
ICIC Express Letters
Part B: Applications ICIC International c⃝2022 ISSN 2185-2766
Volume 13, Number 1, January 2022 pp. 1–9

FEATURES ENGINEERING WITH GENERATING GENETIC
ALGORITHM FOR SOFTWARE EFFORT ESTIMATION

Lindung Parningotan Manik1,2

1Research Center for Informatics
National Research and Innovation Agency

Jl. Sangkuriang/Cisitu No. 21/154D, Bandung 40135, Indonesia

2Faculty of Information Technology
University of Nusa Mandiri

Jl. Kramat Raya No. 18, Jakarta 10450, Indonesia
lind004@lipi.go.id; lindung.lpm@nusamandiri.ac.id

Received March 2021; accepted June 2021

Abstract. In software engineering, effort estimation is the process of predicting the
most realistic amount of effort, which could be expressed in terms of person-hours or
person-months, required to develop software. The software effort estimation is a difficult
task since different factors could have different effects on the efforts in the various envi-
ronments. Thus, mining the project repositories based on historical data in an efficient
manner is a critical issue to make an accurate estimation. Machine learning algorithms
are used in this case as the solutions to predict the effort by considering the software
development factors and environments as the machine learning features. Over the years,
most of the research works in this field dealt with the attributes selection and features
weighting to improve the estimations accuracy. This paper investigates generating ge-
netic algorithm as the feature engineering approach for the software development effort
estimation. This method may select some features, and it also may create new features
from the original set of features. The experiment results show that the proposed method
makes impressive performance improvement.
Keywords: Software effort, Machine learning, Feature engineering, Genetic algorithm

1. Introduction. A software development project’s success is influenced by many fac-
tors, including executive support, user involvement in the process, team experience, clear
business objectives, and software infrastructure. Other factors are related to the project’s
timing and scope, including the minimal scope and reliable estimation [1]. The more
accurate the estimation is, the more likely the software project is to be successful. The
estimation at the early stage of software development is also very beneficial to make a
project schedule, financial budgeting, and resource management plan.

Software development effort estimation (SDEE) predicts how many resources are need-
ed to complete a project plan in terms of person-hours or person-months. To make an
accurate estimation, all software development factors and its environments must be con-
sidered, such as software physical size estimation (as expressed in the size of lines of
codes), and the functionalities or the requirements of the software (as conveyed in the
function points or use-case points).

There are various techniques, estimation models, and tools used for software estimation.
The most common approach and easy to implement is by using expert judgment [2]. In
this approach, a project estimator tends to use their expertise based on historical data
and similar projects to estimate the software effort. This method is very subjective and
lacks standardization; thus, it cannot be reusable.

DOI: 10.24507/icicelb.13.01.1

1



2 L. P. MANIK

Another approach to estimating the software effort is using algorithmic models such
as the constructive cost model (COCOMO) or the system evaluation and estimation of
resource-software estimation model [3]. The main driver of these models is the software
size estimation, usually the source of lines of code (SLOC). To estimate the SLOC, func-
tion points [4] or use-case points [5] analysis is used. Besides the physical software size,
the software effort is also computed by considering another set of cost drivers that in-
clude subjective assessment factors related to the project’s environmental and technical
complexity, such as hardware, product, project, and personnel attributes.
Recently, data mining usage with machine learning techniques has been an active re-

search area to estimate software development effort [6] in conjunction or as an alternative
to the algorithmic models. The analogy-based estimation (ABE) approach uses the un-
derlying algorithmic model principle, which characterizes the project in features. It can
be done by collecting the completed projects, then training the machine learning algo-
rithms with the historical data to predict new projects’ software effort. Various machine
learning algorithms have been applied for software effort estimation, including gradient
boosting machine and deep learning [7].
There are various obstacles encountered when using the machine learning approach to

estimate the software development effort. One of them is to find the most relevant features
that represent the resulting effort value. In addition to that, noisy features of the data set
also affect the accuracy of the estimation. Combining the machine learning algorithms
with features selection and weighting process which choose the best set of features and
give relevant weights has been proven as a better solution to improve estimation accuracy
[8]. It also reduces the complexity of a model and makes it easier to interpret.
Popular methods that are frequently used in searching for the best solution automatical-

ly using attributes selection and feature weighting are stepwise regression like forward or
backward selection and bio-inspired metaheuristic approaches such as particle swarm op-
timization [9] or genetic algorithm [10]. These techniques are classified as a wrapper-based
approach that involves training a learner during the searching process. This approach’s
primary disadvantage is that it is computationally slow, but it gives the best feature
selection and weights in terms of accuracy.
Nevertheless, the attributes selection and feature weighting only are often not enough.

