DIFFERENT APPROACH TOWARDS ORDERED ALMOST IDEALS OF ORDERED SEMIRINGS

M. PALANIKUMAR¹, K. ARULMOZHI², AIYARED IAMPAN³,*
AND LEJO J. MANAVALAN⁴

¹Department of Mathematics
Saveetha School of Engineering
Saveetha Institute of Medical and Technical Sciences
Tamil Nadu, Chennai 602105, India
palanimaths86@gmail.com

²Department of Mathematics
Bharath Institute of Higher Education and Research
Tamil Nadu, Chennai 600073, India
arulmozhiems@gmail.com

³Fuzzy Algebras and Decision-Making Problems Research Unit
Department of Mathematics
School of Science
University of Phayao
19 Moo 2, Tambon Mae Ka, Amphur Mueang, Phayao 56000, Thailand
*Corresponding author: aiyared.ia@up.ac.th

⁴Department of Mathematics
Little Flower College
Guruvayoor, Kerala 680103, India
lejo@littleflowercollege.edu.in

Received July 2022; accepted October 2022

ABSTRACT. Various ordered almost ideals (ordered A-ideals), including ordered quasi A-ideals, ordered bi quasi A-ideals, ordered tri A-ideals, and ordered tri quasi A-ideals in ordered semirings, are introduced in the current communication along with certain characterizations. We create the implications such as ordered ideals \Rightarrow ordered quasi A-ideals \Rightarrow ordered bi quasi A-ideals \Rightarrow ordered tri quasi A-ideals \Rightarrow ordered quasi A-ideals \Rightarrow ordered A-ideals and reverse implications do not hold with examples. We show that the union of ordered A-ideals (bi A-ideals, quasi A-ideals, bi quasi A-ideals) is an ordered A-ideal (bi A-ideal, quasi A-ideal, bi quasi A-ideal) in ordered semirings.

Keywords: Ordered A-ideals, Ordered bi A-ideals, Ordered quasi A-ideals, Ordered tri A-ideals

1. Introduction. The concept of semirings was first proposed as a generalization of rings [1]. The concept of a quasi-ideal in semigroups and rings was introduced by Steinfeld [2]. The semirings were described by Shabir et al. using the characteristics of quasi-ideals [3]. Several authors have described the quasi-ideals of various kinds of semirings [4, 5]. A concept of bi-ideals in semigroups was first proposed by Lajos [6]. The concept of ordered bi-ideals is a generalization of ordered left ideals and ordered right ideals [7, 8]. Many mathematicians used various ideals to demonstrate significant findings and algebraic structural characterizations. The concept of tri-ideals is a generalization of quasi-ideals, bi-ideals, and ideals of semirings [9]. In 2011, Gan and Jiang [10] presented the idea of an

DOI: 10.24507/icicelb.13.12.1251
ordered semiring, which they defined as a semiring with a partially ordered relation on semirings that is compatible with the semiring operations. An ordered semiring \(S \) is to be regular in 2014 by Mandal [11] if for any \(a \in S \), there exists \(x \in S \) such that \(a \leq axx \). A relation "\(\leq \)" that satisfies the requirements of reflexivity, antisymmetry, and transitivity is referred to as a partial order. An ordered semiring is created on a semiring by building a generalized ordinary semiring with a partially ordered relation that is compatible with the operations. Many mathematicians used various ideals to demonstrate significant findings and algebraic structural characterizations. The concept of the semigroup \(\mathcal{A} \)-ideal was first developed by Grosek and Satko [12]. In 2021, Palanikumar and Arulmozhi [13, 14, 15] discussed several ideals based on semirings. Recently, Palanikumar and Arulmozhi [16, 17] interacted various ideals using semigroups. In 2022, Palanikumar et al. discussed many applications [18, 19]. We provide certain properties of various ordered \(\mathcal{A} \)-ideals in ordered semirings in this work, to explore a number of significant \(\mathcal{A} \)-ideal results for ordered semirings and characterize them using quasi \(\mathcal{A} \)-ideals and bi \(\mathcal{A} \)-ideals. The following five sections make up the organization of the paper. An introduction is presented in Section 1. An overview of the ordered semirings data is provided in Section 2. The ordered \(\mathcal{A} \)-ideal was presented in Section 3 with examples. Section 4 provides an ordered tri \(\mathcal{A} \)-ideal with examples. The conclusion for various \(\mathcal{A} \)-ideals is provided in Section 5. In this article, we have three goals in mind.

1) To investigate the connection between ordered bi \(\mathcal{A} \)-ideals and ordered quasi \(\mathcal{A} \)-ideals.
2) To describe ordered tri \(\mathcal{A} \)-ideals.
3) To describe ordered bi quasi ideals and ordered tri quasi ideals.

2. Background.

Definition 2.1. [7, 8] A semiring is an algebraic structure \((S, +, \cdot)\) such that \((S, +)\) and \((S, \cdot)\) are semigroups which are connected by the distributive laws. An ordered semiring is a system \((S, +, \cdot, \leq)\) such that \((S, +, \cdot)\) is a semiring, \((S, \leq)\) is a partially ordered set, and for any \(a, b, x \in S\) the following conditions are satisfied.

(i) If \(a \leq b\), then \(a + x \leq b + x\) and \(x + a \leq x + b\).

(ii) If \(a \leq b\), then \(ax \leq bx\) and \(xa \leq xb\).

An ordered semiring \(S \) is called additively commutative if \(a + b = b + a\), for all \(a, b \in S\).

Definition 2.2. [8] Suppose that \(I\) is a nonempty subset of an ordered semiring \((S, +, \cdot, \leq)\). Then \(I\) is called an ordered right (left) ideal of \(S\), if \((I, +)\) is a subsemigroup of \((S, +)\), and for any \(a, b, x \in S\) the following conditions are satisfied.

(a) \(I\) is a right (left) ideal of \(S\).

(b) If \(x \leq i\) for some \(i \in I\), then \(x \in I\) (i.e., \(I = \{i\}\)).

I is called an ordered ideal if \(I\) is an ordered right ideal and ordered left ideal of \(S\).

