DIFFERENT APPROACH TOWARDS ORDERED ALMOST IDEALS OF ORDERED SEMIRINGS

M. Palanikumar ${ }^{1}$, K. Arulmozhi ${ }^{2}$, Aiyared Iampan ${ }^{3, *}$
and Lejo J. Manavalan ${ }^{4}$
${ }^{1}$ Department of Mathematics
Saveetha School of Engineering Saveetha University
Saveetha Institute of Medical and Technical Sciences
Tamil Nadu, Chennai 602105, India
palanimaths86@gmail.com
${ }^{2}$ Department of Mathematics
Bharath Institute of Higher Education and Research
Tamil Nadu, Chennai 600073, India
arulmozhiems@gmail.com
${ }^{3}$ Fuzzy Algebras and Decision-Making Problems Research Unit
Department of Mathematics
School of Science
University of Phayao
19 Moo 2, Tambon Mae Ka, Amphur Mueang, Phayao 56000, Thailand
*Corresponding author: aiyared.ia@up.ac.th
${ }^{4}$ Department of Mathematics
Little Flower College
Guruvayoor, Kerala 680103, India
lejo@littleflowercollege.edu.in

Received July 2022; accepted October 2022

Abstract

Various ordered almost ideals (ordered \mathcal{A}-ideals), including ordered quasi \mathcal{A}-ideals, ordered bi quasi \mathcal{A}-ideals, ordered tri \mathcal{A}-ideals, and ordered tri quasi \mathcal{A}-ideals in ordered semirings, are introduced in the current communication along with certain characterizations. We create the implications such as ordered ideals \Longrightarrow ordered quasi ideals \Longrightarrow ordered bi quasi ideals \Longrightarrow ordered tri quasi ideals \Longrightarrow ordered tri quasi \mathcal{A}-ideals \Longrightarrow ordered bi quasi \mathcal{A}-ideals \Longrightarrow ordered bi \mathcal{A}-ideals \Longrightarrow ordered quasi \mathcal{A}-ideals \Longrightarrow ordered \mathcal{A}-ideals and reverse implications do not hold with examples. We show that the union of ordered \mathcal{A}-ideals (bi \mathcal{A}-ideals, quasi \mathcal{A}-ideals, bi quasi \mathcal{A}-ideals) is an ordered \mathcal{A}-ideal (bi \mathcal{A}-ideal, quasi \mathcal{A}-ideal, bi quasi \mathcal{A}-ideal) in ordered semirings. Keywords: Ordered \mathcal{A}-ideals, Ordered bi \mathcal{A}-ideals, Ordered quasi \mathcal{A}-ideals, Ordered tri \mathcal{A}-ideals

1. Introduction. The concept of semirings was first proposed as a generalization of rings [1]. The concept of a quasi-ideal in semigroups and rings was introduced by Steinfeld [2]. The semirings were described by Shabir et al. using the characteristics of quasi-ideals [3]. Several authors have described the quasi-ideals of various kinds of semirings [4, 5]. A concept of bi-ideals in semigroups was first proposed by Lajos [6]. The concept of ordered bi-ideals is a generalization of ordered left ideals and ordered right ideals $[7,8]$. Many mathematicians used various ideals to demonstrate significant findings and algebraic structural characterizations. The concept of tri-ideals is a generalization of quasi-ideals, bi-ideals, and ideals of semirings [9]. In 2011, Gan and Jiang [10] presented the idea of an
ordered semiring, which they defined as a semiring with a partially ordered relation on semirings that is compatible with the semiring operations. An ordered semiring S is to be regular in 2014 by Mandal [11] if for any $a \in S$, there exists $x \in S$ such that $a \leq a x a$. A relation " \leq " that satisfies the requirements of reflexivity, antisymmetry, and transitivity is referred to as a partial order. An ordered semiring is created on a semiring by building a generalized ordinary semiring with a partially ordered relation that is compatible with the operations. Many mathematicians used various ideals to demonstrate significant findings and algebraic structural characterizations. The concept of the semigroup \mathcal{A}-ideal was first developed by Grosek and Satko [12]. In 2021, Palanikumar and Arulmozhi [13, 14, 15] discussed several ideals based on semirings. Recently, Palanikumar and Arulmozhi [16, 17] interacted various ideals using semigroups. In 2022, Palanikumar et al. discussed many applications $[18,19]$. We provide certain properties of various ordered \mathcal{A}-ideals in ordered semirings in this work, to explore a number of significant \mathcal{A}-ideal results for ordered semirings and characterize them using quasi \mathcal{A}-ideals and bi \mathcal{A}-ideals. The following five sections make up the organization of the paper. An introduction is presented in Section 1. An overview of the ordered semirings data is provided in Section 2. The ordered \mathcal{A}-ideal was presented in Section 3 with examples. Section 4 provides an ordered tri \mathcal{A}-ideal with examples. The conclusion for various \mathcal{A}-ideals is provided in Section 5. In this article, we have three goals in mind.
1) To investigate the connection between ordered bi \mathcal{A}-ideals and ordered quasi \mathcal{A} ideals.
2) To describe ordered tri \mathcal{A}-ideals.
3) To describe ordered bi quasi ideals and ordered tri quasi ideals.

2. Background.

Definition 2.1. $[7,8]$ A semiring is an algebraic structure $(\mathcal{S},+, \cdot)$ such that $(\mathcal{S},+)$ and (\mathcal{S}, \cdot) are semigroups which are connected by the distributive laws. An ordered semiring is a system $(\mathcal{S},+, \cdot, \leq)$ such that $(\mathcal{S},+, \cdot)$ is a semiring, (\mathcal{S}, \leq) is a partially ordered set, and for any $a, b, x \in \mathcal{S}$ the following conditions are satisfied.
(i) If $a \leq b$, then $a+x \leq b+x$ and $x+a \leq x+b$.
(ii) If $a \leq b$, then $a x \leq b x$ and $x a \leq x b$.

An ordered semiring \mathcal{S} is called additively commutative if $a+b=b+a$, for all $a, b \in \mathcal{S}$.
Definition 2.2. [8] Suppose that I is a nonempty subset of an ordered semiring $(\mathcal{S},+, \cdot$, $\leq)$. Then I is called an ordered right (left) ideal of \mathcal{S}, if $(I,+)$ is a subsemigroup of $(\mathcal{S},+)$,
(a) I is a right (left) ideal of \mathcal{S}.
(b) If $x \leq i$ for some $i \in I$, then $x \in I$ (i.e., $I=(I]$).
I is called an ordered ideal if I is an ordered right ideal and ordered left ideal of \mathcal{S}.
Definition 2.3. [8] Suppose that Q is a nonempty subset of an ordered semiring $(\mathcal{S},+, \cdot$, $\leq)$. Then Q is called an ordered quasi ideal of \mathcal{S}, if $(Q,+)$ is a subsemigroup of $(\mathcal{S},+)$ and
(a) $\left(\sum Q \mathcal{S}\right] \cap\left(\sum \mathcal{S} Q\right] \subseteq Q$.
(b) If $x \leq q$ for some $q \in Q$, then $x \in Q$ (i.e., $Q=(Q]$).

Definition 2.4. [8] Suppose that B is a nonempty subset of an ordered semiring $(\mathcal{S},+, \cdot$, $\leq)$. Then B is called an ordered bi ideal of \mathcal{S}, if $(B,+)$ is a subsemigroup of $(\mathcal{S},+)$ and (a) $B \mathcal{S} B \subseteq B$.
(b) If $x \leq b$ for some $b \in B$, then $x \in B$ (i.e., $B=(B]$).

Remark 2.1. [7] For any nonempty subsets A, B of an ordered semiring \mathcal{S}, we denote (i) $\sum A=\left\{\sum_{i=1}^{n} a_{i} \in \mathcal{S} \mid a_{i} \in A, n \in \mathbb{N}\right\}$,
(ii) $\sum A B=\left\{\sum_{i=1}^{n} a_{i} b_{i} \in \mathcal{S} \mid a_{i} \in A, b_{i} \in B, n \in \mathbb{N}\right\}$,
(iii) $(A]=\{x \in \mathcal{S} \mid x \leq a$ for some $a \in A\}$.

