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Abstract. Mushrooms are highly nutritious and vital cash crops in many countries.
However, a critical problem for mushroom cultivation is fungal diseases. They can inflict
widespread damage on mushrooms within a relatively short period (within 48 hours), even
though mushrooms are grown in precision farming systems. Besides, mushroom spores
are also harmful to the health of mushroom farmers. In this paper, a fungal disease di-
agnosis and detection system (Case study: Fairy mushroom) is developed using various
deep learning techniques, working with robots (Photographic robots) and precise Internet
of Things (IoT) systems under the conditions of an intelligent farming environment. The
aims are to reduce the cost of mushroom wastage caused by fungal diseases, alleviate the
health problems of farmers caused by mushroom spores, and address the vulnerabilities
of the current intelligent farm system. The system consists of seven parts: 1) collecting
fungal disease data from real farms, 2) designing and developing intelligent farms and
photography robots, 3) data pre-processing, 4) image pre-processing, 5-6) choosing a CNN
model, and 7) real-time prediction. The classification algorithms to recognize fungal dis-
eases include DenseNet201, ResNet50, InceptionV3, and VGG19 based on the image
database of 1,000 images of non-fungus and fungal mushrooms equally. The experimen-
tal results of the classification of fungal diseases show that DenseNet201 has the highest
accuracy of 89.74% (DenseNet201 is most suitable for detecting fungal diseases for exist-
ing smart farms). In particular, the proposed system can detect fungal diseases rapidly
in only 1-6 hours. As a result, mushroom growers can reduce the number of mushrooms
damaged by fungal diseases and the risk of direct exposure to mushroom spores.
Keywords: Mushroom, Fairy mushroom, Fungal disease, Deep learning, Smart farming,
Robots, IoT

1. Introduction. Nowadays, mushrooms are becoming increasingly popular consump-
tion. They have high nutritional value in carbohydrates, proteins, fats, minerals, and
vitamins. Therefore, they are suitable for patients with a high risk of death, such as liver,
lung abscess heart disease, and hypertension. Unfortunately, naturally occurring mush-
rooms cannot produce all year round (high yield during the rainy season). Thus, they
are insufficient to consume. Growing mushrooms all year round can solve this problem
through a closed ecosystem called smart farming. It can precisely control environmen-
tal conditions such as temperature, humidity, lighting, and carbon dioxide. However, we
found that the intelligent farms can precisely control their environment, the fungal disease
can still occur. For example, mushroom fungal disease in smart farms is caused by mois-
ture accumulated during fogging to reduce temperature and increase the humidity inside
the greenhouse. Fungal diseases are hazardous to mushrooms as they cause to stop mush-
room growing. Moreover, the fungus spread inside the greenhouse is very rapid (within
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48 hours, the whole mushrooms may be infected). Thus, the farmers must immediately
remove all those infected mushrooms from the greenhouse; otherwise, all mushrooms will
lose. In addition, the mushroom spore is very dangerous to farmers’ activities such as
picking and growing surreys of mushrooms as it causes several diseases such as lung ab-
scess, lung disease, and allergies. Besides, their average time spent inside the greenhouse
is about 1 to 3 hours per day. Therefore, farmers inhale large quantities of spores, harming
long-term health.
Fungi and spores of mushrooms have severe effects on the health and cost of cultivation

for farmers. Cultivating mushrooms in innovative farm ecosystems has dramatically re-
duced the incidence of fungi. However, there is still a potential for fungal disease during
the temperature rise and fall of the greenhouse. Besides, farmers are still in direct contact
with fungi and spores of the mushrooms. Therefore, this paper contributes a prototype
to detecting fungal diseases in only six hours to reduce the aforementioned problems and
alert farmers when detected in intelligent farms.
This paper is organized as follows: Section 2 reviews related literature, Section 3 designs

and develops our prototype system, Section 4 presents the results of the experiment and
evaluation, and the last one is the summary of the paper (Section 5).