Definition 2.3. [8] Suppose that \(Q\) is a nonempty subset of an ordered semiring \((S, +, \cdot, \leq)\). Then \(Q\) is called an ordered quasi ideal of \(S\), if \((Q, +)\) is a subsemigroup of \((S, +)\) and

(a) \((\sum QS) \cap (\sum SQ) \subseteq Q\).

(b) If \(x \leq q\) for some \(q \in Q\), then \(x \in Q\) (i.e., \(Q = \{q\}\)).

Definition 2.4. [8] Suppose that \(B\) is a nonempty subset of an ordered semiring \((S, +, \cdot, \leq)\). Then \(B\) is called an ordered bi ideal of \(S\), if \((B, +)\) is a subsemigroup of \((S, +)\) and

(a) \(B \subseteq B\).

(b) If \(x \leq b\) for some \(b \in B\), then \(x \in B\) (i.e., \(B = \{b\}\)).

Remark 2.1. [7] For any nonempty subsets \(A, B\) of an ordered semiring \(S\), we denote

(i) \(A = \{ \sum_{i=1}^{n} a_i \in S | a_i \in A, n \in \mathbb{N} \}\),

(ii) \(AB = \{ \sum_{i=1}^{n} a_i b_i \in S | a_i \in A, b_i \in B, n \in \mathbb{N} \}\),

(iii) \(A = \{ x \in S | x \leq a \text{ for some } a \in A \}.\)
Remark 2.2. [7] For any nonempty subsets A, B of an ordered semiring S, then

(i) $A \subseteq \sum A$ and $\sum (\sum A) = \sum A$.
(ii) $A \subseteq B$ and $\sum A \subseteq \sum B$.
(iii) $A(\sum B) \subseteq (\sum A)(\sum B) \subseteq \sum AB$ and $(\sum A)(\sum B) \subseteq (\sum A)(\sum B) \subseteq \sum AB$.
(iv) $\sum (A) \subseteq (\sum A)$.
(v) $A \subseteq \{A\}$ and $(\{A\}) = \{A\}$.
(vi) If $A \subseteq B$, then $A \subseteq B$.
(vii) $A \subseteq (A)(B) \subseteq (AB)$ and $(A)(B) \subseteq (A)(B) \subseteq (AB)$.

Definition 2.5. [15] Suppose that I, B and Q are nonempty subsets of a semiring $(S, +, \cdot)$. Then

(i) I is called a right (left) A-ideal of S if $IS \cap I \neq \emptyset$ ($IS \cap I \neq \emptyset$).
(ii) I is called an A-ideal of S if I is a right A-ideal and left A-ideal of S.
(iii) A subsemiring B of S is called a bi A-ideal if $BSB \cap B \neq \emptyset$.
(iv) A subsemiring Q of S is called a quasi A-ideal if $[QS \cap SQ] \cap Q \neq \emptyset$.
(v) A subsemiring Q is called a right (left) bi quasi A-ideal of S if $[QS \cap QSQ] \cap Q \neq \emptyset$.
(vi) Q is called a right bi quasi A-ideal of S if Q is a right bi quasi A-ideal and right bi quasi A-ideal of S.

Definition 2.6. [15] Suppose that I and Q are nonempty subsets of a semiring $(S, +, \cdot)$. Then

(i) I is called a right (left) tri A-ideal of S if $I \cdot I \cap I \neq \emptyset$ ($I \cdot I \cap I \neq \emptyset$).
(ii) I is called a tri A-ideal of S if I is a right tri A-ideal and left tri A-ideal of S.
(iii) Q is called a right (left) tri quasi A-ideal of S if Q is a subsemiring of S and $[QS \cap QSQ] \cap Q \neq \emptyset$.
(iv) Q is called a tri quasi A-ideal of S if Q is a right tri quasi A-ideal and left tri quasi A-ideal of S.

3. Ordered A-Ideals. Here S stands for additively commutative ordered semiring and R denotes non negative real numbers unless otherwise stated.

Definition 3.1. Suppose that I is a nonempty subset of an ordered semiring $(S, +, \cdot, \leq)$. Then I is called an ordered right (left) A-ideal of S, if $(I, +)$ is a subsemigroup of $(S, +)$.
(a) I is a right (left) A-ideal of S.
(b) If $x \leq i$ for some $i \in I$, then $x \in I$ (i.e., $I = (I)$). Hence, I is called an ordered A-ideal.

Lemma 3.1. Let I be a nonempty subset of S. Then

(i) $\sum IS$ is an ordered right A-ideal of S.
(ii) $\sum SI$ is an ordered left A-ideal of S.
(iii) $\sum SIS$ is an ordered A-ideal of S.

Proof: Let $x, y \in (\sum IS)$. Then, $x \leq x', y \leq y'$ for some $x', y' \in \sum IS$. Clearly, $x + y \leq x' + y'$ and $x' + y' \in \sum IS$ implies that $x + y \in (\sum IS)$. Now, $(\sum IS)S \cap (\sum IS) \subseteq (\sum SIS) \cap (\sum IS) \subseteq (\sum IS) \cap (\sum IS) \neq \emptyset$. Also, $(\sum IS) = (\sum IS)$. Hence, $(\sum IS)$ is an ordered right A-ideal of S. It is similar to prove (ii) and (iii).

Definition 3.2. Suppose that B and Q are nonempty subsets of S. Then

(1) B is called an ordered bi A-ideal if $(B, +)$ is a subsemigroup of $(S, +)$, $BSB \cap B \neq \emptyset$ and $B = (B)$. It is equivalent to $(\sum BSB) \cap B \neq \emptyset$.
(2) Q is called an ordered quasi A-ideal if $(Q, +)$ is a subsemigroup of $(S, +)$, $[\sum QS \cap (\sum SQ)] \cap Q \neq \emptyset$ and $Q = (Q)$.

Definition 3.3. Suppose that Q is a nonempty subset of S. Then

(1) Q is called an ordered right (left) bi quasi ideal of S if $(Q, +)$ is a subsemigroup of
(\(S, +\)), \(\{\sum QS\} \cap (\sum QSQ) \subseteq Q\) \((\sum SQ) \cap (\sum QSQ) \subseteq Q\) and \(Q = \{Q\}\).

(2) \(Q\) is called an ordered bi quasi ideal of \(S\) if \(Q\) is an ordered right bi quasi ideal and ordered left bi quasi ideal of \(S\).