Transforming original features to create new ones could provide superior performance
compared to the model developed on the original features in predicting the outcomes [11].
This paper’s major contribution is a novel feature engineering approach in the application
of software effort estimation domain. The proposed method may select features and may
also create new features from the original feature set. It is derived from the genetic
algorithm since the algorithm can find a high-quality solution in the full search within
a reasonable period of time [12]. As the main advantage of this study, the proposed
approach is designed to improve the estimator’s accuracy in existing studies. The rest
of this paper is structured as follows. In Section 2, the research methods are presented.
Meanwhile, the results and discussions are described in Section 3. Lastly, the conclusion
is given in Section 4.

2. Research Methods. Like the particle swarm optimization (PSO) algorithm, the ge-
netic algorithm (GA) is also a heuristic technique that is used to construct valuable
solutions to optimization and search problems. This heuristic starts with a group of ran-
domly generated populations, evaluates, updates the population with a new generation,
and performs a random search for the optimum. The GA imitates the natural evolution
process, reflecting the process of natural selection where the fittest individuals from a
population are chosen for reproduction to generate offspring of the next generation. A
population is a set of chromosomes or, in this context, a set of individual solutions where
each individual is composed of genes or feature vectors.



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.13, NO.1, 2022 3

To generate an optimum solution within the possible solution set, the GA uses tech-
niques inspired by natural evolution, such as selection, crossover, and mutation. In the
proposed approach, transformations of the feature vectors are performed to boost the al-
gorithm’s performance. Unlike the simple GA, the proposed method, generating genetic
algorithm (GGA), creates new features and thus may alter the individual’s length. It
is also known to be a blending process of selecting and generating attributes. Thus, a
specialized mutation technique, namely generating mutation, is introduced. The GGA
does not modify the original features until it achieves accuracy improvement by adding
or deleting (or both) features.

The pseudo-code of the GGA is shown in Algorithm 1. At the first step, an initial
population is created with a predetermined size, s. Then, the crossover operation is
performed (lines 10-15). The operation recombines the genetic information (features) of
two individuals. Then, the generating mutation operation (lines 16-23) performs one of
the followings with different probabilities:

- Add a randomly selected original attribute to the feature vector.
- Add a newly generated attribute to the feature vector. The new features are cre-
ated by applying feature generators such as basic arithmetic operations, and power
functions, to the feature vector’s random subset.

- Remove a selected attribute randomly from the feature vector.

The selection operation is performed to generate a new generation of the population
(lines 24-41). It is composed of the best individual in the current population with the
maximum fitness value and others that win the selection tournament. The searching
stops when it meets one of two criteria, either the number of generations exceeds the
agreed maximum number of generations, maxgen, or the determined maximum fitness
value, maxfit, is less than or equals to the best individual’s fitness value.

In the GA, the fitness function is used as the performance metric to evaluate how close
the solution is to the problem’s optimal solution. In this proposed method, the accuracy
of the effort estimation is selected as the fitness criterion. The accuracy is calculated
by computing the prediction error, which is the difference between actual and estimated
effort. The smaller the error, the more accurate the prediction. In this research, the
magnitude of relative error (MRE ) is chosen as the performance metric. It is the absolute
deviation of prediction from the actual value divided by the actual value.

Equation (1) computes the error where yi is the predicted value and xi is the actual
value at the ith sample. Moreover, the mean magnitude of relative error (MMRE ) is also
considered as the sample average of the MRE ’s. It is computed by Equation (2), where
n is the number of the samples, y1, y2, . . . , yn are the predicted values, and x1, x2, . . . , xn

are the actual values. Fitness value in the GA is used for optimization purposes and
must always be maximized. Since the error is better, the smaller the value is, the fitness
is computed by negating the error, shown by Equation (3). As the best solution’s error
value is zero, then the maximum fitness value, maxfit, should also be zero.