2. Background and Related Work. In this section, we discuss related research to
analyze various fungal diseases in plants such as banana leaves, corn leaves, tomatoes,
peppers, and mushrooms, in order to study fungal disease patterns, analysis techniques,
and tools. Over the years, deep learning [1-3] (CNN) has been increasingly applied in
agricultural applications in planting, plant growth analysis, and plant disease analysis
because it can predict real-life situations with high accuracy. As a result, farmers can
effectively monitor, treat and prevent disease as follows.
Mohanty et al. [4] addressed the development guidelines’ accuracy in image classifica-

tion and analysis of diseased plants. They used image data from Plant Village stored at
the GitHub Repository. Fifty-four thousand three hundred plant leaf images were divid-
ed into 38 classes of diseased and non-pathogenic images. They used CNN techniques
(AlexNet and googLeNet) for classification and analysis. The results showed that CNN
could analyze plant diseases with an accuracy of 99.35%. Amara et al. [5] proposed a
convolution neural network (CNN) called LeNet architecture deep learning approach to
automatically identify plant diseases in banana leaves using image datasets from the
PlantVillage project [4,6]. The result showed that the experiment with color images had
a maximum accuracy of 99.72%. Ferentinos [3] developed a neural network model for
detecting plant diseases using an open database of Hughes and Salathé [6]. The data
consists of 87,848 images from 25 plant species divided into 588 classes. For classifica-
tion and analysis, they used CNN techniques (AlexNet, AlexNetOWTBn, GoogLeNet,
Overfeat, and VGG). The results showed that VGG had the highest accuracy of 99.53%.
In addition, many researchers have used artificial intelligence to analyze crop diseases in
innovative farm systems.
Kitpo et al. [7] presented an IoT system with bots to alert the growing stage of toma-

toes. They used images data set from Shinchi Agri Green, the greenhouse in Fukushima,
Japan. This image data set from real-images was captured in greenhouse amount 25-day
which selected image amount 263 images, and images were divided into six stages because
stages are discoloration of tomatoes indicated the growth. They used Faster R-CNN tech-
niques for object detection, K-Means clustering for segmentation, and SVM classifier to
classify tomato growing stages. The results showed that the accuracy of the tomato growth
alert was 91.5%. However, this research should use augmentation techniques to increase
the dataset. Chen et al. [2] proposed automated plant disease recognition. The plants
used in the experiment were rice and corn. They used image rice leaf diseases of 500 im-
ages, image corn leaf diseases of 466 images, and image plant leaf of 1,000 images. They
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divided the image data for training and testing as 70% : 30%, using four classical mod-
els (DenseNet-201, ResNet-50, the InceptionV3, and VGG-19). The results showed that
INC-VGGN gave an accuracy of 92.00%. This work contains a variety of image data, and
most importantly, the experimental images are all images taken from actual conditions
with various models. Khummanee et al. [8] built an intelligent farm to control the or-
chid growth environment and orchid disease using fuzzy logic. The results showed that
the orchids continued to grow well throughout the year (average growth rate of approx-
imately 27.38 cm per week) and were less disease-free. Moreover, Wiangsamut et al. [9]
developed a system of conversation with orchids to inquire about the health of orchids.
The proposed chat system gives an average accuracy of interacting with the owner of the
orchid grower at 71 percent. Based on a comprehensive review of the above research, we
design and implement a prototype to detect and notify fungal diseases (Case study: Fairy
mushroom), detailed in the next section.

3. Designing and Developing Our Prototype System. This section has designed a
framework for detecting and alerting when the disease occurs in farms consisting of seven
steps, as shown in Figure 1. Each step is illustrated as follows.

Figure 1. A proposed framework for mushroom detection and alarm for
a smart farm

1) Collect fungal disease data from real farms. In this research, we visited several
areas of natural mushroom farming to study and collect the information and problem on
the incidence of mushroom fungal disease. The study results revealed the two leading
fungal disease causes: contamination of the plant material during the packing process
and accumulated moisture inside the greenhouse during cultivation. According to Figure
2, it shows the fungal disease patterns from 1 to 48 hours:

(a) shows the beginning of the fungal disease in the range of 1-6 hours,
(b) begins to spread to nearby areas over approximately 6-12 hours,
(c) spreads almost the entire area (approximately 12-18 hours),
(d) spreads throughout the planting area (about 18-24 hours),
(e) begins to spread to other areas within the planting bag (about 24-30 hours),
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(f) spreads in about one-third of the planting bag (around 30-36 hours),
(g) finally, it eventually spreads throughout the planting bag (over 36 hours).
After that, it rapidly spreads to other planting bags within the farm; if the farmer does

not detect it within 48 hours, it can damage all mushrooms.