Definition 3.4. Suppose that \(Q\) is a nonempty subset of \(S\). Then

\(Q\) is called an ordered right (left) bi quasi \(A\)-ideal of \(S\) if \((Q, +)\) is a subsemigroup of \((S, +)\).

\(\{\sum QS\} \cap (\sum QSQ) \nsubseteq Q\) \((\sum SQ) \cap (\sum QSQ) \nsubseteq Q\) and \(Q = \{Q\}\).

(2) \(Q\) is called an ordered bi quasi \(A\)-ideal of \(S\) if \(Q\) is an ordered right bi quasi \(A\)-ideal and ordered left bi quasi \(A\)-ideal of \(S\).

Theorem 3.1. Every ordered ideal (bi ideal, quasi ideal) is an ordered \(A\)-ideal (bi \(A\)-ideal, quasi \(A\)-ideal).

Proof: Suppose that \(I\) is an ordered ideal of \(S\). Now, \(\{\sum IS\} \nsubseteq I \nsubseteq I \nsubseteq I\). Hence, \(I\) is an ordered \(A\)-ideal of \(S\).

Converse of Theorem 3.1 may not be true by the following counter example.

Example 3.1. Consider the semiring \(S_1 = \{s_1, s_2, s_3, s_4, s_5, s_6\}\) with the following compositions:

<table>
<thead>
<tr>
<th>(s_1)</th>
<th>(s_2)</th>
<th>(s_3)</th>
<th>(s_4)</th>
<th>(s_5)</th>
<th>(s_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_1)</td>
<td>(s_2)</td>
<td>(s_3)</td>
<td>(s_4)</td>
<td>(s_5)</td>
<td>(s_6)</td>
</tr>
<tr>
<td>(s_2)</td>
<td>(s_3)</td>
<td>(s_4)</td>
<td>(s_5)</td>
<td>(s_6)</td>
<td></td>
</tr>
<tr>
<td>(s_3)</td>
<td>(s_4)</td>
<td>(s_5)</td>
<td>(s_6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(s_4)</td>
<td>(s_5)</td>
<td>(s_6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(s_5)</td>
<td>(s_6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(s_6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Define a binary relation \(\leq\) on \(S_1\) by \(\leq = \{(x, x) | x \in S_1\}\). Then \((S_1, +, \cdot, \leq)\) is an additively commutative ordered semiring. (i) Let \(I = \{s_1, s_2\}\), \(I \subseteq I \subseteq I \subseteq I\). Clearly, \(I\) is an ordered \(A\)-ideal of \(S_1\) but \(I\) is not a subsemigroup of \(S_1\) by \(\{\sum IS\} \subseteq I \nsubseteq I\) and \(\{\sum SI\} \subseteq \{s_1, s_2, s_4\} \nsubseteq I\). (ii) Let \(Q = \{s_2, s_3\}\), \(Q \subseteq Q \subseteq Q\) and \(Q = \{Q\}\). Clearly, \(Q\) is an ordered quasi \(A\)-ideal of \(S_1\) by \(\{\sum QS\}\) and \(\{\sum SQ\}\). (iii) Let \(B = \{s_4, s_5\}\), \(B \subseteq B \subseteq B\). Clearly, \(B\) is an ordered bi \(A\)-ideal of \(S_1\) by \(\{\sum BS\}\) and \(\{\sum SB\}\). (iv) Let \(A = \{s_6\}\), \(A \subseteq A \subseteq A\). Then it is easy to verify that \(A\) is an ordered bi ideal of \(S_1\) by \(\{\sum BS\}\).

Example 3.2. Let \(S_2 = \{0, a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9\}\) be an ordered semiring under the ordinary multiplication of real numbers with partial ordered relation \(\leq\). Now, we define partial order relation \(\leq\) on \(S_2\), for any \(A, B \in S_2\), \(A \leq B\) if and only if \(a_{ij} \leq a_{ij}\) for all \(i, j\). Then it is easy to verify that \(S_2\) is an ordered semiring under usual multiplication of matrices over real numbers \(R\) with partial order relation \(\leq\). Clearly, \(B = \{0, b_1, 0, 0, 0, 0, 0, 0, 0\}\) is an ordered bi \(A\)-ideal of \(S_2\), but \(B\) is not an ordered bi ideal of \(S_2\) by \(\{\sum BS\}\).

Theorem 3.2. Every ordered quasi ideal (bi ideal) is an ordered bi quasi ideal.

Proof: Suppose that \(Q\) is an ordered quasi ideal of \(S\). Now, \(\{\sum QS\}\) and \(\{\sum SQ\}\) are ordered ideals of \(S\). Hence, \(Q\) is an ordered bi quasi ideal of \(S\).
Converse of Theorem 3.2 may not be true by the following example.

Example 3.3. In Example 3.2, S_2 is not regular by $a = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \in S_2$ there is no $x \in S_2$ such that $a \leq axa$. Let $Q = \left\{ \left(\begin{array}{cccc} 0 & 0 & z_1 & 0 \\ 0 & 0 & z_2 & 0 \\ 0 & 0 & z_3 & 0 \\ 0 & 0 & z_4 & 0 \\ 0 & 0 & z_5 & 0 \end{array} \right) \mid x_{is}^{t} \in \mathcal{R} \right\}$. Now, $(\sum QS_2) = \left\{ \left(\begin{array}{cccc} 0 & 0 & y_1 & 0 \\ 0 & 0 & y_2 & 0 \\ 0 & 0 & y_3 & 0 \\ 0 & 0 & y_4 & 0 \\ 0 & 0 & y_5 & 0 \end{array} \right) \mid y_{is}^{t} \in \mathcal{R} \right\}, (\sum S_2 Q) = \left\{ \left(\begin{array}{cccc} 0 & 0 & z_1 & 0 \\ 0 & 0 & z_2 & 0 \\ 0 & 0 & z_3 & 0 \\ 0 & 0 & z_4 & 0 \\ 0 & 0 & z_5 & 0 \end{array} \right) \mid z_{is}^{t} \in \mathcal{R} \right\}$. Thus, $(\sum S_2 Q) \cap (\sum QS_2 Q) = \left\{ \left(\begin{array}{cccc} 0 & 0 & w_1 & 0 \\ 0 & 0 & w_2 & 0 \\ 0 & 0 & w_3 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right) \mid w_{is}^{t} \in \mathcal{R} \right\} \subseteq Q$. Hence, Q is an ordered bi quasi ideal but Q is not an ordered quasi ideal of S_2 by $(\sum QS_2) \cap (\sum S_2 Q) = \left\{ \left(\begin{array}{cccc} 0 & 0 & w_1 & 0 \\ 0 & 0 & w_2 & 0 \\ 0 & 0 & w_3 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right) \mid w_{is}^{t} \in \mathcal{R} \right\} \not\subseteq Q$.