MRE =
|yi − xi|

xi

(1)

MMRE =
1

n

n∑
i=1

|yi − xi|
xi

(2)

fitness = −1×MMRE (3)

The data sets are shown in Table 1. Three machine learning algorithms are selected in
this experiment as the base regressors, that is, the regression tree (RT) using least square
as the split criterion and a maximum depth of 10, the k-nearest neighbor (KNN) using
Euclidean distance as similarity function and k of 5, and the generalized linear model
(GLM) using Gaussian family. Shuffled five-fold cross-validation is used for learning and



4 L. P. MANIK

Data: population size s, maximum fitness maxfit, maximum number of generations
maxgen, feature vector f , number of iterations i = 0, feature generator vector g
= {basic arithmetic operation, square roots, power functions, trigonometric
function, exp value, log value, signum value, absolute value, floor ceil},
tournament fraction tf = 0.25

Result: the best individual from population p
1 p← {p1, p2, . . . , ps} where pi ∈ p has feature vector of a random subset of f ;

2 maxfp ← −100;
3 foreach individual pi ∈ p do
4 maxfp ← max(fitness(pi),maxfp);

5 end

6 while i < maxgen and maxfit ≤ maxfp do
7 i← i+ 1;

8 m← 0;

9 p′ ← p;

10 while length(p′) < 1 do
11 {px, py} ← p′ random selection;

12 remove {px, py} from p′;

13 crossover(px, py);

14 insert(px, py) into p;

15 end

16 foreach individual pi ∈ p do
17 p′i ← pi;

18 add an original feature randomly to p′i;

19 gi ← g random selection;

20 generate features mutation by applying gi to a random subset of features vector

of p′i;

21 remove features randomly from p′i;

22 insert p′i into p;

23 end

24 foreach j ← 0: length(p) do
25 if fitness(pj) > maxfp then
26 maxfp ← fitness(pj);

27 m← j;

28 end

29 end

30 newgen ← {pm};
31 ts← length(p)× tf ;

32 while length(newgen) < s do
33 winner ← ∅;
34 foreach k ← 0 : ts do
35 challenger ← p random selection;

36 if fitness(challenger) > fitness(winner) then
37 winner ← challenger;

38 insert winner into newgen;

39 end

40 end

41 end

42 p← newgen;

43 end

44 return p1
Algorithm 1: Generating genetic algorithm



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.13, NO.1, 2022 5

Table 1. Data sets

No Dataset Records Features Effort (unit of measures)
1 Albrecht [13] 24 8 Person-hours
2 China [14] 499 19 Person-hours
3 Cocomo81 [15] 63 17 Person-months
4 Deshernais [16] 81 12 Person-hours
5 Finnish [17] 38 9 Person-hours
6 Kemerer [18] 15 8 Person-months
7 Kitchenham [19] 145 10 Person-hours
8 Maxwell [20] 62 27 Person-hours
9 Miyazaki94 [21] 48 9 Person-months
10 NASA60 [22] 60 17 Person-months
11 NASA93 [23] 93 24 Person-months
12 SDR [24] 12 25 Person-months

testing data. Finally, a null hypothesis significance testing is used to compare the models
with a predetermined significant level. It is a test designed to determine if two related
treatments are statistically significantly different. A null hypothesis proposes that there
is no significant difference between the models.

3. Results and Discussions. In this experiment, the PSO algorithm is compared with
the proposed features engineering method. The comparison is performed with the pro-
posed GGA without generating mutation (GGA1) and with generating mutation (GGA2).
All features along with their weight that was greater than zero were utilized by the machine
learning algorithms. In all experiments, the maximum number of generations, maxgen, is
limited to 30, and the value of the initial population size, s, is set to 5.