(a) 1-6 hrs (b) 6-12 hrs (c) 12-18 hrs (d) 18-24 hrs (e) 24-30 hrs (f) 30-36 hrs (g) 36-48 hrs

Figure 2. Examples of the severity of green mold disease spreading

2) Design and development of smart farms and photography robots. An
overview of a real innovative farm for mushroom cultivation is shown in Figure 3. The
equipment in the innovative farm includes ventilation fans, a water pump, a cooling panel
(EVAP), a solar panel, a solar control cabinet (Inverter), a 220-volt electrical system,
IP cameras, a lighting system as illustrated in Figure 3(a). IoT equipment is microcon-
trollers, temperature, humidity sensors, soil moisture, fogging, and lighting (Figure 3(b)).
Temperature and humidity inside the smart farms are 28-32 Celsius (◦C) and 60%-80%,
respectively. The room for controlling the system contains the electrical system, sensor
receivers, and the computer system for AI processing, as shown in Figures 3(c) and 3(d).

(a) (b) (c) (d)

Figure 3. Innovative farm structure for mushroom cultivation

This research proposes to detect fungi as fast as possible where farmers are less exposed
to mushroom spores by using robots to take pictures inside the intelligent farming, namely
IBOT. The captured mushroom images are then processed with deep learning (CNN [4,10-
13]) to predict fungal diseases over the wireless network. The IBOT is illustrated in Figure
4(a). The robot movement pattern is a square wave, as shown in Figure 4(b). To protect
against the distortion and blurring problem, we need to shoot the overlapping images
to solve the edge blurring problem, as shown in Figure 4(c) (Overlap 15%: 108 × 230
pixel). The picture’s width is about 17.06 cm, and the length is 33.87 cm. We calculate
the optimal distance and brightness for shooting with an IP camera (Full HD 1080) by

(a) (b) (c) (d)

Figure 4. Overview of the photography robot (IBOT) and its parameterization
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experimenting with four shooting distances: 50, 60, 70, and 80 centimeters (cm). As a
result, from the experiment, the best distance from the camera to the mushroom that the
most precise picture is 60 cm, and the light is 12 watts, as shown in Figure 4(d).

3) Data pre-processing. This section describes how to crop the mushroom images
using Mask R-CNN [14,15] (ResNet101). Figure 5(a) is an example of a mushroom picture
captured by the IBOT inside the innovative farm with dimensions of 720 × 1,280 pixels.
In fact, mushroom fungus always occurs in front of the mushroom lump (Circle area) and
then gradually spreads to other areas. Therefore, this area is chosen as a target of the
Mask R-CNN [12] for cropping. As a result, the output image cropped by Mask R-CNN
is permanently fixed at 200 × 200 pixels, and the number of cropped images ranges from
13 images with the following steps.

(a) An original mushroom
image from IBOT

(b) An image annotated with
polygon shapes

Figure 5. Examples of original mushroom images and annotated images

Annotation process: This step marks the circles in the original mushroom image
with polygons before cropping. The total number of images used for marking is 250 images
divided into two groups: 200 images for training (80%) and 50 images for testing (20%).
All images are annotated in polygon shapes at the center of each mushroom image as
shown in Figure 5(b). The result of this step is the positions of the polygon images
exported in JSON format.

