
ICIC Express Letters
Part B: Applications ICIC International c⃝2022 ISSN 2185-2766
Volume 13, Number 1, January 2022 pp. 81–88

A STRUCTURAL ANALYSIS BASED TEST CASE PRIORITIZATION
TECHNIQUE FOR OBJECT ORIENTED SOFTWARE

Vedpal1,∗ and Naresh Chauhan2

1Department of Computer Applications
2Department of Computer Engineering

J.C. Bose University of Science and Technology, YMCA, Faridabad
NH-2, Sector-6, Mathura Road, Faridabad 121006, Haryana, India

∗Corresponding author: ved ymca@jcboseust.ac.in; nareshchauhan19@jcboseust.ac.in

Received January 2021; accepted April 2021

Abstract. The size of test suite increases as the software evolves. Due to time, resource
and budget constraints, it is imperative to prioritize the execution of test cases so as to
increase the possibility of early detection of faults. In this paper, for prioritizing the test
cases, eight factors have been proposed. The proposed factors are determined by structural
analysis of the object oriented software. The proposed technique creates the intermediate
representation of the software. Further, by analyzing the intermediate representation,
the independent paths are identified and mapped with the test cases which execute the
independent paths. Test cases are prioritized on the basis of the coverage of the factors.
For experimental evaluation and analysis, the presented approach was applied on two
software modules showing the efficacy of the proposed approach.
Keywords: Object oriented testing, Test case prioritization, TCPOOS, Factor oriented
test case prioritization, Structural based test case prioritization

1. Introduction. Test case prioritization technique has become a very effective tech-
nique to detect the faults as earlier as possible. Prioritization of test cases can be per-
formed at various stages like potential of fault detection, statement coverage and branch
coverage. Due to large functionality of the software, there is large test suite to test the
software. It is not necessary that every test case incurs a fault. For executing all the test
cases, testing team requires more resources and time, thereby increasing the cost of the
testing. Hence, due to testing, the project may go out of budget or may get delayed. The
order of test cases also affects the process of testing and it also helps in reducing the cost
of testing of project. The cost to fix the bug in early stages incurs less cost as compared
to fixing the bug at later stages. It may be possible that earlier test cases reported the
entire bugs that are also reported by the test cases which are executed later.

In this paper, a technique for test case prioritization is presented. In the presented
approach, the software is converted to an intermediate representation which is used to
find all the independent paths of the software. The complexity of each of the independent
paths is determined by using some factors which are identified by structural analysis of the
software. These considered factors have been assigned weights which show the probability
of the factors to introduce the error in software. The more the complexity of the path,
the higher the chance of the bug to be reported by the test cases executing the corre-
sponding independent path. For experimental analysis, the approach was applied to some
Java programs. The result shows the efficacy of the proposed approach. The presented
paper has been summarized in five sections. In Section 1, the literature review has been
presented. In Section 2, discussions about the survey and considered factors have been

DOI: 10.24507/icicelb.13.01.81

81



82 VEDPAL AND N. CHAUHAN

given. Sections 3 and 4 give the proposed work and result after applying the approach
that has been presented followed by the conclusion in Section 5.

Related work. Shahid and Ibrahim [1] showed that test cases that cover more methods
have the higher probability to detect faults earlier. By using the code coverage in the test-
ing, they can be leveraged for additional gain through prioritization. Gupta and Gustafson
[2] applied the class dependency model (CDM) on object oriented programs. They an-
alyzed the CDM to determine where the faults are concentrated in the hierarchy of the
testing order of class. Panigrahi and Mall [3] presented a model based TCP which rep-
resents the objects relations. They consider the affected elements of program as well as
the elements which are indirectly tested by test case for prioritizing the test cases. They
[4] also presented a technique that is based on the analysis of dependency model of the
source program. The union of forward slicing corresponding to each change in model is
used to determine the affected nodes. The test cases are selected on the basis of covering
the affected nodes and further prioritized on the basis of weight assigned to the affected
nodes. Musa et al. [5] presented a technique based on analysis of dependency graph mod-
el and used the genetic algorithm to optimize the selected test cases. The test cases are
ordered by computing the fitness value using the previous history of fault severity. Belli et
al. [6] used unsupervised neural network and fuzzy c-means clustering algorithm to make
the preference group. They order the test case using the degree of their preference. The
preference degree is determined of each test case by computing mean of clustering of event
using the 13 attributes. Sultan et al. [7] presented a test case prioritization technique using
the dependence graph and genetic algorithm. Chen et al. [8] proposed a clustering based
adaptive random sequence technique to prioritize the test cases. They used the Moclus-
tering means, MOClustering medoids and DMClustering. Yadav and Dutta [9] have also
used the K-mean clustering approach to prioritize the test cases of the object oriented
software. Bello et al. [10] proposed cost-cognizant test case prioritization technique for
object oriented software. They used the path based integration testing to determine the
feasible execution paths and extract these paths from the java system dependency graph
using forward slicing. Mohd-Shafie et al. [11] used the selective and even-spread count-
based methods with scrutinized ordering criterion to prioritize the test cases. Rahman
and Sexsena [12] proposed a fuzzy logic based model for prioritizing the test cases. They
used system state diagram and risk information associated with the test cases.
Shram and Sehgal [13] proposed a technique to prioritize the test cases using the bat al-