Remark 2.2. [7] For any nonempty subsets A, B of an ordered semiring \mathcal{S}, then
(i) $A \subseteq \sum A$ and $\sum\left(\sum A\right)=\sum A$.
(ii) $A \subseteq B$ and $\sum A \subseteq \sum B$.
(iii) $A\left(\sum B\right) \subseteq\left(\sum A\right)\left(\sum B\right) \subseteq \sum A B$ and $\left(\sum A\right) B \subseteq\left(\sum A\right)\left(\sum B\right) \subseteq \sum A B$.
(iv) $\sum(A] \subseteq\left(\sum A\right]$.
(v) $A \subseteq(A]$ and $((A]]=(A]$.
(vi) If $A \subseteq B$, then $(A] \subseteq(B]$.
(vii) $A(B] \subseteq(A](B] \subseteq(A B]$ and $(A] B \subseteq(A](B] \subseteq(A B]$.

Definition 2.5. [15] Suppose that I, B and Q are nonempty subsets of a semiring $(S,+, \cdot)$. Then
(i) I is called a right (left) \mathcal{A}-ideal of S if $I S \cap I \neq \emptyset(S I \cap I \neq \emptyset)$.
(ii) I is called an \mathcal{A}-ideal of S if I is a right \mathcal{A}-ideal and left \mathcal{A}-ideal of S.
(iii) A subsemiring B of S is called a bi \mathcal{A}-ideal if $B S B \cap B \neq \emptyset$.
(iv) A subsemiring Q of S is called a quasi \mathcal{A}-ideal if $[Q S \cap S Q] \cap Q \neq \emptyset$.
(v) A subsemiring Q is called a right (left) bi quasi \mathcal{A}-ideal of S if $[Q S \cap Q S Q] \cap Q \neq \emptyset$ $([S Q \cap Q S Q] \cap Q \neq \emptyset)$.
(vi) Q is called a bi quasi \mathcal{A}-ideal of S if Q is a left bi quasi \mathcal{A}-ideal and right bi quasi \mathcal{A}-ideal of S.

Definition 2.6. [15] Suppose that I and Q are nonempty subsets of a semiring $(S,+, \cdot)$. Then
(i) I is called a right (left) tri \mathcal{A}-ideal of S if $I^{2} S I \cap I \neq \emptyset\left(I S I^{2} \cap I \neq \emptyset\right)$.
(ii) I is called a tri \mathcal{A}-ideal of S if I is a right tri \mathcal{A}-ideal and left tri \mathcal{A}-ideal of S.
(iii) Q is called a right (left) tri quasi \mathcal{A}-ideal of S if Q is a subsemiring of \mathcal{S} and $\left[Q S \cap Q^{2} S Q\right] \cap Q \neq \emptyset\left(\left[S Q \cap Q S Q^{2}\right] \cap Q \neq \emptyset\right)$.
(iv) Q is called a tri quasi \mathcal{A}-ideal of S if Q is a right tri quasi \mathcal{A}-ideal and left tri quasi \mathcal{A}-ideal of S.
3. Ordered \mathcal{A}-Ideals. Here \mathcal{S} stands for additively commutative ordered semiring and \mathscr{R} denotes non negative real numbers unless otherwise stated.

Definition 3.1. Suppose that I is a nonempty subset of an ordered semiring $(\mathcal{S},+, \cdot, \leq)$. Then I is called an ordered right (left) \mathcal{A}-ideal of \mathcal{S}, if $(I,+)$ is a subsemigroup of $(\mathcal{S},+)$, (a) I is a right (left) \mathcal{A}-ideal of \mathcal{S}.
(b) If $x \leq i$ for some $i \in I$, then $x \in I$ (i.e., $I=(I]$). Hence, I is called an ordered \mathcal{A}-ideal if I is an ordered right \mathcal{A}-ideal and ordered left \mathcal{A}-ideal of \mathcal{S}.

Lemma 3.1. Let I be a nonempty subset of \mathcal{S}. Then
(i) $\left(\sum I \mathcal{S}\right]$ is an ordered right \mathcal{A}-ideal of \mathcal{S}.
(ii) $\left(\sum \mathcal{S} I\right]$ is an ordered left \mathcal{A}-ideal of \mathcal{S}.
(iii) $\left(\sum \mathcal{S} I \mathcal{S}\right]$ is an ordered \mathcal{A}-ideal of \mathcal{S}.

Proof: Let $x, y \in\left(\sum I \mathcal{S}\right]$. Then, $x \leq x^{\prime}, y \leq y^{\prime}$ for some $x^{\prime}, y^{\prime} \in \sum I \mathcal{S}$. Clearly, $x+y \leq x^{\prime}+y^{\prime}$ and $x^{\prime}+y^{\prime} \in \sum I \mathcal{S}$ implies that $x+y \in\left(\sum I \mathcal{S}\right]$. Now, $\left(\sum I \mathcal{S}\right] \mathcal{S} \cap\left(\sum I \mathcal{S}\right]$ $\subseteq\left(\sum I \mathcal{S S}\right] \cap\left(\sum I \mathcal{S}\right] \subseteq\left(\sum I \mathcal{S}\right] \cap\left(\sum I \mathcal{S}\right] \neq \emptyset$. Also, $\left(\left(\sum I \mathcal{S}\right]\right]=\left(\sum I \mathcal{S}\right]$. Hence, $\left(\sum I \mathcal{S}\right]$ is an ordered right \mathcal{A}-ideal of \mathcal{S}. It is similar to prove (ii) and (iii).
Definition 3.2. Suppose that B and Q are nonempty subsets of \mathcal{S}. Then
(1) B is called an ordered bi \mathcal{A}-ideal if $(B,+)$ is a subsemigroup of $(\mathcal{S},+), B \mathcal{S} B \cap B \neq \emptyset$ and $B=(B]$. It is equivalent to $\left(\sum B \mathcal{S} B\right] \cap B \neq \emptyset$.
(2) Q is called an ordered quasi \mathcal{A}-ideal if $(Q,+)$ is a subsemigroup of $(\mathcal{S},+),\left[\left(\sum Q \mathcal{S}\right] \cap\right.$ $\left.\left(\sum \mathcal{S} Q\right]\right] \cap Q \neq \emptyset$ and $Q=(Q]$.

Definition 3.3. Suppose that Q is a nonempty subset of \mathcal{S}. Then
(1) Q is called an ordered right (left) bi quasi ideal of \mathcal{S} if $(Q,+)$ is a subsemigroup of
$(\mathcal{S},+),\left(\sum Q \mathcal{S}\right] \cap\left(\sum Q \mathcal{S} Q\right] \subseteq Q\left(\left(\sum \mathcal{S} Q\right] \cap\left(\sum Q \mathcal{S} Q\right] \subseteq Q\right)$ and $Q=(Q]$.
(2) Q is called an ordered bi quasi ideal of \mathcal{S} if Q is an ordered right bi quasi ideal and ordered left bi quasi ideal of \mathcal{S}.

Definition 3.4. Suppose that Q is a nonempty subset of \mathcal{S}. Then
(1) Q is called an ordered right (left) bi quasi \mathcal{A}-ideal of \mathcal{S} if $(Q,+)$ is a subsemigroup of $(\mathcal{S},+),\left[\left(\sum Q \mathcal{S}\right] \cap\left(\sum Q \mathcal{S} Q\right]\right] \cap Q \neq \emptyset\left(\left[\left(\sum \mathcal{S} Q\right] \cap\left(\sum Q \mathcal{S} Q\right]\right] \cap Q \neq \emptyset\right)$ and $Q=(Q]$.
(2) Q is called an ordered bi quasi \mathcal{A}-ideal of \mathcal{S} if Q is an ordered left bi quasi \mathcal{A}-ideal and ordered right bi quasi \mathcal{A}-ideal of \mathcal{S}.
Theorem 3.1. Every ordered ideal (bi ideal, quasi ideal) is an ordered \mathcal{A}-ideal (bi \mathcal{A}-ideal, quasi \mathcal{A}-ideal).

Proof: Suppose that I is an ordered ideal of \mathcal{S}. Now, $\left(\sum I \mathcal{S}\right] \cap I \subseteq I \cap I \neq \emptyset$ and ($\left.\sum \mathcal{S} I\right] \cap I \subseteq I \cap I \neq \emptyset$. Hence, I is an ordered \mathcal{A}-ideal of \mathcal{S}.