Corollary 3.1. Every ordered bi quasi A-ideal is an ordered quasi A-ideal.

Proof: Suppose that Q is an ordered bi quasi A-ideal of S. Now, $\emptyset \neq [(\sum QS) \cap (\sum QS Q)] \cap Q \subseteq (\sum QS) \cap Q$ and $\emptyset \neq [(\sum QS Q) \cap (\sum QS Q)] \cap Q \subseteq (\sum SS Q) \cap Q \subseteq (\sum SQ) \cap Q$. Thus, $\emptyset \neq [(\sum QS Q) \cap (\sum QS Q)] \cap Q \subseteq [(\sum QS Q) \cap (\sum SS Q)] \cap Q \subseteq Q$. Hence, Q is an ordered quasi A-ideal of S.

Converse of Corollary 3.1 is not true by the following example.

Example 3.4. The ordered semiring $S_3 = \left\{ \left(\begin{array}{cccc} 0 & 0 & z_1 & 0 \\ 0 & 0 & z_2 & 0 \\ 0 & 0 & z_3 & 0 \\ 0 & 0 & z_4 & 0 \end{array} \right) \mid x_{is}^{t} \in \mathcal{R} \right\}$ is not regular. Let $Q = \left\{ \left(\begin{array}{cccc} 0 & 0 & y_1 & 0 \\ 0 & 0 & y_2 & 0 \\ 0 & 0 & y_3 & 0 \\ 0 & 0 & y_4 & 0 \end{array} \right) \mid y_{is}^{t} \in \mathcal{R} \right\}$ be an ordered quasi A-ideal of S_3 but Q is not an ordered bi quasi A-ideal of S_3 by $[(\sum^n_{i=1} r_{i}^{t} q) \cap (\sum^n_{i=1} q r_{i}^{t} q)] \cap q = \emptyset$ and $[(\sum^n_{i=1} q r_{i}^{t} q) \cap (\sum^n_{i=1} r_{i}^{t} q)] \cap q = \emptyset$ with the $(n-1)$ q terms as zero, where $q = \left(\begin{array}{cccc} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right) \in Q$ and $r_{i}^{t} = \left(\begin{array}{cccc} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right) \in S_3$ and $r_{i}^{n} = \left(\begin{array}{cccc} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right) \in S_3$.

Theorem 3.3. Every ordered bi A-ideal is an ordered quasi A-ideal.

Proof: Suppose that B is an ordered bi A-ideal of S. Now, $\emptyset \neq [(\sum BS B) \cap B \subseteq (\sum BS) \cap B$ and $\emptyset \neq (\sum BS B) \cap B \subseteq (\sum BS) \cap B$. Thus, $\emptyset \neq (\sum BS B) \cap B \subseteq [(\sum BS) \cap (\sum BS)] \cap B$. Hence, B is an ordered quasi A-ideal of S.

Converse of Theorem 3.3 may not be true by the following counter example.

Example 3.5. Let $B = \left\{ \left(\begin{array}{cccc} 0 & 0 & z_1 & 0 \\ 0 & 0 & z_2 & 0 \\ 0 & 0 & z_3 & 0 \\ 0 & 0 & z_4 & 0 \end{array} \right) \mid x_{is}^{t} \in \mathcal{R} \right\} \subseteq S_3$ in Example 3.4. Now, $(\sum S_3 B) = \left\{ \left(\begin{array}{cccc} 0 & 0 & y_1 & 0 \\ 0 & 0 & y_2 & 0 \\ 0 & 0 & y_3 & 0 \\ 0 & 0 & y_4 & 0 \end{array} \right) \mid y_{is}^{t} \in \mathcal{R} \right\}$ and $(\sum B S_3) = \left\{ \left(\begin{array}{cccc} 0 & 0 & z_1 & 0 \\ 0 & 0 & z_2 & 0 \\ 0 & 0 & z_3 & 0 \\ 0 & 0 & z_4 & 0 \end{array} \right) \mid z_{is}^{t} \in \mathcal{R} \right\}$. Hence, $[(\sum BS B) \cap (\sum S_3 B)] \cap B \neq \emptyset$. Thus, B is an ordered quasi A-ideal of S_3 but B is not an ordered bi A-ideal of S_3 by $(\sum^n_{i=1} b r_{i} b) \cap b = \emptyset$ with the $(n-1)$ b terms as zero, where $b = \left(\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right) \in B$ and $r' = \left(\begin{array}{cccc} 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right) \in S_3$.

Theorem 3.4. Every ordered quasi A-ideal is an ordered A-ideal.

Proof: Suppose that Q is an ordered quasi A-ideal of S, then $[(\sum QS)\cap (\sum SQ)]\cap Q \neq \emptyset$. Now, $\emptyset \neq [(\sum QS)\cap (\sum SQ)] \cap Q \subseteq (\sum QS) \cap Q$ and $\emptyset \neq [(\sum QS)\cap (\sum SQ)] \cap Q \subseteq (\sum SQ) \cap Q$. Hence, Q is an ordered A-ideal of S.

Converse of Theorem 3.5 is not true by the following example.