At first, the experiments on 12 data sets are conducted using the base regressors to
estimate the effort label in the data sets. Not all attributes in the data sets are used as
machine learning features since some do not exist in the early software development stage.
For instance, attributes of “duration” and “productivity” can be only obtained after the
development process. Thus, these attributes are not included in the base features. The
number of initial features is shown in Table 2 in the ‘Base’ column. The table also reports
the number of used features in the other columns as the results of experimenting with
the implementation of the PSO, the GGA1, and the GGA2 using the base regressors.
Meanwhile, the number in the brackets represents the number of generated features that
are utilized by the GGA2. From the results, it can be highlighted that the GGA-based
models utilized fewer features than the PSO-based models. It indicates that the models
generated by the GGA were simpler than the PSO.

The relative errors of implementing the different approaches using the RT, the KNN,
and the GLM as the base regressors are shown in Table 3 where the lowest error for each
data set is boldly printed. On average, the base performance of the KNN was better
than the RT and the GLM. This result is also confirmed by [25] which states the KNN
is the most suitable single technique after the support vector regressor (SVR). It might
be due to the KNN’s simplicity that makes no assumption with the correlations (linear
relationship) between the features and the label. Surprisingly, the GLM has the worst
performance out of the RT and the KNN even though it is supported by [26] which reports
that linear models like neural networks and simple linear regression perform much worse
than other learners. If the hyperparameters of the GLM learning algorithm were tuned
during the experiments, the model’s performance could be better.

Moreover, on average, the attributes selection and features weighting using the PSO
increased the base performance by 20% for the RT, 22% for the KNN, and only 2% for



6 L. P. MANIK

Table 2. The number of used features in the RT, the KNN, and the GLM
as base regressors

No Data set Base
RT + RT + RT + KNN + KNN + KNN + GLM + GLM + GLM +
PSO GGA1 GGA2 PSO GGA1 GGA2 PSO GGA1 GGA2

1 Albrecht 7 2 2 2 (1) 5 2 2 (1) 6 3 2 (6)
2 China 6 5 1 1 (1) 4 3 3 (3) 6 3 3 (4)
3 Cocomo81 16 12 7 5 (2) 5 9 7 (3) 9 13 9 (5)
4 Deshernais 8 5 2 2 (4) 6 4 2 (2) 3 2 1 (2)
5 Finnish 4 3 1 1 (2) 3 1 2 (4) 2 1 1 (5)
6 Kemerer 5 5 1 1 (2) 4 2 1 (1) 4 2 2 (5)
7 Kitchenham 3 2 1 1 (5) 3 2 2 (4) 1 1 1 (4)
8 Maxwell 24 13 3 6 (1) 17 1 2 (3) 19 2 2 (0)
9 Miyazaki94 7 3 2 1 (3) 3 1 1 (3) 7 1 1 (0)
10 NASA60 16 11 3 2 (1) 15 12 1 (2) 10 5 2 (2)
11 NASA93 22 14 3 1 (1) 16 6 1 (2) 18 8 1 (1)
12 SDR 23 20 8 1 (2) 12 9 1 (2) 13 4 1 (5)

Average 67% 25% 36% 69% 40% 41% 69% 34% 42%

Table 3. The relative errors using the RT, the KNN, and the GLM as base regressors

RT KNN GLM
Data set Base PSO GGA1 GGA2 Base PSO GGA1 GGA2 Base PSO GGA1 GGA2

Albrecht 1.025 0.754 0.754 0.754 0.859 0.740 0.816 0.845 1.411 1.406 1.784 1.165
China 2.075 1.913 1.683 1.649 1.780 1.478 1.581 1.555 3.025 3.025 3.390 3.154

Cocomo81 1.789 1.302 1.072 1.132 1.920 1.234 1.919 1.909 18.18 18.17 18.20 18.04
Deshernais 0.762 0.667 0.699 0.684 0.685 0.682 0.657 0.639 1.216 0.957 0.999 0.909
Finnish 1.005 0.937 1.114 0.881 1.114 0.939 1.114 1.065 2.640 2.639 2.639 2.636
Kemerer 1.692 1.692 1.692 0.558 1.052 0.872 0.896 0.881 1.496 1.495 1.568 1.210

Kitchenham 2.011 2.001 2.033 1.020 0.901 0.805 0.901 0.831 2.095 1.917 1.917 1.599
Maxwell 0.762 0.511 0.615 0.597 0.615 0.509 0.608 0.570 2.021 2.021 1.948 1.837