Converse of Theorem 3.1 may not be true by the following counter example.
Example 3.1. Consider the semiring $\mathcal{S}_{1}=\left\{s_{1}, s_{2}, s_{3}, s_{4}, s_{5}, s_{6}\right\}$ with the following compositions:

+	s_{1}	s_{2}	s_{3}	s_{4}	s_{5}	s_{6}
s_{1}	s_{1}	s_{2}	s_{3}	s_{4}	s_{5}	s_{6}
s_{2}	s_{2}	s_{2}	s_{3}	s_{4}	s_{5}	s_{6}
s_{3}	s_{3}	s_{3}	s_{3}	s_{6}	s_{5}	s_{6}
s_{4}	s_{4}	s_{4}	s_{6}	s_{4}	s_{5}	s_{6}
s_{5}						
s_{6}	s_{6}	s_{6}	s_{6}	s_{6}	s_{5}	s_{6}

\cdot	s_{1}	s_{2}	s_{3}	s_{4}	s_{5}	s_{6}
s_{1}						
s_{2}	s_{1}	s_{2}	s_{3}	s_{2}	s_{3}	s_{3}
s_{3}	s_{1}	s_{2}	s_{3}	s_{2}	s_{3}	s_{3}
s_{4}	s_{1}	s_{4}	s_{5}	s_{4}	s_{5}	s_{5}
s_{5}	s_{1}	s_{4}	s_{5}	s_{4}	s_{5}	s_{5}
s_{6}	s_{1}	s_{4}	s_{5}	s_{4}	s_{5}	s_{5}

Define a binary relation \leq on \mathcal{S}_{1} by $\leq:=\left\{(x, x) \mid x \in \mathcal{S}_{1}\right\}$. Then $\left(\mathcal{S}_{1},+, \cdot, \leq\right)$ is an additively commutative ordered semiring. (i) Let $I=\left\{s_{1}, s_{2}\right\}, I+I \subseteq I$ and $I=(I]$. Clearly, I is an ordered \mathcal{A}-ideal of \mathcal{S}_{1} but I is not an ordered ideal of \mathcal{S}_{1} by $\left(\sum I \mathcal{S}_{1}\right]=\left\{s_{1}, s_{2}, s_{3}\right\} \nsubseteq I$ and $\left(\sum \mathcal{S}_{1} I\right]=\left\{s_{1}, s_{2}, s_{4}\right\} \nsubseteq I$. (ii) Let $Q=\left\{s_{2}, s_{3}\right\}, Q+Q \subseteq Q$ and $Q=(Q]$. Clearly, Q is an ordered quasi \mathcal{A}-ideal of \mathcal{S}_{1} by $\left[\left(\sum Q \mathcal{S}_{1}\right] \cap\left(\sum \mathcal{S}_{1} Q\right]\right] \cap Q=\left[\left\{s_{1}, s_{2}, s_{3}\right\} \cap \mathcal{S}_{1}\right] \cap\left\{s_{2}, s_{3}\right\}=Q \neq$ \emptyset. However, Q is not an ordered quasi ideal of \mathcal{S}_{1} by $\left(\sum Q \mathcal{S}_{1}\right] \cap\left(\sum \mathcal{S}_{1} Q\right]=\left\{s_{1}, s_{2}, s_{3}\right\} \nsubseteq$ Q. (iii) Let $B=\left\{s_{4}, s_{5}\right\}, B+B \subseteq B$ and $B=(B]$. Clearly, B is an ordered bi \mathcal{A}-ideal of \mathcal{S}_{1} by $\left(\sum \mathcal{S}_{1} B\right] \cap B=\left\{s_{1}, s_{4}, s_{5}\right\} \cap\left\{s_{4}, s_{5}\right\}=B \neq \emptyset$. However, B is not an ordered bi ideal of \mathcal{S}_{1} by $\left(\sum B \mathcal{S}_{1} B\right]=\left\{s_{1}, s_{4}, s_{5}\right\} \nsubseteq B$.
Example 3.2. Let $\mathcal{S}_{2}=\left\{\left.\left(\begin{array}{cccccc}0 & a_{1} & a_{2} & a_{3} & a_{4} & a_{5} \\ 0 & 0 & a_{6} & a_{7} & a_{8} & a_{9} \\ 0 & 0 & 0 & a_{10} & a_{1} \\ 0 & 0 & 0 & 0 & a_{12} \\ 0 & 0 & 0 & 0 & a_{1} & a_{14} \\ 0 & 0 & 0 & 0 & 0 & a_{15}\end{array}\right) \right\rvert\, a_{i}^{\prime s} \in \mathscr{R}\right\}$ be an ordered semiring under the ordinary multiplication of real numbers with partial ordered relation \leq. Now, we define partial order relation \leq on \mathcal{S}_{2}, for any $A, B \in \mathcal{S}_{2}, A \leq_{S_{2}} B$ if and only if $a_{i j} \leq_{N} b_{i j}$, for all i and j. Then it is easy to verify that \mathcal{S}_{2} is an ordered semiring under usual multiplication of matrices over real numbers \mathscr{R} with partial order relation \leq. Clearly, $B=\left\{\left.\left(\begin{array}{cccccc}0 & b_{1} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & b_{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & b_{3} \\ 0 & 0 & 0 & 0 & 0\end{array}\right) \right\rvert\, b_{i}^{\prime s} \in \mathscr{R}\right\}$ is an ordered bi \mathcal{A}-ideal of \mathcal{S}_{2}, but B is not an ordered bi ideal of \mathcal{S}_{2} by $\left(\sum B \mathcal{S}_{2} B\right]=\left\{\left.\left(\begin{array}{cccccc}0 & 0 & c_{1} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & c_{2} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right) \right\rvert\, c_{i}^{\prime s} \in \mathscr{R}\right\} \nsubseteq B$.
Theorem 3.2. Every ordered quasi ideal (bi ideal) is an ordered bi quasi ideal.
Proof: Suppose that Q is an ordered quasi ideal of \mathcal{S}. Now, $\left(\sum Q \mathcal{S}\right] \cap\left(\sum Q \mathcal{S} Q\right] \subseteq$ $\left(\sum Q \mathcal{S}\right] \cap\left(\sum \mathcal{S S} Q\right] \subseteq\left(\sum Q \mathcal{S}\right] \cap\left(\sum \mathcal{S} Q\right] \subseteq Q$ and $\left(\sum \mathcal{S} Q\right] \cap\left(\sum Q \mathcal{S} Q\right] \subseteq\left(\sum Q \mathcal{S}\right] \cap$ $\left(\sum \mathcal{S} Q\right] \subseteq Q$. Hence, Q is an ordered bi quasi ideal of \mathcal{S}.

Converse of Theorem 3.2 may not be true by the following example.
Example 3.3. In Example 3.2, \mathcal{S}_{2} is not regular by $a=\left(\begin{array}{ccccc}0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right) \in \mathcal{S}_{2}$ there is no