Example 3.6. The ordered semiring $S_4 = \left\{ \left(\begin{array}{cccc} 0 & r_1 & r_2 & r_3 \\
 & 0 & r_4 & r_5 \\
 & 0 & 0 & r_6 \\
 & 0 & 0 & 0
\end{array} \right) \right\} r_i^s \in \mathcal{R} \}$ is not regular. Let $Q = \left\{ \left(\begin{array}{cccc} 0 & 0 & 0 & 0 \\
 & 0 & 0 & 0 \\
 & 0 & 0 & 0 \\
 & 0 & 0 & 0
\end{array} \right) \right\} q_i^s \in \mathcal{R} \}$ be an ordered A-ideal but Q is not an ordered quasi A-ideal of S_4 by $[(\sum qr_i^s) \cap (\sum r_i^s)] \cap q = \emptyset$ with some $(n-1)q_i^s$ as zero, where $q = \left(\begin{array}{cccc} 0 & 1 & 0 & 1 \\
 & 0 & 0 & 0 \\
 & 0 & 0 & 0 \\
 & 0 & 0 & 0
\end{array} \right) \in S_4$, $r_i^s = \left(\begin{array}{cccc} 0 & 1 & 1 & 0 \\
 & 0 & 0 & 0 \\
 & 0 & 0 & 0 \\
 & 0 & 0 & 0
\end{array} \right) \in S_4$ and $r_i^s = \left(\begin{array}{cccc} 0 & 0 & 0 & 0 \\
 & 0 & 0 & 0 \\
 & 0 & 0 & 0 \\
 & 0 & 0 & 0
\end{array} \right) \in S_4$.

Theorem 3.5. Every ordered bi quasi ideal is an ordered bi quasi A-ideal.

Proof: Suppose that Q is an ordered bi quasi ideal of S, then $[(\sum QS)\cap (\sum SQ)] \subseteq Q$ and $[(\sum SQ)\cap (\sum QS)] \subseteq Q$. Now, $[(\sum QS)\cap (\sum SQ)] \cap Q \subseteq Q \cap Q \neq \emptyset$ and $[(\sum SQ)\cap (\sum QS)] \cap Q \subseteq Q \cap Q \neq \emptyset$. Hence, Q is an ordered bi quasi A-ideal of S.

Converse of Theorem 3.5 is not true by the example.

Example 3.7. Consider the ordered semiring $S_5 = \left\{ \left(\begin{array}{cccc} 0 & 0 & x & 1 \\
 & 0 & 0 & 1 \\
 & 0 & 0 & 1 \\
 & 0 & 0 & 1
\end{array} \right) \right\} x_i^s \in \mathcal{R} \}$. Let $Q = \left\{ \left(\begin{array}{cccc} 0 & 0 & 0 & 0 \\
 & 0 & 0 & 0 \\
 & 0 & 0 & 0 \\
 & 0 & 0 & 0
\end{array} \right) \right\} q_i^s \in \mathcal{R} \}$, then $[(\sum QS_5)\cap (\sum SQ)] \cap Q = \left\{ \left(\begin{array}{cccc} 0 & 0 & 0 & 0 \\
 & 0 & 0 & 0 \\
 & 0 & 0 & 0 \\
 & 0 & 0 & 0
\end{array} \right) \right\} \neq \emptyset$ and $[(\sum SQ_5)\cap (\sum QS_5)] \cap Q = \left\{ \left(\begin{array}{cccc} 0 & 0 & 0 & 0 \\
 & 0 & 0 & 0 \\
 & 0 & 0 & 0 \\
 & 0 & 0 & 0
\end{array} \right) \right\} \neq \emptyset$.

Hence, Q is an ordered bi quasi A-ideal but Q is not an ordered bi quasi ideal of S_5 by $(\sum QS_5)\cap (\sum SQ_5) = \left\{ \left(\begin{array}{cccc} 0 & 0 & 0 & x \\
 & 0 & 0 & 0 \\
 & 0 & 0 & 0 \\
 & 0 & 0 & 0
\end{array} \right) \right\} \in Q$.

Theorem 3.6. If Q is an ordered A-ideal (bi A-ideal, quasi A-ideal, quasi A-ideal) of S and $Q \subseteq Q' \subseteq S$, then Q' is an ordered A-ideal (bi A-ideal, quasi A-ideal, quasi A-ideal) of S.

Proof: Suppose that Q is an ordered bi quasi A ideal of S with $Q \subseteq Q' \subseteq S$. Then $\emptyset \neq [(\sum QS)\cap (\sum SQ)] \cap Q \subseteq [(\sum Q'S)\cap (\sum SQ')] \cap Q'$ and $\emptyset \neq [(\sum SQ)\cap (\sum QS)] \cap Q \subseteq [(\sum SQ')\cap (\sum SQ')] \cap Q'$. Therefore, Q' is an ordered bi quasi A ideal of S.

Proof: Let I_1 and I_2 be any two ordered A-ideals of S. Then $I_1 \subseteq I_1 \cup I_2$, by Theorem 3.6, $I_1 \cup I_2$ is an ordered A-ideal of S.

4. Ordered Tri A-Ideals.

Definition 4.1. Suppose that I is a nonempty subset of S. Then I is called an ordered right (left) tri A-ideal of S, if $(I,+)$ is a subsemigroup of $(S,+)$ and
(a) I is a right (left) tri A-ideal of S.
(b) If $x \leq i$ for some $i \in I$, then $x \in I$ (i.e., $I = \{I\}$).
I is called an ordered tri \mathcal{A}-ideal if I is an ordered right tri \mathcal{A}-ideal and ordered left tri \mathcal{A}-ideal of S.

Lemma 4.1. Let I be a nonempty subset of S. Then
(i) $(\sum I^3S)$ is an ordered right tri \mathcal{A}-ideal of S.
(ii) $(\sum ISI^2)$ is an ordered left tri \mathcal{A}-ideal of S.

Proof: Let $x, y \in (\sum I^3S)$. Then, $x \leq x', y \leq y'$ for some $x', y' \in \sum I^3S$. Clearly, $x + y \leq x' + y'$ and $x' + y' \in \sum I^3S$ implies that $x + y \in (\sum I^3S)$. Now, $[(\sum I^3S)^2S(\sum I^3S)] \cap (\sum I^3S) \subseteq \sum I^3S$. Also, $(\sum I^3S) = (\sum I^3S)$. Hence, $(\sum I^3S)$ is an ordered right tri \mathcal{A}-ideal of S. It is similar to prove (ii).