gorithm. They also compared their results with the results of other algorithms like the ant
colony optimization, and greedy algorithm and found the effectiveness of the proposed ap-
proach. Afzal et al. [14] used the complexity of path to prioritize the test cases. The com-
plexity of the path is determined using the Haltead’s metric. Rehman et al. [15] used the
historical data to prioritize the dissimilar test cases. Kumar and Mathew [16] analyzed
the software to build a system dependency graph based model. The model is used to
generate the test cases and determine the state of a program can be saved or refused for
executing another test cases. The structural complexity is used to prioritize the test cases.
The complexity [17] of method is also used to prioritize the test cases. The complexity of
the method is computed by using some factors.
A critical study of above literature indicates that the researchers focus on identifying

the various factors and new technique of test case prioritization which helps to provide
quality software in minimum efforts. They used the factors like methods, and object
relations. However, it has been observed that there should be some program structure
related factors which are used to prioritize the test cases with the goals to detect the
maximum faults as earlier as possible and reliable software. In this paper, a structured
factors based test case prioritization technique for object oriented software is presented.



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.13, NO.1, 2022 83

2. Survey to Find the Weight to the Proposed Factors. All the proposed factors
have been assigned a weight on the basis of possibility of faults introduced by the fac-
tors. To verify and assign the significant weight of factors, a survey has been performed.
The conducted survey focuses on factors, which affect the testing of the software. The
participants involved in survey are the software developer, tester, tech lead, etc., having
average experience of 8 years in software industries. To examine the view of participants,
the survey questionnaire was submitted among several software developers and testers in
various software industries.

Based on the criticality of the factors, a weight is assigned to the proposed factors.
The assigned weight shows the capability of introducing the errors in the program. The
weight metrics of the proposed factors are as shown below in Table 1.

Table 1. Proposed factors and assigned weight

S. No Factor Weight
1 Class/Interface .05
2 Type casting .15
3 Exception handling .3
4 Method overriding .2
5 Native method .1
6 Nested class .05
7 Conditional statements .05
8 Number of methods .1

3. Proposed Work. The proposed approach works at three levels. At the first level,
intermediate representation of the program objected oriented control flow graph (OOCFG)
is created by analyzing the structure of the program of the graph. At the second level,
by analyzing the OOCFG graph, all the independent paths of a program are determined
and thereby test cases are selected corresponding to every independent path. Finally, at
the third level, the test cases are prioritized on the basis of coverage of factors.

3.1. Representation of the program in the intermediate form. In this section,
program is represented in the intermediate representation. For representation of program,
some symbolic notations are presented which are shown in Figure 1. The intermediate
representation shows execution flow of the program. Since the program structures of object
oriented program are different from the convectional program, here some representations
are presented which represent the features of the OOP, i.e., class, interface, method,
method overriding, nested class, exception handling, etc.

3.2. Identification of independent path. By using the representations showing in
Figure 1, the OOCFG of program is created which are further analyzed to identify all
the independent paths. After determining all the independent paths are mapped to test
cases.

3.3. Test case prioritization. Mapped test cases are prioritized on the basis of the
proposed 8 factors. The test cases are prioritized on the basis of the coverage of the
factors. Test case with the highest coverage value has the highest priority of execution as
these factors show the criticality of the test case based on coverage of factors. Thus, a test
case with the highest criticality will have the higher probability of error to be found out.

By using Table 1, these test cases are prioritized using Formula (1)

TCPW =
N∑
i=1

fvalueij ∗ fweightj (1)



84 VEDPAL AND N. CHAUHAN

where fvalue is the values of factors covered by test cases, fweight is the weight assigned
to the factor which shows the criticality of the factor, and TCPW is the calculated weight
of the test cases. On the basis of TCPW, the test cases are prioritized. The more the
complexity of the test cases, the more the probability of the error to be detected by test
cases.