$\left(\sum Q \mathcal{S}_{2} Q\right]=\left\{\left.\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & u_{1} \\ 0 & 0 & 0 & 0 & u_{2} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right) \right\rvert\, u_{i}^{\prime s} \in \mathscr{R}\right\} \subseteq Q, \left.\left(\sum Q \mathcal{S}_{2}\right] \cap\left(\sum Q \mathcal{S}_{2} Q\right]=\left\{\begin{array}{cccccc}0 & 0 & 0 & 0 & v_{1} \\ 0 & 0 & 0 & 0 & 0 & v_{2} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right) \right\rvert\,$
$\left.v_{i}^{\prime s} \in \mathscr{R}\right\} \subseteq Q$. Hence, Q is an ordered bi quasi ideal but Q is not an ordered quasi ideal of \mathcal{S}_{2} by $\left(\sum Q \mathcal{S}_{2}\right] \cap\left(\sum \mathcal{S}_{2} Q\right]=\left\{\left.\left(\begin{array}{ccccc}0 & 0 & 0 & w_{1} & w_{2} \\ 0 & 0 & 0 & 0 & w_{3} \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right) \right\rvert\, w_{i}^{\prime s} \in \mathscr{R}\right\} \notin Q$.
Corollary 3.1. Every ordered bi quasi \mathcal{A}-ideal is an ordered quasi \mathcal{A}-ideal.
Proof: Suppose that Q is an ordered bi quasi \mathcal{A}-ideal of \mathcal{S}. Now, $\emptyset \neq\left[\left(\sum Q \mathcal{S}\right] \cap\right.$ $\left(\sum Q \mathcal{S} Q\right] \cap Q \subseteq\left(\sum Q \mathcal{S}\right] \cap Q$ and $\emptyset \neq\left[\left(\sum Q \mathcal{S}\right] \cap\left(\sum Q \mathcal{S} Q\right]\right] \cap Q \subseteq\left(\sum Q \mathcal{S} Q\right] \cap Q \subseteq$ $\left(\sum \mathcal{S S} Q\right] \cap Q \subseteq\left(\sum \mathcal{S} Q\right] \cap Q$. Thus, $\emptyset \neq\left[\left(\sum Q \mathcal{S}\right] \cap\left(\sum Q \mathcal{S} Q\right] \cap Q \subseteq\left[\left(\sum Q \mathcal{S}\right] \cap\left(\sum \mathcal{S} Q\right]\right]\right.$ $\cap Q$. Hence, Q is an ordered quasi \mathcal{A}-ideal of \mathcal{S}.
Converse of Corollary 3.1 is not true by the following example.
Example 3.4. The ordered semiring $\mathcal{S}_{3}=\left\{\left.\left(\begin{array}{cccc}0 & r_{1} & r_{2} & r_{3} \\ 0 & 0 & r_{4} & r_{5} \\ 0 & 0 & 0 & r_{6} \\ 0 & 0 & 0 & r_{7}\end{array}\right) \right\rvert\, r_{i}^{\prime s} \in \mathscr{R}\right\}$ is not regular. Let $Q=$ $\left\{\left.\left(\begin{array}{cccc}0 & 0 & x_{1} & 0 \\ 0 & 0 & 0 & x_{2} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & x_{3}\end{array}\right) \right\rvert\, x_{i}^{\prime s} \in \mathscr{R}\right\}$ be an ordered quasi \mathcal{A}-ideal of \mathcal{S}_{3} but Q is not an ordered bi quasi \mathcal{A}-ideal of \mathcal{S}_{3} by $\left[\left(\sum_{i=1}^{n} r_{i}^{\prime} q\right] \cap\left(\sum_{i=1}^{n} q r_{i}^{\prime \prime} q\right]\right] \cap q=\emptyset$ and $\left[\left(\sum_{i=1}^{n} q r_{i}^{\prime}\right] \cap\left(\sum_{i=1}^{n} q r_{i}{ }^{\prime \prime} q\right]\right] \cap q$ $=\emptyset$ with the $(n-1) q$ terms as zero, where $q=\left(\begin{array}{ccccc}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right) \in Q$ and $r_{i}^{\prime}=\left(\begin{array}{lll}0 & 0 & 0\end{array}\right)$ and $r_{i}{ }^{\prime \prime}=\left(\begin{array}{cccc}0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1\end{array}\right) \in \mathcal{S}_{3}$.
Theorem 3.3. Every ordered bi \mathcal{A}-ideal is an ordered quasi \mathcal{A}-ideal.
Proof: Suppose that B is an ordered bi \mathcal{A}-ideal of \mathcal{S}. Now, $\emptyset \neq\left(\sum B \mathcal{S} B\right] \cap B \subseteq$ $\left(\sum B \mathcal{S}\right] \cap B$ and $\emptyset \neq\left(\sum B \mathcal{S} B\right] \cap B \subseteq\left(\sum \mathcal{S} B\right] \cap B$. Thus, $\emptyset \neq\left(\sum B \mathcal{S} B\right] \cap B \subseteq\left[\left(\sum B \mathcal{S}\right] \cap\right.$ $\left.\left(\sum \mathcal{S} B\right]\right] \cap B$. Hence, B is an ordered quasi \mathcal{A}-ideal of \mathcal{S}.

Converse of Theorem 3.3 may not be true by the following counter example.
Example 3.5. Let $B=\left\{\left.\left(\begin{array}{cccc}0 & 0 & 0 & x_{1} \\ 0 & 0 & x_{2} & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ x_{4}\end{array}\right) \right\rvert\, x_{i}^{\prime s} \in \mathscr{R}\right\} \subseteq \mathcal{S}_{3}$ in Example 3.4. Now, $\left(\sum \mathcal{S}_{3} B\right]=$ $\left\{\left.\left(\begin{array}{llll}0 & 0 & y_{1} & y_{2} \\ 0 & 0 & 0 & y_{3} \\ 0 & 0 & 0 & y_{4} \\ 0 & 0 & 0 & y_{5}\end{array}\right) \right\rvert\, y_{i}^{\prime s} \in \mathscr{R}\right\}$ and $\left(\sum B \mathcal{S}_{3}\right]=\left\{\left.\left(\begin{array}{cccc}0 & 0 & 0 & z_{1} \\ 0 & 0 & 0 & z_{2} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & z_{3}\end{array}\right) \right\rvert\, z_{i}^{\prime s} \in \mathscr{R}\right\}$. Hence, $\left[\left(\sum B \mathcal{S}_{3}\right] \cap\left(\sum \mathcal{S}_{3} B\right]\right]$ $\cap B \neq \emptyset$. Thus, B is an ordered quasi \mathcal{A}-ideal of \mathcal{S}_{3} but B is not an ordered bi \mathcal{A}-ideal of $\mathcal{S}_{3} b y\left(\sum_{i=1}^{n} b r_{i} b\right] \cap b=\emptyset$ with the $(n-1) b$ terms as zero, where $b=\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right) \in B$ and $r^{\prime}=\left(\begin{array}{cccc}0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right) \in \mathcal{S}_{3}$.

Theorem 3.4. Every ordered quasi \mathcal{A}-ideal is an ordered \mathcal{A}-ideal.
Proof: Suppose that Q is an ordered quasi \mathcal{A}-ideal of \mathcal{S}, then $\left[\left(\sum Q \mathcal{S}\right] \cap\left(\sum \mathcal{S} Q\right]\right] \cap Q \neq$ \emptyset. Now, $\emptyset \neq\left[\left(\sum Q \mathcal{S}\right] \cap\left(\sum \mathcal{S} Q\right]\right] \cap Q \subseteq\left(\sum Q \mathcal{S}\right] \cap Q$ and $\emptyset \neq\left[\left(\sum Q \mathcal{S}\right] \cap\left(\sum \mathcal{S} Q\right]\right] \cap Q \subseteq$ $\left(\sum \mathcal{S} Q\right] \cap Q$. Hence, Q is an ordered \mathcal{A}-ideal of \mathcal{S}.

Converse of Theorem 3.4 is not true by the following example.
Example 3.6. The ordered semiring $\mathcal{S}_{4}=\left\{\left.\left(\begin{array}{cccc}0 & r_{1} & r_{2} & r_{3} \\ 0 & 0 & r_{4} \\ 0 & 0 & r_{5} \\ 0 & 0 & r_{6} & r_{0}\end{array}\right) \right\rvert\, r_{i}^{\prime s} \in \mathscr{R}\right\}$ is not regular. Let $Q=\left\{\left.\left(\begin{array}{cccc}0 & 0 & q_{1} & 0 \\ 0 & 0 & 0 & q_{2} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right) \right\rvert\, q_{i}^{\prime s} \in \mathscr{R}\right\}$ be an ordered \mathcal{A}-ideal but Q is not an ordered quasi \mathcal{A}-ideal of \mathcal{S}_{4} by $\left[\left(\sum q r_{i}^{\prime}\right] \cap\left(\sum r_{i}^{\prime \prime} q\right]\right] \cap q=\emptyset$ with some $(n-1) q_{i}^{\prime s}$ as zero, where $q=\left(\begin{array}{cccc}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right) \in Q$, $r_{i}^{\prime}=\left(\begin{array}{cccc}0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right) \in \mathcal{S}_{4}$ and $r_{i}{ }^{\prime \prime}=\left(\begin{array}{cccc}0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0\end{array}\right) \in \mathcal{S}_{4}$.
Theorem 3.5. Every ordered bi quasi ideal is an ordered bi quasi \mathcal{A}-ideal.
Proof: Suppose that Q is an ordered bi quasi ideal of \mathcal{S}, then $\left[\left(\sum Q \mathcal{S}\right] \cap\left(\sum Q \mathcal{S} Q\right]\right] \subseteq Q$ and $\left[\left(\sum \mathcal{S} Q\right] \cap\left(\sum Q \mathcal{S} Q\right]\right] \subseteq Q$. Now, $\left[\left(\sum Q \mathcal{S}\right] \cap\left(\sum Q \mathcal{S} Q\right] \cap Q \subseteq Q \cap Q \neq \emptyset\right.$ and $\left[\left(\sum \mathcal{S} Q\right] \cap\left(\sum Q \mathcal{S} Q\right]\right] \cap Q \subseteq Q \cap Q \neq \emptyset$. Hence, Q is an ordered bi quasi \mathcal{A}-ideal of \mathcal{S}.