Definition 4.2. Suppose that Q is a nonempty subset of S. Then
(i) Q is called an ordered right (left) tri quasi ideal of S if $(Q, +)$ is a subsemigroup of $(S, +)$ and $(\sum QS) \cap (\sum Q^2S) \subseteq Q$ $(\sum Q) \cap (\sum Q^2S) \subseteq Q$.
(ii) Q is called an ordered tri quasi ideal of S if Q is an ordered right tri quasi ideal and ordered left tri quasi ideal of S.

Definition 4.3. Suppose that Q is a nonempty subset of S. Then
(i) Q is called an ordered right (left) tri quasi \mathcal{A}-ideal of S if $(Q, +)$ is a subsemigroup of $(S, +)$ and $(\sum Q^3S) \cap (\sum Q^2S) \subseteq Q$ $(\sum Q^3S) \cap (\sum Q^2S) \subseteq Q$.
(ii) Q is called an ordered tri quasi \mathcal{A}-ideal of S if Q is an ordered right tri quasi \mathcal{A}-ideal and ordered left tri quasi \mathcal{A}-ideal of S.

Theorem 4.1. Every ordered tri \mathcal{A}-ideal is an ordered \mathcal{A}-ideal (ordered bi \mathcal{A}-ideal).

Proof: Suppose that I is an ordered tri \mathcal{A}-ideal of S, then $(I, +)$ is a subsemigroup of $(S, +)$ and $(\sum I^3S) \cap I \neq \emptyset$ and $(\sum ISI^2) \cap I \neq \emptyset$. Now, $\emptyset \neq (\sum I^3S) \cap I \subseteq (\sum ISSS) \cap I \subseteq (\sum IS) \cap I$ and $\emptyset \neq (\sum ISI^2) \cap I \subseteq (\sum SSSI) \cap I \subseteq (\sum SI) \cap I$. Hence, I is an ordered \mathcal{A}-ideal of S.

Converse of Theorem 4.1 may not be true by the example.

Example 4.1. Let $S_1 = \left\{ \begin{pmatrix} r_1 & r_2 & r_3 & r_4 & r_5 & r_6 \\ r_7 & r_8 & r_9 & r_{10} & r_{11} & r_{12} \\ r_{13} & r_{14} & r_{15} & r_{16} & r_{17} & r_{18} \\ r_{19} & r_{20} & r_{21} & r_{22} & r_{23} & r_{24} \\ r_{25} & r_{26} & r_{27} & r_{28} & r_{29} & r_{30} \\ r_{31} & r_{32} & r_{33} & r_{34} & r_{35} & r_{36} \end{pmatrix} \mid r^3 \in \mathcal{R} \right\}$ be an ordered semiring and not regular.

Let $I = \left\{ \begin{pmatrix} r_1 & r_2 & r_3 & r_4 & r_5 & r_6 \\ r_7 & r_8 & r_9 & r_{10} & r_{11} & r_{12} \\ r_{13} & r_{14} & r_{15} & r_{16} & r_{17} & r_{18} \\ r_{19} & r_{20} & r_{21} & r_{22} & r_{23} & r_{24} \\ r_{25} & r_{26} & r_{27} & r_{28} & r_{29} & r_{30} \\ r_{31} & r_{32} & r_{33} & r_{34} & r_{35} & r_{36} \end{pmatrix} \mid r^3 \in \mathcal{R} \right\}$. Clearly, I is an ordered \mathcal{A}-ideal of S_1 but I is not an ordered tri \mathcal{A}-ideal of S_1 by $(\sum r^3) \cap x = \emptyset$ and $(\sum r^3) \cap x = \emptyset$ with the $(n-1)$ terms of x^3 and r^3 as zero. This implies that $x^3 + r^3 \cap x = \emptyset$ and $x^3 + r^3 \cap x = \emptyset$.

Example 4.2. Let $S_2 = \left\{ \begin{pmatrix} r_1 & r_2 & r_3 & r_4 & r_5 \\ r_6 & r_7 & r_8 & r_9 & r_{10} \\ r_{11} & r_{12} & r_{13} & r_{14} & r_{15} \\ r_{16} & r_{17} & r_{18} & r_{19} & r_{20} \\ r_{21} & r_{22} & r_{23} & r_{24} & r_{25} \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \mid r^3 \in \mathcal{R} \right\}$ be an ordered semiring and not regular. Clearly, $B = \left\{ \begin{pmatrix} b_1 & b_2 & b_3 & b_4 & b_5 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \mid b^3 \in \mathcal{R} \right\}$ is an ordered bi \mathcal{A}-ideal but B is not an ordered tri \mathcal{A}-ideal of S_2 by $(\sum b^3) \cap b = \emptyset$ and $(\sum b^3) \cap b = \emptyset$ with $(n-1)$ terms of b^3 and r^3 as zero. This implies that $b^3 \cap b = \emptyset$ and $b^3 \cap b = \emptyset$.

Theorem 4.2. Every ordered tri \mathcal{A}-ideal is an ordered quasi \mathcal{A}-ideal.
Theorem 4.3. Let \((\sum Q^2 SQ) \cap Q \subseteq (\sum QSQ) \cap Q \cap (\sum QS) \cap Q \cap (\sum QS) \cap Q\) and \(\emptyset \neq (\sum Q^2 SQ) \cap Q \subseteq (\sum QS) \cap Q \subseteq (\sum Q^2 SQ^2) \cap Q \subseteq (\sum QS) \cap Q \cap (\sum QS) \cap Q\). Hence, \(\emptyset \neq (\sum Q^2 SQ^2) \cap Q \subseteq (\sum QS) \cap Q \subseteq (\sum QS) \cap Q \cap (\sum QS) \cap Q\). Similarly, \(\emptyset \neq (\sum Q^2 SQ^2) \cap Q \subseteq (\sum QS) \cap Q \subseteq (\sum QS) \cap Q \cap (\sum QS) \cap Q\). Hence, \(Q\) is an ordered quasi \(A\)-ideal of \(S\).

Converse of Theorem 4.2 may not be true in the given example.