Cropping process by Mask R-CNN: The exported JSON file has been imported
into this process of the training model. We set the number of trainings to 10 epochs,
and all other values are based on the default Mask R-CNN (in Table 1). It starts by
using a selective search mechanism to extract the region of interest (ROI), where each
ROI [15] is a rectangle that may represent the region of the object in the image. The
number of epochs is determined by only ten epochs due to the mean data consistency
or Intersection over Union (IoU) obtained from the experiments 10, 20, and 30 epochs
that are not different. The objects of the mushroom image after Mask R-CNN (using
ResNet101) processing successfully are shown in circles, as shown in Figure 6(c). After
this process ends, the trained model is ready for testing. The results showed that the Mask
R-CNN could find all circular objects (Center of the mushroom) and was consistent with
IoU [16-19], in which the mean consistency of the data set was at 0.86 (86%). The IoU
value [20] greater than or equal to 50% (0.5) is acceptable (Positive overlap threshold),
and else is unacceptable (Negative overlap threshold).

We import both the test image and the annotated file to evaluate the model performance
in the model testing stage. The evaluation results are shown in Figure 6. The results of
the model test can be divided into three parts: (a) the result of the annotation mask,
(b) the result of the Mask R-CNN technique (ResNet101), and (c) the ability to find
objects using the Mask R-CNN technique. The results showed that the Mask R-CNN
could find all circular objects (Center of the mushroom). Besides, the IoU value is 0.86
(86%), which is also greater than the default (IoU default value = 0.5). After locating the
desired objects with the Mask R-CNN technique, the next step is to crop the mushroom
lump pages one by one image. The method of cropping the image is as follows.
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Table 1. Setting parameters Mask R-CNN

No. Parameter Value Remark
1 BACKBONE resnet101 Model
2 LEARNING RATE 0.001 Learning rate
3 IMAGE SHAPE [512 512 3] Shape image
4 MASK SHAPE [28, 28] Shape mask
5 NUM CLASSES 2(Disease + Background) Classes number
6 DETECTION MIN CONFIDENCE 0.9 Confidence detection
7 POOL SIZE 7 Pooling size
8 STEPS PER EPOCH 500 Number of trains

9 VALIDATION STEPS 10
Number of validation/

test samples

(a) An original image (b) Annotated image (c) Objects masked by R-CNN

Figure 6. The process of the Mask R-CNN

(a) Xi and Yi of the objects (b) Bounding boxes of the objects

Figure 7. Example of cropping position and bounding boxes

Calculate the X and Y positions of circles: The X and Y positions of each circle
image consist of four points as shown in Figure 7(a): X1 and Y1 are in the upper left
corner of the circle, and X2 and Y2 are in the bottom right corner of the circle.
Create bounding boxes from X and Y positions: This step draws a square box

from the X and Y positions to illustrate the boundaries of the image as shown in Figure
7(b). The figure shows that the square boxes are drawn precisely in the center of the
mushroom cultivation materials.
Calculate the center of the image for cropping: The equation for calculating the

center of the image (xi, yi) can be calculated from

xi =
|distance(x1, x2)|

2
, yi =

|distance(y1, y2)|

2
(1)

i is any circle of the image. The cropped image size is 200 × 200 pixels, calculated from
the center of the image as shown in Figure 8. First, all cropped images are divided into
two sets by manual classification: a set of diseased images and a set of disease-free images
with the same number of images equal to 1,000. Then, these images are processed to find
more accurate prognostic models using CNN models.



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.13, NO.12, 2022 1307

Figure 8. Examples of an image obtained after cropping

(a) Horizontal and vertical flip (b) Zoom

It reverses the image vertically and horizontally. Use a value between (0.8-1.2), the normal level is 1.

(c) Rotation (d) Shear

Set to 90 will randomly rotate This image tilt set to 20 will randomly tilt

between (0-90) degrees. between (0-20) degrees.

(e) Brightness

Adjust the picture brightness value between 0-2

(0 = no brightness and 2 = maximum brightness).

Figure 9. Examples of image augmentation techniques

4) Image pre-processing. This procedure provides image data to evaluate the appro-
priate CNN model for mushroom prognosis. The experiments divided the image data into
two groups: 1) fungal disease and non-fungal disease images applying augmentation tech-
niques [21] and 2) fungal disease and non-fungal images without augmentation techniques.
The augmentation techniques increase the variety of images used in the experiment. In
addition, they have reduced the overfitting [22] of the data. For this research, we have
applied five augmentation methods as illustrated in Figure 9: (a) Horizontal and vertical
flip, (b) Zoom, (c) Rotation, (d) Shear, and (e) Brightness.