Converse of Theorem 3.5 is not true by the example.
Example 3.7. Consider the ordered semiring $\mathcal{S}_{5}=\left\{\left.\left(\begin{array}{cccc}0 & 0 & r_{2} & r_{3} \\ 0 & 0 & r_{4} & r_{5} \\ 0 & 0 & r_{6} \\ 0 & 0 & r_{7}\end{array}\right) \right\rvert\, r_{i}^{\prime s} \in \mathscr{R}\right\}$. Let $Q=$ $\left\{\left.\left(\begin{array}{cccc}0 & 0 & x_{1} & 0 \\ 0 & 0 & x_{2} & x_{3} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_{4}\end{array}\right) \right\rvert\, x_{i}^{\prime s} \in \mathscr{R}\right\}$. Now, $\left(\sum \mathcal{S}_{5} Q\right]=\left\{\left.\left(\begin{array}{cccc}0 & 0 & y_{2} \\ 0 & 0 & y_{2} \\ 0 & 0 & y_{3} \\ 0 & 0 & y_{4} & y_{5}\end{array}\right) \right\rvert\, y_{i}^{\prime s} \in \mathscr{R}\right\}$ and $\left(\sum Q \mathcal{S}_{5}\right]=\left\{\left.\left(\begin{array}{cccc}0 & 0 & z_{1} \\ 0 & 0 & z_{1} \\ 0 & 0 & z_{2} \\ 0 & 0 & 0 & z_{3}\end{array}\right) \right\rvert\,\right.$ $\left.z_{i}^{\prime s} \in \mathscr{R}\right\}$ and $\left(\sum Q \mathcal{S}_{5} Q\right]=\left\{\left.\left(\begin{array}{cccc}0 & 0 & l_{1} \\ 0 & 0 & 0 & l_{2} \\ 0 & 0 & 0 \\ 0 & 0 & l_{3}\end{array}\right) \right\rvert\, l_{i}^{\prime s} \in \mathscr{R}\right\}$. Thus, $\left[\left(\sum \mathcal{S}_{5} Q\right] \cap\left(\sum Q \mathcal{S}_{5} Q\right]\right] \cap Q=$ $\left\{\left.\left(\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & u_{1} \\ 0 & 0 & 0 \\ 0 & 0 & u_{2}\end{array}\right) \right\rvert\, u_{i}^{\prime s} \in \mathscr{R}\right\} \neq \emptyset$ and $\left[\left(\sum Q \mathcal{S}_{5}\right] \cap\left(\sum Q \mathcal{S}_{5} Q\right]\right] \cap Q=\left\{\left.\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & v_{1} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & v_{2}\end{array}\right) \right\rvert\, v_{i}^{\prime s} \in \mathscr{R}\right\} \neq \emptyset$.
Hence, Q is an ordered bi quasi \mathcal{A}-ideal but Q is not an ordered bi quasi ideal of \mathcal{S}_{5} by $\left(\sum Q \mathcal{S}_{5}\right] \cap\left(\sum Q \mathcal{S}_{5} Q\right]=\left\{\left.\left(\begin{array}{llll}0 & 0 & x \\ 0 & 0 & x & y \\ 0 & 0 & 0 & 0 \\ 0 & 0 & z\end{array}\right) \right\rvert\, x, y, z \in \mathscr{R}\right\} \nsubseteq Q$.
Theorem 3.6. If Q is an ordered \mathcal{A}-ideal (bi \mathcal{A}-ideal, quasi \mathcal{A}-ideal, bi quasi \mathcal{A}-ideal) of \mathcal{S} and $Q \subseteq Q^{\prime} \subseteq \mathcal{S}$, then Q^{\prime} is an ordered \mathcal{A}-ideal (bi \mathcal{A}-ideal, quasi \mathcal{A}-ideal, bi quasi \mathcal{A}-ideal) of \mathcal{S}.

Proof: Suppose that Q is an ordered bi quasi \mathcal{A} ideal of \mathcal{S} with $Q \subseteq Q^{\prime} \subseteq \mathcal{S}$. Then $\emptyset \neq\left[\left(\sum Q \mathcal{S}\right] \cap\left(\sum Q \mathcal{S} Q\right]\right] \cap Q \subseteq\left[\left(\sum Q^{\prime} \mathcal{S}\right] \cap\left(\sum Q^{\prime} \mathcal{S} Q^{\prime}\right]\right] \cap Q^{\prime}$ and $\emptyset \neq\left[\left(\sum \mathcal{S} Q\right] \cap\right.$ $\left.\left(\sum Q \mathcal{S} Q\right]\right] \cap Q \subseteq\left[\left(\sum \mathcal{S} Q^{\prime}\right] \cap\left(\sum Q^{\prime} \mathcal{S} Q^{\prime}\right]\right] \cap Q^{\prime}$. Therefore, Q^{\prime} is an ordered bi quasi \mathcal{A} ideal of \mathcal{S}.

Corollary 3.2. The union of ordered \mathcal{A}-ideals (bi \mathcal{A}-ideals, quasi \mathcal{A}-ideals, bi quasi \mathcal{A} ideals) of \mathcal{S} is an ordered \mathcal{A}-ideal (bi \mathcal{A}-ideal, quasi \mathcal{A}-ideal, bi quasi \mathcal{A}-ideal) of \mathcal{S}.

Proof: Let I_{1} and I_{2} be any two ordered \mathcal{A}-ideals of \mathcal{S}. Then $I_{1} \subseteq I_{1} \cup I_{2}$, by Theorem 3.6, $I_{1} \cup I_{2}$ is an ordered \mathcal{A}-ideal of \mathcal{S}.

4. Ordered Tri \mathcal{A}-Ideals.

Definition 4.1. Suppose that I is a nonempty subset of \mathcal{S}. Then I is called an ordered right (left) tri \mathcal{A}-ideal of \mathcal{S}, if $(I,+)$ is a subsemigroup of $(\mathcal{S},+)$ and
(a) I is a right (left) tri \mathcal{A}-ideal of \mathcal{S}.
(b) If $x \leq i$ for some $i \in I$, then $x \in I$ (i.e., $I=(I]$).
I is called an ordered tri \mathcal{A}-ideal if I is an ordered right tri \mathcal{A}-ideal and ordered left tri \mathcal{A}-ideal of \mathcal{S}.

Lemma 4.1. Let I be a nonempty subset of \mathcal{S}. Then
(i) $\left(\sum I^{2} \mathcal{S} I\right]$ is an ordered right tri \mathcal{A}-ideal of \mathcal{S}.
(ii) $\left(\sum I \mathcal{S} I^{2}\right]$ is an ordered left tri \mathcal{A}-ideal of \mathcal{S}.

Proof: Let $x, y \in\left(\sum I^{2} \mathcal{S} I\right]$. Then, $x \leq x^{\prime}, y \leq y^{\prime}$ for some $x^{\prime}, y^{\prime} \in \sum I^{2} \mathcal{S} I$. Clearly, $x+y \leq x^{\prime}+y^{\prime}$ and $x^{\prime}+y^{\prime} \in \sum I^{2} \mathcal{S} I$ implies that $x+y \in\left(\sum I^{2} \mathcal{S} I\right]$. Now, $\left[\left(\left(\sum I^{2} \mathcal{S} I\right]\right)^{2} \mathcal{S}\left(\sum I^{2} \mathcal{S} I\right]\right] \cap\left(\sum I^{2} \mathcal{S} I\right] \subseteq\left(\sum I^{2} \mathcal{S} I I^{2} \mathcal{S} I \mathcal{S} I^{2} \mathcal{S} I\right] \cap\left(\sum I^{2} \mathcal{S} I\right] \subseteq\left(\sum I^{2} \mathcal{S} I\right]$ $\cap\left(\sum I^{2} \mathcal{S} I\right] \neq \emptyset$. Also, $\left(\left(\sum I^{2} \mathcal{S} I\right]\right]=\left(\sum I^{2} \mathcal{S} I\right]$. Hence, $\left(\sum I^{2} \mathcal{S} I\right]$ is an ordered right tri \mathcal{A}-ideal of \mathcal{S}. It is similar to prove (ii).

