PREDICTING STROKE, HYPERTENSION, AND DIABETES DISEASES BASED ON INDIVIDUAL CHARACTERISTICS

Ferry Vincenttius Ferdinand ${ }^{1, *}$, Johan Sebastian 1 and Friska Natalia ${ }^{2}$
${ }^{1}$ Department of Mathematics
Universitas Pelita Harapan
Tangerang, Banten 15811, Indonesia
*Corresponding author: ferry.vincenttius@uph.edu
${ }^{2}$ Department of Information Systems
Universitas Multimedia Nusantara
Scientia Boulevard, Gading Serpong, Tangerang, Banten 15811, Indonesia
friska.natalia@umn.ac.id

Received December 2020; accepted February 2021

Abstract

Health awareness has been significantly increasing nowadays. However, it is expensive and time-consuming to assess a person's health condition precisely. The purpose of this study is to predict specific diseases based on individual characteristics. This prediction can be used in the future as an alternative to determine one's health condition instead of using medical check-up. Several methods such as ARIMA (Autoregressive Integrated Moving Average), Principal Component Analysis (PCA), and regression are used to get to this study's purpose. The result, which includes demography, lifestyle behavior, economic condition, and geographic location, can predict the prevalence of stroke, hypertension, and diabetes.

Keywords: Stroke, Hypertension, Diabetes, ARIMA, PCA, Regression, GLM, Lifestyle, Geographical location, GRDP

1. Introduction. As time goes by, the world knows the danger of disease and the importance of health. WHO declared that based on Noncommunicable Diseases Country Profiles 2018, 41% of Indonesia's death is based on cardiovascular and diabetes [1]. Currently, the only way to know the health condition is through a medical check-up, which takes much time, energy, and money [2]. Therefore, much research has been conducted to predict these diseases [3]. One possible solution is making a prediction based on the easily obtained data from one's life. It is essential to determine factors considered as the significant and/or minor risk before predicting. Hopefully, one could get a clearer picture of his/her health condition without going into a medical check-up.

Nowadays, one of the most developed methods to predict these data is by using predictive analytics. The connection between the risk factors and the condition could be obtained by predictive analytics. Furthermore, big data usage greatly aids prediction accuracy [3]. It would be easier to predict using their data since it is their health and lifestyle. It also costs nothing. While in other research, machine learning was used to predict many diseases, such as cardiovascular disease risk [4]. The results indicated that the accuracy is above 80%, which can be concluded that prediction using big data is a good alternative.

In this study, a few dimensions are inspected, such as lifestyle behavior [5], demographics such as gender [6], economic [6-8], and geography [6]. From these aspects, one could get a prediction on the health condition. The health conditions that will be predicted are hypertension, stroke, and diabetes. Hypertension is a condition where a person's blood

[^0]vessels consistently have high blood pressure, which is hard to decrease. Diabetes is a chronic disease based on a high level of sugar in one's blood. Meanwhile, stroke is a disease caused by a lack of oxygen flowing into a brain and can partly stop one's brain. This is in accordance with the previous research, which states that obesity, behavior, gender, economic, and geographical location increases the risk of hypertension, cardiovascular disease, and diabetes [9-13].

This paper will describe how the prediction of diseases in Indonesia can be found based on individual characteristics, mainly using GLM. The remainder of the paper is organized as follows. Section 2 points to the problem statement, Section 3 presents the research methodology, Section 4 discusses the main results, and Section 5 makes to the conclusions.
2. Problem Statement. According to the Ministry of Health Indonesia (Kementrian Kesehatan Republik Indonesia) in 2018 shown in Figure 1, the prevalence of hypertension, stroke, and diabetes in Indonesia is 34.1% (age 18 and above), 10.9% (age 15 and above), and 10.9% (age 15 and above) respectively. While this number seems concerning, much research has also concluded that lifestyle and health conditions are related. Despite that, research for this particular field in Indonesia is still rare. Thus, this research has taken more significant dimensions to work on, such as age group, gender, economic condition, and geographic location. In effect, health conditions can be predicted with more accuracy.