Figure 1. Representation of various features

4. Result and Analysis. For evaluation and analysis of the proposed approach, it has
been verified and analyzed by applying on a case study of software. The considered case
study performs the various functionalities like to calculate the gross salary, saving, de-
duction, taxable income, and tax to be paid by the employee. To determine the efficacy
of the proposed approach, some faults have been added in the software intentionally and
compared with code coverage (CC) [1] and path complexity (PC) [14] based test case
prioritization techniques. The OOCFG of considered case study is shown in Figure 2.
After analyzing, the above graph independent paths are determined. To test the con-

sidered software, each and every independent path needs to be tested. So test cases should
be selected or designed for each independent path. All the independent paths and IDs of
test case are shown in Table 2.
After determining the independent paths and mapping the test cases corresponding to

all paths, now test cases are prioritized. Table 3 shows the factors covered by the test
cases. The test cases are prioritized on the basis of TCPW obtained by applying Formula
(1). The highest the value of TCPW of the test cases, the highest the priority of the test
case to be executed. Table 4 shows the TCPW of the all selected test cases. By using the
calculated TCPW of each test case from Table 4, the prioritized order of the test cases is
TC10, TC11, TC5, TC6, TC3, TC4, TC8, TC9, TC1, TC2, TC7.
The APFD (average percentage of faults detected) graph shown in Figure 3 shows that

the APFD value obtained from the proposed approach is better than the other similar
approaches. The result shows the efficacy of the proposed approach.



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.13, NO.1, 2022 85

Figure 2. OOCFG of considered case study

Table 2. Independent path and test corresponding to the independent paths

S. No. Independent path Test case ID
1 A, B, C TC1
2 A, L, D TC2
3 A, E, B, Ea, Eb, Ed, F TC3
4 A, E, B, Ea, Ec, Ed, F TC4
5 A, E, B, Ea, Eb, Ed, K TC5
6 A, E, B, Ea, Ec, Ed, K TC6
7 A, G TC7
8 A, H, He, Hf, Hh, I TC8
9 A, H, He, Hg, Hh, I TC9
10 A, j, H, J, Jj, Jk, Jm, M TC10
11 A, j, H, J, Jj, Jk, Jn, M TC11

The same approach was applied on software banking information system [19] that is
implemented in the C++. The APFD graph of comparison of the proposed approach,
non-prioritized approach and other existing similar approaches [1,14] is shown in Figure
4.

Table 5 shows the APFD obtained from the proposed approach and other approaches
for discussed case studies.



86 VEDPAL AND N. CHAUHAN

Table 3. Factors covered by the test cases

S. Factors to
TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9 TC10 TC11

Weight

No be covered of factors

1 No. of classes 2 2 3 3 4 4 2 2 2 3 3 .05

2
No. of nested

0 1 0 0 0 0 0 0 0 0 0 .05
classes

3 No. of methods 2 2 3 3 4 4 1 1 1 2 2 .1

4
No. of override

0 0 1 1 0 0 0 1 1 1 1 .2
methods

5
Exception

0 0 0 0 0 0 0 0 0 1 1 .3
handling

6 Type casting 1 0 1 1 1 1 0 1 1 1 1 .15

7
No. of native

0 0 0 0 0 0 0 0 0 0 0 .1
methods

8
Conditional

0 0 1 1 1 1 0 1 1 1 1 .05
statement

Table 4. Calculated value of TCPW

S. Factors to
TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9 TC10 TC11

Weight
No be covered of factors

1 No. of classes .1 .1 .15 .15 .2 .2 .1 .1 .1 .15 .15 .05

2
No. of nested

0 .05 0 0 0 0 0 0 0 0 0 .05
classes

3 No. of methods .2 .2 .3 .3 .4 .4 .1 .1 .1 .2 .2 .1

4
No. of override

0 0 .2 .2 .2 .2 0 .2 .2 .2 .2 .2
methods

5
Exception

0 0 0 0 0 0 0 0 0 .3 .3 .3
handling

6 Type casting .15 0 .15 .15 .15 .15 0 .15 .15 .15 .15 .15

7
No. of native

0 0 0 0 0 0 0 0 0 0 0 .1
methods

8
Conditional

0 0 .05 .05 .05 .05 0 .05 .05 .05 .05 .05
statement

TCPW .45 .35 .85 .85 1.0 1.0 .2 .6 .6 1.05 1.05 1

Figure 3. Comparisons between the proposed approach and other approaches

5. Conclusion. In this paper, a novel approach for test case prioritization technique is
presented. It is observed from the related work that researchers are not using structured
based factors and some researchers considered dependency model, object relation, cover-
age of method, prior information of the faults, etc. The presented approach prioritized
the test cases on the basis of eight program structure factors. The factors are identified
by structural analysis of the program. Some symbolic notations are presented in the
approach which are used to convert the source program into intermediate representation
which help to identify independent path and structured factors which pose the higher



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.13, NO.1, 2022 87

Figure 4. Comparison between the proposed approach and other approaches

Table 5. APFD results of case studies

Applied strategy
APFD results APFD results
(case study 1) (case study 2)

Non prioritized 52% 60.62%
Path complexity based approach 56% 68.9%
Code coverage based approach 58% 72.7%

Proposed approach 64% 73.9%

chance of the faults. The applicability of the factors and their assigned weights are veri-
fied by performing the survey in reputed software industries which work in various biggest
projects. Structural analysis of the source program helps to provide reliable and quality
software. The result and comparison of the proposed approach with other existing similar
approaches show the presented approach is effective to find the maximum faults as earlier
as possible, helps to reduce the testing cost, time and provides the reliable software. To
enhance the effectiveness of the proposed approach, the new factors may be added by
analyzing the industry data and applying the proposed approach on the industry project.