Definition 4.2. Suppose that Q is a nonempty subset of \mathcal{S}. Then
(i) Q is called an ordered right (left) tri quasi ideal of \mathcal{S} if $(Q,+)$ is a subsemigroup of $(\mathcal{S},+)$ and $\left(\sum Q \mathcal{S}\right] \cap\left(\sum Q^{2} \mathcal{S} Q\right] \subseteq Q\left(\left(\sum \mathcal{S} Q\right] \cap\left(\sum Q \mathcal{S} Q^{2}\right] \subseteq Q\right)$.
(ii) Q is called an ordered tri quasi ideal of \mathcal{S} if Q is an ordered right tri quasi ideal and ordered left tri quasi ideal of \mathcal{S}.

Definition 4.3. Suppose that Q is a nonempty subset of \mathcal{S}. Then
(i) Q is called an ordered right (left) tri quasi \mathcal{A}-ideal of \mathcal{S} if $(Q,+)$ is a subsemigroup of $(\mathcal{S},+)$ and $\left[\left(\sum Q \mathcal{S}\right] \cap\left(\sum Q^{2} \mathcal{S} Q\right]\right] \cap Q \neq \emptyset\left(\left[\left(\sum \mathcal{S} Q\right] \cap\left(\sum Q^{2} \mathcal{S} Q\right]\right] \cap Q \neq \emptyset\right)$.
(ii) Q is called an ordered tri quasi \mathcal{A}-ideal of \mathcal{S} if Q is an ordered right tri quasi \mathcal{A}-ideal and ordered left tri quasi \mathcal{A}-ideal of \mathcal{S}.
Theorem 4.1. Every ordered tri \mathcal{A}-ideal is an ordered \mathcal{A}-ideal (ordered bi \mathcal{A}-ideal).
Proof: Suppose that I is an ordered tri \mathcal{A}-ideal of \mathcal{S}, then $(I,+)$ is a subsemigroup of $(\mathcal{S},+)$ and $\left(\sum I^{2} \mathcal{S} I\right] \cap I \neq \emptyset$ and $\left(\sum I \mathcal{S} I^{2}\right] \cap I \neq \emptyset$. Now, $\emptyset \neq\left(\sum I^{2} \mathcal{S} I\right] \cap I \subseteq$ $\left(\sum I \mathcal{S S S}\right] \cap I \subseteq\left(\sum I \mathcal{S}\right] \cap I$ and $\emptyset \neq\left(\sum I \mathcal{S} I^{2}\right] \cap I \subseteq\left(\sum \mathcal{S S S} I\right] \cap I \subseteq\left(\sum \mathcal{S} I\right] \cap I$. Hence, I is an ordered \mathcal{A}-ideal of \mathcal{S}.

Converse of Theorem 4.1 may not be true by the example.
Example 4.1. Let $\mathcal{S}_{1}=\left\{\left.\left(\begin{array}{cccc}0 & r_{1} & r_{2} & r_{3} \\ 0 & 0 & r_{4} & r_{5} \\ 0 & 0 & 0 & r_{6} \\ 0 & 0 & 0 & r_{6}\end{array}\right) \right\rvert\, r_{i}^{\prime s} \in \mathscr{R}\right\}$ be an ordered semiring and not regular. Let $I=\left\{\left.\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & i_{1} & 0 \\ 0 & 0 & 0 & i_{2} \\ 0 & 0 & 0 & 0\end{array}\right) \right\rvert\, i_{i}^{\prime s} \in \mathscr{R}\right\}$. Clearly, I is an ordered \mathcal{A}-ideal of \mathcal{S}_{1} but I is not an ordered tri \mathcal{A}-ideal of \mathcal{S}_{1} by $\left(\sum_{i=1}^{n} x_{i}^{2} r_{i} x_{i}\right] \cap x=\emptyset$ and $\left(\sum_{i=1}^{n} x_{i} r_{i} x_{i}^{2}\right] \cap x=\emptyset$ with the $(n-1)$ terms of $x^{\prime s}$ and $r^{\prime s}$ as zero. This implies that $x^{2} r_{1} x \cap x=\emptyset$ and $x r_{1} x^{2} \cap x=\emptyset$, where $x=\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right) \in I$ and $r_{1}=\left(\begin{array}{ccccc}0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right) \in \mathcal{S}_{1}$.
Example 4.2. Let $\mathcal{S}_{2}=\left\{\left.\left(\begin{array}{cccccc}0 & r & r_{2} & r_{3} & r_{4} & r_{5} \\ 0 & 0 & r_{6} & r_{7} & r_{8} & r_{9} \\ 0 & 0 & 0 & r_{1} \\ 0 & 0 & 0 & r_{1} & r_{12} \\ 0 & 0 & 0 & r_{11} & r_{14} \\ 0 & 0 & 0 & 0 & r_{15}\end{array}\right) \right\rvert\, r_{i}^{\prime s} \in \mathscr{R}\right\}$ be an ordered semiring and not regular. Clearly, $B=\left\{\left.\left(\begin{array}{cccccc}0 & b_{1} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & b_{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & b_{3} \\ 0 & 0 & 0 & 0 & b_{3}\end{array}\right) \right\rvert\, b_{i}^{\prime s} \in \mathscr{R}\right\}$ is an ordered bi \mathcal{A}-ideal but B is not an ordered tri \mathcal{A}-ideal of \mathcal{S}_{2} by $\left(\sum b_{i} r_{i} b_{i}^{2}\right] \cap b=\emptyset$ and $\left(\sum b_{i}^{2} r_{i} b_{i}\right] \cap b=\emptyset$ with $(n-1)$ terms of $b^{\prime s}$ and $r^{\prime s}$ as zero. This implies that $b r b^{2} \cap b=\emptyset$ and $b^{2} r b \cap b=\emptyset$, where $b=\left(\begin{array}{ccccccc}0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0\end{array}\right) \in B$ and $r=\left(\begin{array}{cccccc}0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1\end{array}\right) \in \mathcal{S}_{2}$.
Theorem 4.2. Every ordered tri \mathcal{A}-ideal is an ordered quasi \mathcal{A}-ideal.

Proof: Suppose that Q is an ordered tri \mathcal{A}-ideal of \mathcal{S}. Now, $\emptyset \neq\left(\sum Q^{2} \mathcal{S} Q\right] \cap Q \subseteq$ $\left(\sum Q \mathcal{S S} Q\right] \cap Q \subseteq\left(\sum Q \mathcal{S}\right] \cap Q$ and $\emptyset \neq\left(\sum Q^{2} \mathcal{S} Q\right] \cap Q \subseteq\left(\sum Q \mathcal{S} Q\right] \cap Q \subseteq\left(\sum \mathcal{S} Q\right] \cap Q$. Hence, $\emptyset \neq\left(\sum Q^{2} \mathcal{S} Q\right] \cap Q \subseteq\left[\left(\sum Q \mathcal{S}\right] \cap\left(\sum \mathcal{S} Q\right]\right] \cap Q$. Similarly, $\emptyset \neq\left(\sum Q \mathcal{S} Q^{2}\right] \cap Q \subseteq$ $\left[\left(\sum Q \mathcal{S}\right] \cap\left(\sum \mathcal{S} Q\right]\right] \cap Q$. Hence, Q is an ordered quasi \mathcal{A}-ideal of \mathcal{S}.

Converse of Theorem 4.2 may not be true in the given example.
Example 4.3. Consider \mathcal{S}_{2} in Example 4.2, $Q=\left\{\left.\left(\begin{array}{ccccc}0 & 0 & 0 & q_{1} & 0 \\ 0 & 0 \\ 0 & 0 & 0 & 0 & q_{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & q_{3} \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right) \right\rvert\, q_{i}^{\prime s} \in \mathscr{R}\right\}$ is an ordered quasi \mathcal{A}-ideal but Q is not an ordered tri \mathcal{A}-ideal of \mathcal{S}_{2} by $\left(\sum q_{i}^{2} r_{i} q_{i}\right] \cap q=\emptyset$ and $\left(\sum q_{i} r_{i} q_{i}^{2}\right] \cap q=\emptyset$ with $(n-1)$ terms of $q^{\prime s}$ and $r^{\prime s}$ are zero. This implies that $q^{2} r q \cap q$

Corollary 4.1. Every ordered tri \mathcal{A}-ideal is an ordered bi quasi \mathcal{A}-ideal.
Proof: Suppose that Q is an ordered right tri \mathcal{A}-ideal of \mathcal{S}, then $\left(\sum Q^{2} \mathcal{S} Q\right] \cap Q \neq \emptyset$. Now, $\emptyset \neq\left(\sum Q^{2} \mathcal{S} Q\right] \cap Q \subseteq\left(\sum Q \mathcal{S}\right] \cap Q$ and $\emptyset \neq\left(\sum Q^{2} \mathcal{S} Q\right] \cap Q \subseteq\left(\sum Q \mathcal{S} Q\right] \cap Q$. This implies that $\emptyset \neq\left(\sum Q^{2} \mathcal{S} Q\right] \cap Q \subseteq\left[\left(\sum Q \mathcal{S}\right] \cap\left(\sum Q \mathcal{S} Q\right]\right] \cap Q$. Thus, Q is an ordered right bi quasi \mathcal{A}-ideal of \mathcal{S}. Suppose that Q is an ordered left tri \mathcal{A}-ideal of \mathcal{S}, then Q is an ordered left bi quasi \mathcal{A}-ideal of \mathcal{S}. Hence, Q is an ordered bi quasi \mathcal{A}-ideal of \mathcal{S}.