Figure 1. Disease risk
Thus, it will lead to some problems in this research, such as predicting lifestyle, economic situation, and geographic location for hypertension, stroke, and diabetes. It is essential to find out which linear regression model will be used to predict these health conditions.
3. Research Methodology. Figure 2 explained how this research would be done. This research's data are lifestyle behavior, body mass index, gender, age group, stroke prevalence, hypertension prevalence, and diabetes prevalence in Indonesia for each province in the years 2007, 2013, and 2018 from RISKESDAS (Riset Kesehatan Dasar). These data were analyzed by using curve fitting to get its predicted data from 2007 to 2020. The function for curve fitting $f_{i}(x)$ to the M-th degree can be written as:

$$
\begin{equation*}
f_{i}(x)=c_{i, 1}+c_{i, 2} x+c_{i, 3} x^{2}+\cdots+c_{i, M+1} x^{M} \tag{1}
\end{equation*}
$$

with $c_{i, 1}, c_{i, 2}, \ldots, c_{i, M+1}$ as the corresponding coefficient of the i-th variable. Since GRDP (Gross Regional Domestic Product) is being collected countless time and periodically, it is analyzed using Autoregressive Integrated Moving Average (ARIMA (p, d, q)) to get its predicted data from 2007 to 2020. A time series $\left\{Y_{t}\right\}$ is said to follow ARIMA (p, d, q)

Figure 2. Flowchart
model if the d-th difference $\nabla^{d} Y_{t}=W_{i t}$ is a stationary Autoregressive Moving Average (ARMA (p, q)) [14] for the i-th province whereas the variable p shows the autoregressive number, d shows how many differences the time series needed for $W_{i, t}$ to be stationary, and q shows the error of delayed prediction on the prediction equation. The general prediction equation will be

$$
\begin{equation*}
W_{i, t}=\phi_{i, 1} W_{i, t-1}+\phi_{i, 2} W_{i, t-2}+\cdots+\phi_{i, p} W_{i, t-p}+e_{i, t}-\theta_{i, 1} e_{i, t-1}-\theta_{i, 2} e_{i, t-2}-\cdots-\theta_{i, q} e_{i, t-q} \tag{2}
\end{equation*}
$$

To identify which ARIMA model is suitable, d must be selected in the first place to create a time-series, which has a stable mean and variance.

The data for the diseases are presented as prevalence. For the province data, 34 provinces in Indonesia were put into a single variable $\left(X_{1}\right)$ by code for each province from 1 to 6 and were converted into 5 dummy variables $\left(D_{1}, D_{2}, D_{3}, D_{4}, D_{5}\right)$ so that it can fit in the regression models as binary variables. $\forall_{i} D_{i}=0$ except $D_{1}=1$ for Jawa, $D_{2}=1$ for Bali, Nusa Tenggara, and Maluku, $D_{3}=1$ for Kalimantan, $D_{4}=1$ for Sulawesi, and $D_{5}=1$ for Papua. The technique used is binary logistic regression in the Generalized Linear Model (GLM). Binary logistic regression is used since the results are binary [15]. It estimates the probability of having a characteristic given a condition. The probability of the i-th trial is denoted by

$$
\begin{equation*}
\pi_{i, j}=\operatorname{Pr}\left(Y_{i, j}=1 \mid X_{i, j}=x_{i, j}\right)=\frac{\exp \left(\beta_{i, 0}+\beta_{i, 1} x_{i, 1}+\cdots+\beta_{i, j} x_{i, j}\right)}{1+\exp \left(\beta_{i, 0}+\beta_{i, 1} x_{i, 1}+\cdots+\beta_{i, j} x_{i, j}\right)} \tag{3}
\end{equation*}
$$

whereas the variable $Y_{i, j}$ shows the response variable to determine if any characteristic wanted by this research with $Y_{i, j}=1$ if characteristic wanted by this research is shown and $Y_{i, j}=0$ if it is not shown, $x_{i, j}$ shows the j-th observation data for the i-th response variables, $\beta_{i, j}$ shows the coefficient of $x_{i, j}$. Using binary logistic regression, assumptions used are the data $Y_{i, 1}, Y_{i, 2}, \ldots, Y_{i, n}$ which are independently distributed, i.e., cases are independent, distribution of $Y_{i, j}$ is $\operatorname{Bin}\left(n_{i, j}, \pi_{i, j}\right)$, and the dependent variable does not need to be normally distributed. It also does not assume a linear relationship between the dependent variable and the independent variable, but linear relationship exists between the logit of the response and the explanatory variables and written as:

$$
\begin{equation*}
\operatorname{logit}\left(\pi_{i, j}\right)=\beta_{i, 0}+\sum_{k=1}^{j} \beta_{i, k} X_{i, k} \tag{4}
\end{equation*}
$$

Since independent variables can be some other nonlinear transformations of the original independent variables, the homogeneity of variance does not need to be satisfied; errors need to be independent but not necessary to be normally distributed; parameters being estimated using MLE (Maximum Likelihood Estimation); not more than 20% of the
expected cells counts are less than 5 in a goodness-of-fit measures; multicollinearities must not exist through VIF (Variance Inflation Factor). Suppose that a dataset contains m independent variables $\left(x_{i, 1}, x_{i, 2}, \ldots, x_{i, m}\right), V I F_{i, j}$ (predictor of $x_{i, j}$) can be calculated using the linear relationship between $x_{i, j}$ and other independent variables. VIF $F_{i, j}$ can be written as:

$$
\begin{equation*}
V I F_{i, j}=\frac{1}{\left(1-R_{i, j}^{2}\right)} \tag{5}
\end{equation*}
$$

whereas $R_{i, j}^{2}$ is the coefficient of determination of regression of $x_{i, j}$ on the other independent variables. For examining the multicollinearity problem, VIF value of 5 is used so that for every VIF value more than or equal to 5 , there exists multicollinearity [16].