The experiment’s image data is shown in Table 2.

Table 2. The experimental dataset

Data Training Validation Testing Total
Fungal disease 520 (65%) 120 (15%) 200 (20%) 1,000

Non-fungal disease 520 (65%) 120 (15%) 200 (20%) 1,000
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5-6) CNN models. This section presents high-precision CNN techniques to create
learning models for mushroom fungal prognosis, including DenseNet201, ResNet50, In-
ceptionV3, and VGG19 [2]. All models are developed in Python 3 by working with Keras
v2.6 and Tensorflow v2.6 over Google Colaboratory. These models are assigned the same
number of test epochs as 30; the detailed modeling steps are below.
(1) Separate augmentation image dataset and unaugmentation image dataset to com-

pare forecast performance against CNN models.
(2) Define parameters to test the CNN models shown in Table 3.

Table 3. Setting parameters running CNN model

No. Parameters Value Remark

1 IMAGE SIZE 224 × 224
Images resized to fit
the model

2 BATCH SIZE 32
Size of the dataset to
test the models for
each epoch

3 MODEL EPOCH 300 Number of tests

4 ACTIVATION FUNCTION SIGMOID
It is suitable for two
classes with data in 0,
1.

5 OPTIMIZERS SGD

Because we need to
update parameters for
every training dataset,
SGD is a fast algori-
thm.

6 LOSS FUNCTION BINARY CROSSENTROPY
There are only two
classes in this research.

(3) Last, all CNN models are tested against the specified parameters to determine which
model has the highest accuracy.
(4) Compare the accuracy of each model and select the most accurate model for further

fungal analysis.
Figure 10 shows the comparison of learning models between DenseNet201, ResNet50,

InceptionV3, and VGG19. The results show that DenseNet201 has the highest learning
accuracy for both augmentation and non-augmentation, and it also has the lowest over-
fitting.
From Table 4, after testing all CNN models, the test results show that all models have

more than 50% accuracy, especially DenseNet201 has the highest accuracy (augmentation
= 89.74% and non-augmentation = 86.50%). Other models have forecast accuracy in the
following order: InceptionV3 (aug = 87.25%, non-aug = 77.74%), VGG19 (aug = 83.49%,
non-aug = 76.24%), and ResNet50 (aug = 74.25%, non-aug = 70.74%), respectively.
Therefore, the DenseNet201 is best suited for the prognosis of fungal disease in our smart
mushroom farms.
7) Real-time prediction. The DenseNet201 is the most accurate. Therefore, we

used this model for real-time (Fungal disease) prediction in the intelligent farm, as shown
in Figure 11. The figure consists of three steps: image preparation, Mask R-CNN, and
predicting and alerting process. The image preparation process involves getting the path
of the image recorded on the computer by the robot and sending one image at a time to
the Mask R-CNN process. The images sent from the data preparation process are cropped
one at a time with Mask R-CNN. The cropped image has a fixed size of 200× 200 pixels
transferred to the prognostic process by DenseNet201. Prognostic results are expressed
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(a) Accuracy of DenseNet201, ResNet50, InceptionV3, and VGG19 using augmented techniques

(b) Loss rate of DenseNet201, ResNet50, InceptionV3, and VGG19 using augmented techniques

(c) Accuracy of DenseNet201, ResNet50, InceptionV3, and VGG19 with non-augmented techniques

(d) Loss rate of DenseNet201, ResNet50, InceptionV3, and VGG19 with non-augmented techniques

Figure 10. The comparison of the training model CNNs

Table 4. CNNs performance comparison

Testing
Class

Non-augmentation (%) Augmentation (%)
CNN model Accuracy Precision Recall F1 Accuracy Precision Recall F1