Example 4.3. Consider \(S_2\) in Example 4.2, \(Q = \left\{ \left(\begin{array}{c} 0 \ 0 \ 0 \ 0 \\ 0 \ 0 \ 0 \ 0 \\ 0 \ 0 \ 0 \ 0 \\ 0 \ 0 \ 0 \ 0 \end{array} \right) \right\} \) is an ordered quasi \(A\)-ideal but \(Q\) is not an ordered quasi \(A\)-ideal of \(S_2\) by \((\sum q^2 r^2 q) \cap q = \emptyset \) with \((n-1)\) terms of \(q^s\) and \(r^s\) are zero. This implies that \(q^2 r q \cap q = \emptyset\) and \(q r^2 q \cap q = \emptyset\), where \(q = \left(\begin{array}{c} 0 \ 0 \ 0 \ 0 \\ 0 \ 0 \ 0 \ 0 \\ 0 \ 0 \ 0 \ 0 \\ 0 \ 0 \ 0 \ 0 \end{array} \right) \) \(\in Q\) and \(r = \left(\begin{array}{c} 0 \ 0 \ 0 \ 0 \\ 0 \ 0 \ 0 \ 0 \\ 0 \ 0 \ 0 \ 0 \\ 0 \ 0 \ 0 \ 0 \end{array} \right) \) \(\in \mathcal{R}\).

Corollary 4.1. Every ordered \(A\)-ideal is an ordered bi quasi \(A\)-ideal.

Proof: Suppose that \(Q\) is an ordered right \(A\)-ideal of \(S\), then \((\sum Q^2 SQ) \cap Q \neq \emptyset\). Now, \(\emptyset \neq (\sum Q^2 SQ) \cap Q \subseteq (\sum QS) \cap Q \cap (\sum QS) \cap Q\) and \(\emptyset \neq (\sum Q^2 SQ) \cap Q \subseteq (\sum QS) \cap Q \subseteq (\sum QS) \cap Q\). This implies that \(\emptyset \neq (\sum Q^2 SQ) \cap Q \subseteq (\sum QS) \cap Q \subseteq (\sum QS) \cap Q\). Thus, \(Q\) is an ordered right bi quasi \(A\)-ideal of \(S\). Suppose that \(Q\) is an ordered left \(A\)-ideal of \(S\), then \(Q\) is an ordered left bi quasi \(A\)-ideal of \(S\). Hence, \(Q\) is an ordered bi quasi \(A\)-ideal of \(S\).

Converse of Corollary 4.1 may not be true in the given example.

Example 4.4. Let \(S_3 = \left\{ \left(\begin{array}{c} 0 \ 0 \ 0 \ 0 \\ r_1 \ 0 \ 0 \ 0 \\ r_2 \ 0 \ 0 \ 0 \\ r_3 \ 0 \ 0 \ 0 \\ r_4 \ 0 \ 0 \ 0 \\ r_5 \ 0 \ 0 \ 0 \\ r_6 \ 0 \ 0 \ 0 \\ r_7 \ 0 \ 0 \ 0 \end{array} \right) \ \mid r_i^s \in \mathcal{R} \right\} \) be an ordered semiring and \(S_3\) is not regular. Let \(Q = \left\{ \left(\begin{array}{c} 0 \ 0 \ 0 \ 0 \\ q_1 \ 0 \ 0 \ 0 \\ q_2 \ 0 \ 0 \ 0 \\ q_3 \ 0 \ 0 \ 0 \\ q_4 \ 0 \ 0 \ 0 \\ q_5 \ 0 \ 0 \ 0 \\ q_6 \ 0 \ 0 \ 0 \\ q_7 \ 0 \ 0 \ 0 \end{array} \right) \ \mid q_i^s \in \mathcal{R} \right\} \) and \((\sum QS_3) = \left\{ \left(\begin{array}{c} 0 \ 0 \ 0 \ 0 \\ d_1 \ 0 \ 0 \ 0 \\ d_2 \ 0 \ 0 \ 0 \\ d_3 \ 0 \ 0 \ 0 \\ d_4 \ 0 \ 0 \ 0 \end{array} \right) \ \mid d_i^s \in \mathcal{R} \right\} \) and \((\sum QS_3^2) = \left\{ \left(\begin{array}{c} 0 \ 0 \ 0 \ 0 \\ e_1 \ 0 \ 0 \ 0 \\ e_2 \ 0 \ 0 \ 0 \\ e_3 \ 0 \ 0 \ 0 \\ e_4 \ 0 \ 0 \ 0 \end{array} \right) \ \mid e_i^s \in \mathcal{R} \right\} \). Thus, \([QS_3 \cap QS_3^2] \cap Q \neq \emptyset\) and \([S_3 Q \cap QS_3 Q] \cap Q \neq \emptyset\). Hence, \(Q\) is an ordered bi quasi \(A\)-ideal of \(S_3\). However, \(Q\) is not an ordered \(A\)-ideal of \(S_3\) by \((\sum q_i^2 r_i q_i) \cap q = \emptyset\) and \((\sum q_i r_i q_i^2) \cap q = \emptyset\) with \((n-1)\) terms of \(q^s\) and \(r^s\) as zero. This implies that \(q^2 r q \cap q = \emptyset\) and \(q r^2 q \cap q = \emptyset\), where \(q = \left(\begin{array}{c} 0 \ 0 \ 0 \ 0 \\ 0 \ 0 \ 0 \ 0 \\ 0 \ 0 \ 0 \ 0 \\ 0 \ 0 \ 0 \ 0 \end{array} \right) \) \(\in Q\) and \(r = \left(\begin{array}{c} 0 \ 0 \ 0 \ 0 \\ 0 \ 0 \ 0 \ 0 \\ 0 \ 0 \ 0 \ 0 \\ 0 \ 0 \ 0 \ 0 \end{array} \right) \) \(\in S_3\).

Theorem 4.3. Every ordered bi quasi ideal is an ordered quasi \(A\)-ideal.

Proof: Suppose that \(Q\) is an ordered bi quasi ideal of \(S\), then \((\sum QS) \cap (\sum QS) \cap (\sum QS) \subseteq Q\) and \((\sum QS^2) \cap (\sum QS^2) \subseteq Q\) and \((\sum QS^2) \cap (\sum QS^2) \subseteq Q\) and \((\sum QS^2) \cap (\sum QS^2) \subseteq Q\). Now, \((\sum QS) \cap (\sum QS) \cap (\sum QS) \subseteq Q\) and \((\sum QS) \cap (\sum QS^2) \subseteq Q\) and \((\sum QS^2) \cap (\sum QS^2) \subseteq Q\). Hence, \(Q\) is an ordered quasi \(A\)-ideal of \(S\).