If all these assumptions are met, GLM will be applied to determining its regression coefficient. Otherwise, PCA (Principal Component Analysis) will be used by creating new variables (which are the linear combinations of all the variables). The number of new variables can be determined by the last eigenvalue that has a value more than or equal to 1. However, assumptions that need to be satisfied are all the basis vectors $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ which are orthonormal and the directions with the largest variances are the most principal [17].
4. Main Results. GLM binary logistic regression is conducted for each disease separately. The general equation for predicting these disease(s):

$$
\begin{equation*}
Y_{i}=\frac{e^{\left(\beta_{i, 0}+\alpha_{i, 1} D_{i, 1}+\alpha_{i, 2} D_{i, 2}+\alpha_{i, 3} D_{i, 3}+\alpha_{i, 4} D_{i, 4}+\alpha_{i, 5} D_{i, 5}+\beta_{i, 2} X_{i, 2}+\beta_{i, 3} X_{i, 3}+\cdots+\beta_{i, 34} X_{i, 34}+\beta_{i, 35} X_{i, 35}\right)}}{1+e^{\left(\beta_{i, 0}+\alpha_{i, 1} D_{i, 1}+\alpha_{i, 2} D_{i, 2}+\alpha_{i, 3} D_{i, 3}+\alpha_{i, 4} D_{i, 4}+\alpha_{i, 5} D_{i, 5}+\beta_{i, 2} X_{i, 2}+\beta_{i, 3} X_{i, 3}+\cdots+\beta_{i, 34} X_{i, 34}+\beta_{i, 35} X_{i, 35}\right)}} \tag{6}
\end{equation*}
$$

Variable Y_{i} represents prevalence of the i th disease with $i=\{1,2,3\}$ and Y_{1} represents stroke prevalence, Y_{2} represents hypertension prevalence, and Y_{3} represents diabetes prevalence. The variables α_{1} to α_{5} and β_{0} to β_{35} are used as the coefficient. Other variables in equation are defined in Table 1.

Before using Equation (6), multicollinearity test is needed. Since the result shows GVIF (Generalized Variance Inflation Factor) and GVIF ${ }^{1 /(2 \cdot d f)}$, there will be several conditions

Table 1. Variables and its description

Variables	Description	Variables	Description	Variables	Description
$\begin{gathered} \text { Factor }\left(X_{1}\right) \text { or } \\ D_{1}, D_{2}, D_{3}, D_{4}, D_{5} \end{gathered}$	Province code	X_{13}	Proportion of tobacco consumed	X_{25}	Age 25-29
X_{2}	Proportion of not consuming fruits/vegetables each day in a week.	X_{14}	Average sum of tobacco consumed (per day)	X_{26}	Age 30-34
X_{3}	Average of fruit consumption (portion per day in a week)	X_{15}	$\begin{aligned} & \text { Proportion of inactive physical } \\ & \text { activity (no physical activity } \\ & \text { done } \geq 30 \text { minutes per day) } \\ & \hline \end{aligned}$	X_{27}	Age 35-39
X_{4}	Average of vegetable consumption (portion per day in a week)	X_{16}	Gross Regional Product (GRDP)	X_{28}	Age 40-44
X_{5}	Proportion of sweet food consumption (≥ 1 time per day)	X_{17}	Body mass classified as obesity	X_{29}	Age 45-49
X_{6}	Proportion of salty food consumption (≥ 1 time per day)	X_{18}	Body mass classified as overweight	X_{30}	Age 50-54
X_{7}	Proportion of fatty food consumption (≥ 1 time per day)	X_{19}	Body mass classified as normal	X_{31}	Age 55-59
X_{8}	Proportion of grilled food consumption (≥ 1 time per day)	X_{20}	Body mass classified as underweight	X_{32}	Age 60-64
X_{9}	Proportion of food that contains animal protein consumption (\geq 1 time per day)	X_{21}	Proportion of male	X_{33}	Age 65-69
X_{10}	Proportion of food that contains preservatives (≥ 1 time per day)	X_{22}	Proportion of female	X_{34}	Age 70-74
X_{11}	Proportion of caffeinated drinks consumption (≥ 1 time per day)	X_{23}	Age 15-19	X_{35}	Age 75+
X_{12}	Proportion of instant noodle consumption (≥ 1 time per day)	X_{24}	Age 20-24		