Miyazaki94 2.472 1.524 1.499 1.066 1.001 0.513 0.520 0.463 2.103 2.103 1.196 1.410
NASA60 0.518 0.455 0.445 0.467 0.442 0.363 0.456 0.430 5.036 4.954 5.001 0.715
NASA93 1.425 1.361 1.221 0.826 1.460 0.952 1.175 1.329 7.150 6.948 7.158 2.243
SDR 1.751 0.705 0.670 0.670 0.571 0.571 0.571 0.537 1.409 1.263 1.041 0.730

Average 1.441 1.152 1.125 0.859 1.033 0.805 0.935 0.921 3.982 3.908 3.904 2.970

the GLM. On the other hand, the GGA1 was no better than the PSO since it improved
the base regressors’ performance by 22% for the RT, only 9% for the KNN, and 2% for
the GLM on average. Nevertheless, the features engineering with the proposed method,
the GGA2, made a further improvement on the base performance by 40% for the RT,
11% for the KNN, and 25% for the GLM on average.
With fewer features, the performance of GGA1 is comparable to the PSO using the RT

and the GLM as the base regressors. However, the performance of GGA2 is superior to the
PSO for those regressors. On the other hand, the PSO makes impressive improvements
using the KNN regressor. It might be due to proper weights assigned by the PSO to the
KNN. It is supported by [27], which states that the PSO with the ABE method like the
KNN leads to a high-performance model.
Since the distribution of the variance between the means of relative errors cannot be

considered to be normally distributed, the paired two-tailed Wilcoxon signed-rank test
is chosen as a non-parametric statistical hypothesis test [28] to compare the model’s
performance by computing the pvalue. It is the likelihood of achieving test outcomes at
least as extreme as the results currently obtained, assuming that the null hypothesis is
correct [29]. A low pvalue indicates that such an unusual observed result will be improbable
under the null hypothesis. If the value is greater than the predetermined significance level
of 0.05, then the null hypothesis cannot be rejected.



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.13, NO.1, 2022 7

The results of pvalue for each approach using the RT, the KNN, and the GLM as the
base regressors are shown in Tables 4, 5, and 6, respectively. As can be inferred from the
test results, the PSO implementation and the proposed method, GGA2, have significant
differences with all base regressors. It means that the PSO and the GGA2 make an
impressive performance improvement in estimating the software effort.

Furthermore, there are insignificant differences between the PSO and the GGA1 using
the RT and the GLM as the base regressors. As can be seen from Tables 4 and 6, the pvalue
amounted 0.50926 and 0.54186 respectively. This result confirms [30] that a simple genetic
algorithm does not have a significant distinction with the PSO when used as a feature
selection method. Nevertheless, the PSO elevates the performance essentially when used
as feature selection and weighting for the KNN regressor since it has notable differences
with all approaches. As also can be seen from Table 5, there is no significant distinction
between GGA1 and GGA2 for the KNN since the pvalue is greater than 0.05. Moreover,
from Table 6, it can be seen that GGA1 failed to improve the GLM base performance since
the pvalue is much higher than 0.05. However, the proposed method, GGA2, produces a
further gain on the performance since it has notable differences, even with the PSO, using
the RT and the GLM as the base regressors.

Table 4. Significant test results using the RT as the base regressor

RT RT + PSO RT + GGA1 RT + GGA2
RT 0.00338 (sig.) 0.01278 (sig.) 0.00222 (sig.)

RT + PSO 0.00338 (sig.) 0.50926 (not sig.) 0.02642 (sig.)
RT + GGA1 0.01278 (sig.) 0.50926 (not sig.) 0.04660 (sig.)
RT + GGA2 0.00222 (sig.) 0.02642 (sig.) 0.04660 (sig.)

Table 5. Significant test results using the KNN as the base regressor

KNN KNN + PSO KNN + GGA1 KNN + GGA2
KNN 0.00338 (sig.) 0.02780 (sig.) 0.00222 (sig.)

KNN + PSO 0.00338 (sig.) 0.00758 (sig.) 0.03400 (sig.)
KNN + GGA1 0.02780 (sig.) 0.00758 (sig.) 0.09894 (not sig.)
KNN + GGA2 0.00222 (sig.) 0.03400 (sig.) 0.09894 (not sig.)