REFERENCES

[1] M. Shahid and S. Ibrahim, A new code based test case prioritization technique, International Journal
of Software Engineering and Its Application, vol.8, no.6, pp.31-38, 2014.

[2] P. Gupta and D. A. Gustafson, Analysis of the class dependency model for object-oriented faults,
International Journal of Advances in Engineering & Technology, 2012.

[3] C. R. Panigrahi and R. Mall, Test case prioritization for object oriented programs, SETLabs Brief-
ings, vol.9, no.4, 2011.

[4] C. R. Panigrahi and R. Mall, A heuristic-based regression test case prioritization approach for object-
oriented programs, Innovations in Systems and Software Engineering, vol.10, pp.155-163, 2014.

[5] S. Musa, A.-B. M. Sultan, A.-A. B. Abd-Ghani and S. Baharom, Software regression test case
prioritization for object-oriented programs using genetic algorithm with reduced-fitness severity,
Indian Journal of Science and Technology, vol.8, no.30, DOI: 10.17485/ijst/2015/v8i30/86661, 2015.

[6] N. Gökçe, F. Belli, M. Eminli and B. T. Dincer, Model-based test case prioritization using clus-
ter analysis: A soft-computing approach, Turkish Journal of Electrical Engineering & Computer
Sciences, vol.23, no.3, pp.623-640, DOI: 10.3906/elk-1209-109, 2015.

[7] A. B. M. Sultan, A. A. A. Ghani, S. Baharom and S. Musa, An evolutionary regression test case
prioritization based on dependence graph and genetic algorithm for object oriented programs, The
2nd International Conference on Emerging Trends in Engineering and Technology, London, UK,
2014.

[8] J. Chen, L. Zhu, T. Y. Chen, D. Towey, F.-C. Kuob, R. Huang and Y. Guo, Test case prioritization
for object-oriented software: An adaptive random sequence approach based on clustering, Journal
of Systems and Software, vol.135, pp.107-125, 2018.



88 VEDPAL AND N. CHAUHAN

[9] D. K. Yadav and S. K. Dutta, Test case prioritization using clustering approach for object oriented
software, International Journal of Information System Modeling and Design, 2019.

[10] A. Bello, A. B. M. Sultan, A. A. A. Ghani and H. Zulzalil, Evolutionary cost-cognizant test case
selection and prioritization for object-oriented programs, International Journal of Engineering and
Advanced Technology (IJEAT), vol.8, no.6S3, 2019.

[11] M. L. Mohd-Shafie, W. M. N. Wan-Kadir, M. Khatibsyarbini and M. A. Isa, Model-based test
case prioritization using selective and even-spread count-based methods with scrutinized ordering
criterion, PLoS ONE, https://doi.org/10.1371/journal.pone.0229312, 2020.

[12] W. Rahman and V. Sexsena, Fuzzy expert system based test cases prioritization from UML state
machine diagram using risk information, International Journal of Mathematical Sciences and Com-
puting, vol.3, no.1, pp.17-27, 2017.

[13] A. Shram and N. Sehgal, Enhanced test case prioritization technique using bat algorithm, Interna-
tional Journal of Advance Research, Ideas and Innovations in Technology, vol.4, no.2, 2018.

[14] T. Afzal, A. Nadeem, M. Sindhu and Q. uz Zaman, Test case prioritization based on path complexity,
International Conference on Frontiers of Information Technology (FIT), 2019.

[15] M. A. Rehman, M. A. Hasan and M. S. Siddik, Priotizing dissimilar test cases in regression testing
using historical data, International Journal of Computer Applications, Foundation of Computer
Science (FCS), vol.180, 2018.

[16] V. Kumar and S. Mathew, Test case prioritization and distributed testing of object oriented program,
Turkish Journal of Electrical Engineering & Computer Sciences, 2019.

[17] Vedpal and N. Chauhan, Test case prioritization technique for object oriented software using method
complexity, International Journal of Innovative Computing, Information and Control, vol.14, no.1,
pp.341-354, 2018.

[18] N. Chauhan, Software Testing Principles and Practices, Oxford University Press, 2010.
[19] http://cppprojectcode.blogspot.com/.