DenseNet201
Disease

86.50
86.50 88.15 87.45

89.74
91.45 90.25 91.48

Non-Disease 87.24 85.45 86.50 90.57 92.70 91.74

ResNet50
Disease

70.74
73.72 66.70 69.71

74.25
74.20 75.25 75.23

Non-Disease 69.01 76.33 72.74 75.24 74.27 74.25

InceptionV3
Disease

77.74
88.74 65.57 74.01

87.25
88.25 85.20 87.26

Non-Disease 72.71 90.72 80.75 86.23 88.15 87.25

VGG19
Disease

76.24
74.33 81.02 77.67

83.49
81.41 86.49 84.45

Non-Disease 79.67 72.33 75.24 86.42 80.40 83.49

as a percentage (%) of fungal incidence. If the forecast result exceeds 50% (The default
value indicates the fungal disease), the system will immediately alert the farmer. However,
this value can be adjusted according to the situation. All three processes are real-time.
Therefore, the total time per cycle is 9 minutes, from taking pictures from the robot to
alerting via a mobile application (LINE). Each cycle is processed as a square wave with
a travel distance of one meter.

4. Experimental Results and Evaluation. The evaluation of the effectiveness of this
paper is divided into three parts.

1) Mask R-CNN performance evaluation. Intersection over Union or IoU is
commonly used for evaluating Mask R-CNN performance. It indicates the accuracy value
for measuring the consistency or overlap of an object image. If IoU is greater than or
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Figure 11. Real-time prediction of fungal disease

(a) Augmentation (b) Non-augmentation

Figure 12. Performance measurement of CNN model

equal to 0.5 (50%) [20], it is an acceptable overlap. The results showed that the mean
consistency of the dataset used in this paper was 0.86 (86%), which is a highly efficient
consistency value.
2) CNN model performance evaluation. Of the four CNN benchmarks, we found

that the DenseNet201 was the most accurate for the prognosis of fungi disease, as shown
in Table 4 in sections 5-6) CNN models. In addition, according to the confusion matrix
in Figure 12, the model DenseNet201 using the augmentation technique could analyze
fungal disease images more efficiently than the non-augmentation technique.
3) Real-time overall system performance evaluation. According to the real-time

forecasting test, each epoch uses several images equal to 100 images; the confusion matrix
is shown in Figure 13 and summarized in Table 5. We used the F1 to measure performance
because of the efficacy of the predictive model that accurately analyzed the actual disease
that was found to be a true disease. At the same time, we also need to detect disease.
Therefore, the measurement of the selected model has performance of detecting disease
as 73.05%.
From Figure 13, the confusion matrix of real-time diction can summarize diseased fungal

images of fairy mushrooms with the following values: accuracy, precision, recall, and F1,
as in Table 5.
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Figure 13. Confusion matrix of real-time diction

Table 5. Confusion matrix of real-time diction

No. Accuracy (%) Precision (%) Recall (%) F1 (%)
Disease 73.05 74.62 83.33 78.79

No disease 27.03 69.69 57.50 63.28

5. Conclusions. Fungal diseases do not only affect mushrooms’ products but also other
plants. Moreover, the fungi from the mushroom affect the farmer’s health because they
will inhale it when they stay in the greenhouse. Thus, the fungal disease analysis of
mushrooms (Case study: Fairy mushroom) can solve their problems. This research uses
the deep learning technique and image processing technique specified CNN for generating
the model. This model uses to learn the characteristics of the fungal diseases of fairy
mushrooms. The Mask R-CNN technique is selected to detect the object in an image
of the plant position of the mushroom cultivation in a plastic bag and detect the fun-
gal diseases. The results showed that DenseNet201 has the highest accuracy and lowest
overfitting. Therefore, it was chosen to predict fungal infections within intelligent farms.
Our proposed prototype is predicted in real time. The predictive accuracy during fungal
disease is 73.05%, and the system can detect fungal disease in only six hours. As the
fungal disease spreads, the system will immediately alert farmers via smartphones via the
LINE application. It clearly shows that our proposed system is effective according to our
hypothesis. We plan to optimize the forecasting accuracy to be higher than 90% in the
future.
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