Table 6. Significant test results using the GLM as the base regressor

GLM GLM + PSO GLM + GGA1 GLM + GGA2
GLM 0.00512 (sig.) 0.47770 (not sig.) 0.00374 (sig.)

GLM + PSO 0.00512 (sig.) 0.54186 (not sig.) 0.00480 (sig.)
GLM + GGA1 0.47770 (not sig.) 0.54186 (not sig.) 0.00758 (sig.)
GLM + GGA2 0.00374 (sig.) 0.00480 (sig.) 0.00758 (sig.)

4. Conclusions. A novel feature engineering approach for software effort estimation is
proposed in this paper. The proposed method is applied to selecting features and generat-
ing new features from the original feature subset. The algorithm is employed to deal with
the noise attributes problem and improve the estimation accuracy. A comparative study
of the implementation of the proposed approach and the particle swarm optimization as
the state-of-the-art using three machine learning algorithms applied to 12 data sets with
the context of estimating software development effort was conducted.

The experimental results show that the proposed method made an impressive prediction
improvement to the base performances. Furthermore, it achieved the lowest relative error



8 L. P. MANIK

with fewer features using the regression tree and the generalized linear model as the base
regressors. On the other hand, the particle swarm optimization approach obtained the
highest accuracy using the k-nearest neighbor regressor.
From the comparison results, it also can be concluded that there is no significant diff-

erence between the particle swarm optimization and the generating genetic algorithm
without generating mutation when utilized as feature selection using the regression tree
and the generalized linear model as the base regressors. However, the last-mentioned
method tends to utilize fewer features. Moreover, with generating mutation, the algorithm
makes a further significant difference. Blending feature selection with generating new
features works better than combining the feature selection and weighting in this case.
More research will be conducted for investigating and benchmarking the metaheuristic
methods to optimize the hyperparameters of the machine learning algorithms.

Acknowledgment. The computation in this work has been done using the facilities
of HPC LIPI, the Indonesian Institute of Sciences (LIPI). The authors also gratefully
acknowledge the helpful comments and suggestions of the reviewers, which have improved
the presentation.

REFERENCES

[1] S. K. Sehra, Y. S. Brar, N. Kaur and S. S. Sehra, Research patterns and trends in software effort
estimation, Information and Software Technology, vol.91, pp.1-21, 2017.

[2] Y. Mahmood, N. Kama and A. Azmi, A systematic review of studies on use case points and expert-
based estimation of software development effort, Journal of Software: Evolution and Process, vol.32,
no.7, 2020.

[3] K. E. Rao and G. A. Rao, Ensemble learning with recursive feature elimination integrated software
effort estimation: A novel approach, Evolutionary Intelligence, vol.14, no.1, pp.151-162, 2020.

[4] J. F. Vijay, Enrichment of accurate software effort estimation using fuzzy-based function point
analysis in business data analytics, Neural Computing and Applications, vol.31, no.5, pp.1633-1639,
2019.

[5] M. Azzeh, A. B. Nassif and S. Banitaan, Comparative analysis of soft computing techniques for
predicting software effort based use case points, IET Software, vol.12, no.1, pp.19-29, 2018.

[6] P. Jodpimai, P. Sophatsathit and C. Lursinsap, Re-estimating software effort using prior phase
efforts and data mining techniques, Innovations in Systems and Software Engineering, vol.14, no.3,
pp.209-228, 2018.

[7] P. Phannachitta and K. Matsumoto, Model-based software effort estimation – A robust comparison
of 14 algorithms widely used in the data science community, International Journal of Innovative
Computing, Information and Control, vol.15, no.2, pp.569-589, 2019.

[8] A. K. Bardsiri and S. M. Hashemi, Machine learning methods with feature selection approach to
estimate software services development effort, International Journal of Services Sciences, vol.6, no.1,
pp.26-37, 2017.

[9] E. El-Kenawy and M. Eid, Hybrid gray wolf and particle swarm optimization for feature selection,
International Journal of Innovative Computing, Information and Control, vol.16, no.3, pp.831-844,
2020.

