 only decreases by 0.22% compared with Slight-SqueezeNet-3. Secondly, the
training time only increases by 17 ms, compared with the SqueezeNet, and it decreases
by 110 ms compared with the Slight-SqueezeNet-3. Slight-SqueezeNet-5 can achieve high
accuracy in a relatively short training time, so it is more conducive to the development
of subsequent experimental work. Therefore, the improved strategy 5 is adopted in this
paper and named Slight-SqueezeNet, which functions as the basis for subsequent experi-
mental work.

3.4.2. Experiment 2 result analysis. On the CIFAR10 dataset, experiment 2 compares six
models, AlexNet-like, VGG16-like, Slight-SqueezeNet, Slight-SqueezeNet-IGN-1, Slight-
SqueezeNet-IGN-2, and Slight-SqueezeNet-IGN-3 from four aspects: accuracy, parameter,
FLOPs, and time spent to predict a picture. The experimental results are shown in Table
2. The variety rule of accuracy is shown in Figure 5.

Table 2. Comparison of models of the Slight-SqueezeNet-IGN

CNN architecture Accuracy Parameters FLOPs Time/predict one picture
AlexNet-like 81.28% 3631946 8833472 42.88 ms
VGG16-like 88.88% 15142858 74406852 85.80 ms

Slight-SqueezeNet 87.22% 745696 3710475 92.75 ms
Slight-SqueezeNet-IGN-1 87.53% 745072 3704315 87.73 ms
Slight-SqueezeNet-IGN-2 87.03% 743152 3686075 86.76 ms
Slight-SqueezeNet-IGN-3 87.59% 743152 3686075 84.88 ms
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Figure 5. Left: The accuracy of the models on the validation set; Right:
Parameters and accuracy distribution of the models

Firstly, it can be concluded from the comparison of data and curves of Slight-Squeeze-
Net, Slight-SqueezeNet-IGN-1, Slight-SqueezeNet-IGN-2, and Slight-SqueezeNet-IGN-3
in Table 2 and the two models, Slight-SqueezeNet-IGN-1 and Slight-SqueezeNet-IGN-
3, achieve better results with an increase in accuracy of 0.31%-0.37% compared with
Slight-SqueezeNet without much change in model parameters and model complexity. The
validity of IG-module is verified by experiments.
Secondly, the model data and curves of Slight-SqueezeNet-IGN-1, Slight-SqueezeNet-

IGN-2, and Slight-SqueezeNet-IGN-3 in Table 2 are compared. Adding IG-module to the
branch with a kernel size of 3 in the fire module can achieve the best accuracy of 87.59%
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without increasing the number of parameters and the complexity of the model. Slight-
SqueezeNet-IGN-3 also has a slight advantage in predicting the total time consumed by
an image. Therefore, this paper uses the fusion strategy 3 proposed by Step2, and names
the model as Slight-SqueezeNet-IGN. Then we use the model for subsequent experiments.

Finally, the data and curves of the Slight-SqueezeNet-IGN-3, the AlexNet-like, the
VGG16-like in Table 2 and Figure 5 are compared. The accuracy of the AlexNet-like model
on CIFAR-10 is about 81.28%, which performs poorly, but the time is shorter. VGG16-
like performs well, but its parameters amount to more than 15 million, which is difficult
to meet the actual application of industrialization. The Slight-SqueezeNet-IGN proposed
has only 1/5 of the parameters and model complexity of the AlexNet-like model, and
its accuracy can exceed by 6.31%. Compared with the VGG16-like model, although the
accuracy is reduced by 1.29%, its model complexity and parameter amount are only 1/20
of it, and the time consumed is reduced by 0.92 ms. In brief, experiments show that the
Slight-SqueezeNet-IGN proposed has better recognition ability.

3.4.3. Experiment 3 result analysis. In this experiment, the Slight-SqueezeNet-IGN, the
AlexNet-like, and the VGG16-like are applied to the Recyclable Waste Dataset for compar-
ison. Table 3 presents the experimental results from four aspects of accuracy, parameter
amount, FLOPs, and training time required for one iteration. The variety rule of accuracy
is shown in Figure 6 on the Recyclable Waste Dataset.

Table 3. Comparison of various models in the Recyclable Waste Dataset

CNN architecture Input size Accuracy Parameter BFLOPs Time/one iteration
AlexNet-like 32× 32 93.18% 4413253 0.0088 205 ms
VGG16-like 32× 32 95.41% 14717253 0.074 210 ms

Slight-SqueezeNet-IGN 32× 32 95.78% 743097 0.0037 200 ms
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Figure 6. Left: The accuracy of the models on the validation set; Right:
Parameters and accuracy distribution of models

We can see this in Table 3. The Slight-SqueezeNet-IGN converges at approximately 90
iterations, with 99% accuracy on the training set and 95.78% accuracy on the test dataset.
The accuracy increases by 2.60% compared with the AlexNet-like, and by 0.37% compared
with the VGG16-like. However, its parameters only need 0.74 M, and the complexity of the
model is far less than VGG16-like. It takes about 200 ms to train an iteration. Therefore,
the Slight-SqueezeNet-IGN not only meets the needs of a smaller model, but also strong
recognition and generalization ability, and it can be better applied to the industrial field.
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4. Conclusion. In this paper, based on the SqueezeNet, we propose Slight-SqueezeNet-
IGN, a novel smaller model. First, the Slight-SqueezeNet is proposed by improving Squee-
zeNet. Then, IN (Instance Normalization) and GN (Group Normalization) are concurrent-
ly designed to form an IG-module, which is merged into Slight-SqueezeNet to form Slight-
SqueezeNet-IGN. Experiments on the CIFAR10 dataset show that the accuracy of Slight-
SqueezeNet-IGN increases by 8.47% over the SqueezeNet, by 6.31% over the AlexNet-like
model without significant increase in parameters and model complexity. Furthermore,
the parameters of Slight-SqueezeNet-IGN are only 0.74 M, and are far less than VGG16-
like and AlexNet-like. And the accuracy of Slight-SqueezeNet-IGN can achieve 95.78%
on the self-made recyclable garbage classification dataset with complex background. Ex-
periments prove that the Slight-SqueezeNet-IGN prides itself in good recognition ability,
generalization ability, and stronger practical value, and it can be better embedded in
hardware devices to meet industrial applications.
In the future, we will pay close attention to the development of smaller models and

further expand the experimental scale and application scenarios of waste classification.
We will explore the continuous improvement of the model and determine the optimal
experimental parameters.
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