Converse of Theorem 4.3 may not be true by the following example.

Example 4.5. Consider \(S_3\) in Example 4.4, \(Q = \left\{ \left(\begin{array}{c} 0 \ 0 \ 0 \ 0 \\ a_1 \ 0 \ 0 \ 0 \\ a_2 \ 0 \ 0 \ 0 \\ a_3 \ 0 \ 0 \ 0 \\ a_4 \ 0 \ 0 \ 0 \\ a_5 \ 0 \ 0 \ 0 \\ a_6 \ 0 \ 0 \ 0 \\ a_7 \ 0 \ 0 \ 0 \end{array} \right) \ \mid a_i^s \in \mathcal{R} \right\} \) and \((\sum QS_3) = \left\{ \left(\begin{array}{c} 0 \ 0 \ 0 \ 0 \\ d_1 \ 0 \ 0 \ 0 \\ d_2 \ 0 \ 0 \ 0 \\ d_3 \ 0 \ 0 \ 0 \\ d_4 \ 0 \ 0 \ 0 \end{array} \right) \ \mid d_i^s \in \mathcal{R} \right\} \) and \((\sum QS_3^2) = \left\{ \left(\begin{array}{c} 0 \ 0 \ 0 \ 0 \\ e_1 \ 0 \ 0 \ 0 \\ e_2 \ 0 \ 0 \ 0 \\ e_3 \ 0 \ 0 \ 0 \\ e_4 \ 0 \ 0 \ 0 \end{array} \right) \ \mid e_i^s \in \mathcal{R} \right\} \). Thus, \((\sum QS_3) \cap (\sum QS_3^2) \subseteq Q\). Hence, \(Q\) is an ordered left quasi \(A\)-ideal of \(S_3\) but \(Q\) is not a left quasi \(A\)-ideal by \((\sum S_3) \cap (\sum S_3^2) \subseteq Q\). Hence, \(Q\) is an ordered quasi \(A\)-ideal of \(S_3\) but \(Q\) is not a left quasi \(A\)-ideal by \((\sum S_3) \cap (\sum S_3^2) \subseteq Q\).

Corollary 4.2. Every ordered quasi \(A\)-ideal is an ordered bi quasi \(A\)-ideal.
Proof: Suppose that Q is an ordered tri quasi A-ideal of S, then $[(\sum QS) \cap (\sum Q^2S)] \cap Q \neq \emptyset$ and $[(\sum SQ) \cap (\sum SQ^2)] \cap Q \neq \emptyset$. Now, $\emptyset \neq [(\sum QS) \cap (\sum Q^2S)] \cap Q \subseteq [(\sum QS) \cap (\sum SQ^2)] \cap Q \subseteq [(\sum QS) \cap (\sum SQ)] \cap Q \subseteq [(\sum SQ) \cap (\sum Q^2S)] \cap Q$. Hence, Q is an ordered bi quasi A-ideal of S.

Converse of Corollary 4.2 is not true by the following example.

Example 4.6. Consider S_3 in Example 4.4, $Q = \left\{ \begin{pmatrix} a_1^n & 0 & 0 & 0 \\ a_2 & a_3 & 0 & a_4 \\ 0 & 0 & 0 & 0 \end{pmatrix} \in \mathcal{R} \right\}$ is an ordered bi quasi A-ideal of S_3 but Q is not an ordered tri quasi A-ideal of S_3 by $[(\sum^n_{i=1} r_i q_i) \cap (\sum^n_{i=1} r_i q_i^2)] \cap q = \emptyset$ and $[(\sum q_i r_i) \cap (\sum q_i r_i q_i)] \cap q = \emptyset$ with $(n-1)$ terms of q^s, r^n as zero. This implies that $[r'q \cap q^s r''q^s] \cap q = \emptyset$ and $[q' \cap q^s] \cap q = \emptyset$, where $q = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$ in Q, $r' = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix} \in S_3$ and $r'' = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} \in S_3$.

Theorem 4.4. If Q is an ordered tri A-ideal (tri quasi A-ideal) of S and $Q \subseteq Q' \subseteq S$, then Q' is an ordered tri A-ideal (tri quasi A-ideal) of S.

Proof: Suppose that Q is an ordered tri quasi A-ideal of S with $Q \subseteq Q' \subseteq S$. Then $\emptyset \neq [(\sum QS) \cap (\sum QS^2)] \cap Q \subseteq [(\sum QS) \cap (\sum QS^2)] \cap Q' \subseteq [(\sum QS) \cap (\sum QS^2)] \cap Q$ and $\emptyset \neq [(\sum SQ) \cap (\sum Q^2S)] \cap Q \subseteq [(\sum SQ) \cap (\sum Q^2S)] \cap Q' \subseteq [(\sum SQ) \cap (\sum Q^2S)] \cap Q'$. Therefore, Q' is an ordered tri quasi A-ideal of S.

Corollary 4.3. The union of ordered tri A-ideals (tri quasi A-ideals) of S is an ordered tri A-ideal (tri quasi A-ideal) of S.

Proof: Let Q_1 and Q_2 be any two ordered tri A-ideals of S. Then $Q_1 \subseteq Q_1 \cup Q_2$, by Theorem 4.4, $Q_1 \cup Q_2$ is an ordered tri A-ideal of S.

5. Conclusion. In this article, various ordered almost ideals including ordered quasi A-ideals, ordered bi quasi A-ideals, ordered tri A-ideals, and ordered tri quasi A-ideals in ordered semirings, are introduced. We discussed the implications ordered ideals \Rightarrow ordered quasi ideals \Rightarrow ordered bi quasi ideals \Rightarrow ordered tri quasi ideals \Rightarrow ordered tri quasi A-ideals \Rightarrow ordered bi quasi A-ideals \Rightarrow ordered bi A-ideals \Rightarrow ordered quasi A-ideals \Rightarrow ordered A-ideals. With instances given, the contrary implications are false. We plan to characterize other classes of ordered hyper semirings in the future using different hyper A-ideals.

Acknowledgment. The authors would like to thank the anonymous referee who provided useful and detailed comments on a previous/earlier version of the manuscript.

REFERENCES