[10] J. Murillo-Morera, C. Quesada-López, C. Castro-Herrera and M. Jenkins, A genetic algorithm based
framework for software effort prediction, Journal of Software Engineering Research and Development,
vol.5, no.1, p.4, 2017.

[11] S. E. Awan, M. Bennamoun, F. Sohel, F. M. Sanfilippo, B. J. Chow and G. Dwivedi, Feature selection
and transformation by machine learning reduce variable numbers and improve prediction for heart
failure readmission or death, PLoS One, vol.14, no.6, e0218760, 2019.

[12] M. Sharma and P. Kaur, A comprehensive analysis of nature-inspired meta-heuristic techniques for
feature selection problem, Archives of Computational Methods in Engineering, 2020.

[13] A. J. Albrecht and J. E. Gaffney, Software function, source lines of code, and development effort
prediction: A software science validation, IEEE Transactions on Software Engineering, vol.SE-9,
no.6, pp.639-648, 1983.

[14] J. S. Shirabad and T. J. Menzies, The PROMISE Repository of Software Engineering Databases,
School of Information Technology and Engineering, University of Ottawa, Canada, http://promise.
site.uottawa.ca/SERepository, 2005.



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.13, NO.1, 2022 9

[15] B. W. Boehm, Software engineering economics, IEEE Transactions on Software Engineering, vol.SE-
10, no.1, pp.4-21, 1984.

[16] M. Shepperd and C. Schofield, Estimating software project effort using analogies, IEEE Transactions
on Software Engineering, vol.23, no.11, pp.736-743, 1997.

[17] B. Kitchenham and K. Kansala, Inter-item correlations among function points, Proc. of the 1st
International Software Metrics Symposium, pp.11-14, 1993.

[18] C. F. Kemerer, An empirical validation of software cost estimation models, Commun. ACM, vol.30,
no.5, pp.416-429, 1987.

[19] B. Kitchenham, S. L. Pfleeger, B. McColl and S. Eagan, An empirical study of maintenance and
development estimation accuracy, Journal of Systems and Software, vol.64, no.1, pp.57-77, 2002.

[20] K. D. Maxwell, Applied Statistics for Software Managers, Prentice Hall PTR, 2002.
[21] Y. Miyazaki, M. Terakado, K. Ozaki and H. Nozaki, Robust regression for developing software

estimation models, Journal of Systems and Software, vol.27, no.1, pp.3-16, 1994.
[22] T. Menzies, D. Port, Z. Chen and J. Hihn, Validation methods for calibrating software effort models,

Proc. of the 27th International Conference on Software Engineering (ICSE2005), pp.587-595, 2005.
[23] E. Kocaguneli, T. Menzies and J. W. Keung, On the value of ensemble effort estimation, IEEE

Transactions on Software Engineering, vol.38, no.6, pp.1403-1416, 2012.
[24] L. L. Minku and X. Yao, Ensembles and locality: Insight on improving software effort estimation,

Information and Software Technology, vol.55, no.8, pp.1512-1528, 2013.
[25] M. Hosni, A. Idri, A. Abran and A. B. Nassif, On the value of parameter tuning in heterogeneous

ensembles effort estimation, Soft Computing, vol.22, no.18, pp.5977-6010, 2018.
[26] J. Keung, E. Kocaguneli and T. Menzies, Finding conclusion stability for selecting the best effort

predictor in software effort estimation, Automated Software Engineering, vol.20, no.4, pp.543-567,
2013.

[27] V. Bardsiri, D. A. Jawawi, S. M. Hashim and E. Khatibi, A PSO-based model to increase the accuracy
of software development effort estimation, Software Quality Journal, vol.21, no.3, pp.501-526, 2013.

[28] F. Wilcoxon, Individual comparisons by ranking methods, Biometrics Bulletin, vol.1, no.6, pp.80-83,
1945.

[29] R. L. Wasserstein and N. A. Lazar, The ASA statement on p-values: Context, process, and purpose,
The American Statistician, vol.70, no.2, pp.129-133, 2016.

[30] R. Wahono, N. Suryana and S. Ahmad, Metaheuristic optimization based feature selection for soft-
ware defect prediction, Journal of Software, vol.9, no.5, pp.1324-1333, 2014.