Converse of Corollary 4.1 may not be true in the given example.
Example 4.4. Let $\mathcal{S}_{3}=\left\{\left.\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ r_{1} & 0 & 0 & 0 \\ r_{2} & r_{3} & 0 & 0 \\ r_{4} & r_{5} & r_{6} & r_{7}\end{array}\right) \right\rvert\, r_{i}^{\prime s} \in \mathscr{R}\right\}$ be an ordered semiring and \mathcal{S}_{3} is not regular. Let $Q=\left\{\left.\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ q_{1} & 0 & 0 & 0 \\ 0 & q_{2} & 0 & r_{3}\end{array}\right) \right\rvert\, q_{i}^{\prime s} \in \mathscr{R}\right\}$. Now, $\left(\sum \mathcal{S}_{3} Q\right]=\left\{\left.\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ c_{1} & c_{2} & 0 & c_{3}\end{array}\right) \right\rvert\, c_{i}^{\prime s} \in \mathscr{R}\right\}$ and $\left(\sum Q \mathcal{S}_{3}\right]=\left\{\left.\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ d_{1} & d_{2} & d_{3} & d_{4}\end{array}\right) \right\rvert\, d_{i}^{\prime s} \in \mathscr{R}\right\}$ and $\left(\sum Q \mathcal{S}_{3} Q\right]=\left\{\left.\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ e_{1} & e_{2} & 0 & e_{3}\end{array}\right) \right\rvert\, e_{i}^{s,} \in \mathscr{R}\right\}$. Thus, $\left[Q \mathcal{S}_{3} \cap Q \mathcal{S}_{3} Q\right] \cap Q \neq \emptyset$ and $\left[\mathcal{S}_{3} Q \cap Q \mathcal{S}_{3} Q\right] \cap Q \neq \emptyset$. Hence, Q is an ordered bi quasi \mathcal{A}-ideal of \mathcal{S}_{3}. However, Q is not an ordered tri \mathcal{A}-ideal of \mathcal{S}_{3} by $\left(\sum_{i=1}^{n} q_{i}^{2} r_{i} q_{i}\right] \cap q=\emptyset$ and $\left(\sum_{i=1}^{n} q_{i} r_{i} q_{i}^{2}\right] \cap q=\emptyset$ with the $(n-1)$ terms of q^{s} and r^{s} as zero. This implies that $q^{2} r q \cap q=\emptyset$ and $q r q^{2} \cap q=\emptyset$, where $q=\left(\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1\end{array}\right) \in Q$ and $r=\left(\begin{array}{cccc}0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1\end{array}\right) \in \mathcal{S}_{3}$.
Theorem 4.3. Every ordered bi quasi ideal is an ordered tri quasi ideal.
Proof: Suppose that Q is an ordered bi quasi ideal of \mathcal{S}, then $\left(\sum Q \mathcal{S}\right] \cap\left(\sum Q \mathcal{S} Q\right] \subseteq Q$ and $\left(\sum \mathcal{S} Q\right] \cap\left(\sum Q \mathcal{S} Q\right] \subseteq Q$. Now, $\left(\sum \mathcal{S} Q\right] \cap\left(\sum Q \mathcal{S} Q^{2}\right] \subseteq\left(\sum \mathcal{S} Q\right] \cap\left(\sum Q \mathcal{S S} Q\right] \subseteq$ $\left(\sum \mathcal{S} Q\right] \cap\left(\sum Q \mathcal{S} Q\right] \subseteq Q$ and $\left(\sum Q \mathcal{S}\right] \cap\left(\sum Q^{2} \mathcal{S} Q\right] \subseteq\left(\sum Q \mathcal{S}\right] \cap\left(\sum Q \mathcal{S} \mathcal{S} Q\right] \subseteq\left(\sum Q \mathcal{S}\right] \cap$ $\left(\sum Q \mathcal{S} Q\right] \subseteq Q$. Hence, Q is an ordered tri quasi ideal of \mathcal{S}.

Converse of Theorem 4.3 may not be true by the following example.
Example 4.5. Consider \mathcal{S}_{3} in Example 4.4, $Q=\left\{\left.\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ a_{1} & 0 & 0 & 0 \\ 0 & 0 & 0 & a_{2}\end{array}\right) \right\rvert\, a_{i}^{\prime s} \in \mathscr{R}\right\}$. Now, $\left(\sum \mathcal{S}_{3} Q\right]$ $=\left\{\left.\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ c_{1} & 0 & 0 & c_{2}\end{array}\right) \right\rvert\, c_{i}^{c_{i}^{\prime s}} \in \mathscr{R}\right\},\left(\sum Q \mathcal{S}_{3}\right]=\left\{\left.\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ d_{1} & d_{2} & d_{3} & d_{4} \\ \hline\end{array}\right) \right\rvert\, d_{i}^{\prime s} \in \mathscr{R}\right\},\left(\sum Q \mathcal{S}_{3} Q\right]=\left\{\left.\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ e_{1} & 0 & 0 & 0 \\ 0 & e_{2}\end{array}\right) \right\rvert\,\right.$ $\left.e_{i}^{\prime s} \in \mathscr{R}\right\}$ and $\left(\sum Q \mathcal{S}_{3} Q^{2}\right]=\left\{\left.\left(\begin{array}{cccc}0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & f\end{array}\right) \right\rvert\, f \in \mathscr{R}\right\}$. Thus, $\left(\sum \mathcal{S}_{3} Q\right] \cap\left(\sum Q \mathcal{S}_{3} Q^{2}\right] \subseteq Q$. Hence, Q is an ordered left tri quasi ideal of \mathcal{S}_{3} but Q is not a left bi quasi ideal by $\left(\sum \mathcal{S}_{3} Q\right] \cap\left(\sum Q \mathcal{S}_{3} Q\right]=\left\{\left.\left(\begin{array}{ccccc}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ h_{1} & 0 & 0 & h_{3}\end{array}\right) \right\rvert\, h_{i}^{\prime s} \in \mathscr{R}\right\} \nsubseteq Q$.
Corollary 4.2. Every ordered tri quasi \mathcal{A}-ideal is an ordered bi quasi \mathcal{A}-ideal.

Proof: Suppose that Q is an ordered tri quasi \mathcal{A}-ideal of \mathcal{S}, then $\left[\left(\sum Q \mathcal{S}\right] \cap\left(\sum Q^{2} \mathcal{S} Q\right]\right]$ $\cap Q \neq \emptyset$ and $\left[\left(\sum \mathcal{S} Q\right] \cap\left(\sum Q \mathcal{S} Q^{2}\right]\right] \cap Q \neq \emptyset$. Now, $\emptyset \neq\left[\left(\sum Q \mathcal{S}\right] \cap\left(\sum Q^{2} \mathcal{S} Q\right]\right] \cap Q \subseteq$ $\left[\left(\sum Q \mathcal{S}\right] \cap\left(\sum Q \mathcal{S S} Q\right] \cap Q \subseteq\left[\left(\sum Q \mathcal{S}\right] \cap\left(\sum Q \mathcal{S} Q\right]\right] \cap Q\right.$ and $\emptyset \neq\left[\left(\sum \mathcal{S} Q\right] \cap\left(\sum Q \mathcal{S} Q^{2}\right]\right] \cap$ $Q \subseteq\left[\left(\sum \mathcal{S} Q\right] \cap\left(\sum Q \mathcal{S S} Q\right]\right] \cap Q \subseteq\left[\left(\sum \mathcal{S} Q\right] \cap\left(\sum Q \mathcal{S} Q\right]\right] \cap Q$. Hence, Q is an ordered bi quasi \mathcal{A}-ideal of \mathcal{S}.

Converse of Corollary 4.2 is not true by the following example.
Example 4.6. Consider \mathcal{S}_{3} in Example 4.4, $Q=\left\{\left.\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ a_{1} & 0 & 0 & 0 \\ a_{2} & a_{3} & 0 & a_{4}\end{array}\right) \right\rvert\, a_{i}^{\prime s} \in \mathscr{R}\right\}$ is an ordered bi quasi \mathcal{A}-ideal of \mathcal{S}_{3} but Q is not an ordered tri quasi \mathcal{A}-ideal of \mathcal{S}_{3} by $\left[\left(\sum_{i=1}^{n} r_{i}^{\prime} q_{i}\right] \cap\right.$ $\left.\left(\sum_{i=1}^{n} q_{i} r_{i}^{\prime \prime} q_{i}^{2}\right]\right] \cap q=\emptyset$ and $\left[\left(\sum q_{i} r_{i}^{\prime}\right] \cap\left(\sum q_{i}^{2} r_{i}{ }^{\prime \prime} q_{i}\right]\right] \cap q=\emptyset$ with $(n-1)$ terms of $q^{\prime s}$, $r^{\prime s}$ as zero. This implies that $\left[r^{\prime} q \cap q r^{\prime \prime} q^{2}\right] \cap q=\emptyset$ and $\left[q r^{\prime} \cap q^{2} r^{\prime \prime} q\right] \cap q=\emptyset$, where $q=$ $\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1\end{array}\right) \in Q, r^{\prime}=\left(\begin{array}{ccccc}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1\end{array}\right) \in \mathcal{S}_{3}$ and $r^{\prime \prime}=\left(\begin{array}{ccccc}0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1\end{array}\right) \in \mathcal{S}_{3}$.
Theorem 4.4. If Q is an ordered tri \mathcal{A}-ideal (tri quasi \mathcal{A}-ideal) of \mathcal{S} and $Q \subseteq Q^{\prime} \subseteq \mathcal{S}$, then Q^{\prime} is an ordered tri \mathcal{A}-ideal (tri quasi \mathcal{A}-ideal) of \mathcal{S}.

Proof: Suppose that Q is an ordered tri quasi \mathcal{A}-ideal of \mathcal{S} with $Q \subseteq Q^{\prime} \subseteq \mathcal{S}$. Then $\emptyset \neq\left[\left(\sum Q \mathcal{S}\right] \cap\left(\sum Q \mathcal{S} Q^{2}\right]\right] \cap Q \subseteq\left[\left(\sum Q^{\prime} \mathcal{S}\right] \cap\left(\sum Q^{\prime} \mathcal{S} Q^{\prime} Q^{\prime}\right]\right] \cap Q^{\prime}$ and $\emptyset \neq\left[\left(\sum \mathcal{S} Q\right] \cap\right.$ $\left.\left(\sum Q^{2} \mathcal{S} Q\right]\right] \cap Q \subseteq\left[\left(\sum \mathcal{S} Q^{\prime}\right] \cap\left(\sum Q^{\prime} Q^{\prime} \mathcal{S} Q^{\prime}\right]\right] \cap Q^{\prime}$. Therefore, Q^{\prime} is an ordered tri quasi \mathcal{A}-ideal of \mathcal{S}.

Corollary 4.3. The union of ordered tri \mathcal{A}-ideals (tri quasi \mathcal{A}-ideals) of \mathcal{S} is an ordered tri \mathcal{A}-ideal (tri quasi \mathcal{A}-ideal) of \mathcal{S}.

Proof: Let Q_{1} and Q_{2} be any two ordered tri \mathcal{A}-ideals of \mathcal{S}. Then $Q_{1} \subseteq Q_{1} \cup Q_{2}$, by Theorem 4.4, $Q_{1} \cup Q_{2}$ is an ordered tri \mathcal{A}-ideal of \mathcal{S}.
5. Conclusion. In this article, various ordered almost ideals including ordered quasi \mathcal{A} ideals, ordered bi quasi \mathcal{A}-ideals, ordered tri \mathcal{A}-ideals, and ordered tri quasi \mathcal{A}-ideals in ordered semirings, are introduced. We discussed the implications ordered ideals \Longrightarrow ordered quasi ideals \Longrightarrow ordered bi quasi ideals \Longrightarrow ordered tri quasi ideals \Longrightarrow ordered tri quasi \mathcal{A}-ideals \Longrightarrow ordered bi quasi \mathcal{A}-ideals \Longrightarrow ordered bi \mathcal{A}-ideals \Longrightarrow ordered quasi \mathcal{A}-ideals \Longrightarrow ordered \mathcal{A}-ideals. With instances given, the contrary implications are false. We plan to characterize other classes of ordered hyper semirings in the future using different hyper \mathcal{A}-ideals.

Acknowledgment. The authors would like to thank the anonymous referee who provided useful and detailed comments on a previous/earlier version of the manuscript.

REFERENCES

[1] H. S. Vandiver, Note on a simple type of algebra in which the cancellation law of addition does not hold, Bull. Am. Math. Soc., vol.40, no.12, pp.914-920, 1934.
[2] O. Steinfeld, Quasi-ideals in rings and semigroups, Semigroup Forum, vol.19, pp.371-372, 1980.
[3] M. Shabir, A. Ali and S. Batool, A note on quasi-ideals in semirings, Southeast Asian Bull. Math., vol.27, no.5, pp.923-928, 2004.
[4] C. Donges, On quasi ideals of semirings, Int. J. Math. Comput. Sci., vol.17, pp.47-58, 1994.
[5] Y. Kemprasit, Quasi-ideals and bi-ideals in semigroups and rings, Proc. of Int. Conf. Algebra Appl., pp.30-46, 2002.
[6] S. Lajos, On the bi-ideals in semigroups, Proc. of Japan Acad., vol.45, pp.710-712, 1969.
[7] P. Palakawong na Ayutthaya and B. Pibaljommee, Characterizations of ordered k-regular semirings by ordered quasi k-ideals, Quasigroups Relat. Syst., vol.25, pp.109-120, 2017.
[8] P. Palakawong na Ayutthaya and B. Pibaljommee, Characterizations of regular ordered semirings by ordered quasi-ideals, Int. J. Math. Math. Sci., pp.1-8, 2016.
[9] M. M. K. Rao, Tri-ideals of semirings, Bull. Int. Math. Virtual Inst., vol.10, no.1, pp.145-155, 2020.
[10] A. P. Gan and Y. L. Jiang, On ordered ideals in ordered semirings, J. Math. Res. Expo., vol.31, no.6, pp.989-996, 2011.
[11] D. Mandal, Fuzzy ideals and fuzzy interior ideals in ordered semirings, Fuzzy Inf. Eng., vol.6, pp.101114, 2014.
[12] O. Grosek and L. Satko, A new notion in the theory of semigroup, Semigroup Forum, vol.20, pp.233240, 1980.
[13] M. Palanikumar and K. Arulmozhi, On various ideals and its applications of bisemirings, Gedrag Organisatie Rev., vol.33, no.2, pp.522-533, 2020.
[14] M. Palanikumar and K. Arulmozhi, On various tri-ideals in ternary semirings, Bull. Int. Math. Virtual Inst., vol.11, no.1, pp.79-90, 2021.
[15] M. Palanikumar and K. Arulmozhi, On various almost ideals of semirings, Ann. Commun. Math., vol.4, no.1, pp.17-25, 2021.
[16] M. Palanikumar and K. Arulmozhi, On new ways of various ideals in ternary semigroups, Matrix Sci. Math., vol.4, no.1, pp.6-9, 2020.
[17] M. Palanikumar and K. Arulmozhi, On new approach of various ideals in ordered gamma semigroups, Gedrag Organisatie Rev., vol.33, no.2, pp.331-342, 2020.
[18] M. Palanikumar, K. Arulmozhi and A. Iampan, Multi criteria group decision making based on VIKOR and TOPSIS methods for Fermatean fuzzy soft with aggregation operators, ICIC Express Letters, vol.16, no.10, pp.1129-1138, 2022.
[19] M. Palanikumar, K. Arulmozhi, A. Iampan and K. Rangarajan, Multiple attribute decision-making based on sine trigonometric Fermatean normal fuzzy aggregation operator, International Journal of Innovative Computing, Information and Control, vol.18, no.5, pp.1431-1444, 2022.