to convert it into VIF. GVIF can be directly used for the variables that have one degree of freedom, while others need to take the square root of GVIF ${ }^{1 /(2 \cdot d f)}$ to use it as its VIF. If VIF ≥ 5, we conclude there exists multicollinearity. Based on the result, the variable $X_{i, 17}$ to $X_{i, 20}$ and $X_{i, 23}$ to $X_{i, 35}$ give scores of VIF more than 5 , which indicates multicollinearity. Thus, we use PCA to overcome this multicollinearity. By performing PCA, 7 components are being used $\left(F A C_{1}, F A C_{2}, \ldots, F A C_{7}\right)$ that are linear combinations of the 35 variables $\left(X_{1}, X_{2}, \ldots, X_{35}\right)$ since the eigenvalue of the 8 th component and above is less than one and the total variance described by all those 7 factors already reached 83.58%. Thus, each new variable can be written as:

$$
\begin{align*}
F A C_{1}= & 0.007 X_{1}-0.017 X_{2}-0.029 X_{3}-0.009 X_{4}-0.021 X_{5}+0.034 X_{6}-0.001 X_{7} \\
& +0.043 X_{8}+0.017 X_{9}-0.047 X_{10}-0.003 X_{11}+0.011 X_{12}-0.021 X_{13} \\
& -0.001 X_{14}-0.004 X_{15}+0.048 X_{16}-0.023 X_{17}+0.018 X_{18}+0.002 X_{19} \\
& -0.007 X_{20}+0.021 X_{21}-0.024 X_{22}+0.079 X_{23}+0.079 X_{24}+0.079 X_{25} \\
& +0.077 X_{26}+0.077 X_{27}+0.078 X_{28}+0.078 X_{29}+0.077 X_{30}+0.076 X_{31} \\
& +0.075 X_{32}+0.076 X_{33}+0.075 X_{34}+0.073 X_{35} \tag{7}
\end{align*}
$$

$F A C_{2}=0.033 X_{1}+0.166 X_{2}+0.163 X_{3}-0.007 X_{4}+0.027 X_{5}-0.033 X_{6}+0.126 X_{7}$
$-0.008 X_{8}-0.0002 X_{9}+0.036 X_{10}-0.077 X_{11}-0.053 X_{12}+0.01 X_{13}$
$+0.007 X_{14}+0.022 X_{15}+0.067 X_{16}-0.082 X_{17}-0.207 X_{18}+0.166 X_{19}$
$+0.189 X_{20}-0.044 X_{21}+0.052 X_{22}-0.03 X_{23}-0.026 X_{24}-0.024 X_{25}$
$-0.016 X_{26}-0.01 X_{27}-0.09 X_{28}-0.09 X_{29}-0.04 X_{30}+0.001 X_{31}$
$+0.004 X_{32}-0.003 X_{33}-0.012 X_{34}-0.005 X_{35}$
$F A C_{3}=0.051 X_{1}+0.106 X_{2}+0.032 X_{3}-0.076 X_{4}-0.083 X_{5}-0.146 X_{6}+0.006 X_{7}$
$-0.06 X_{8}+0.011 X_{9}-0.017 X_{10}+0.058 X_{11}-0.017 X_{12}-0.025 X_{13}$
$-0.103 X_{14}+0.125 X_{15}+0.027 X_{16}+0.173 X_{17}-0.125 X_{18}-0.022 X_{19}$
$+0.042 X_{20}-0.427 X_{21}+0.435 X_{22}-0.027 X_{23}-0.021 X_{24}-0.023 X_{25}$
$-0.02 X_{26}-0.019 X_{27}-0.017 X_{28}-0.015 X_{29}-0.011 X_{30}-0.005 X_{31}$
$+0.001 X_{32}+0.004 X_{33}+0.001 X_{34}+0.003 X_{35}$
$F A C_{4}=-0.048 X_{1}+0.038 X_{2}+0.044 X_{3}-0.088 X_{4}+0.386 X_{5}+0.178 X_{6}-0.068 X_{7}$
$+0.009 X_{8}+0.317 X_{9}+0.017 X_{10}-0.140 X_{11}+0.154 X_{12}-0.101 X_{13}$
$-0.012 X_{14}+0.343 X_{15}+0.043 X_{16}+0.04 X_{17}+0.008 X_{18}-0.055 X_{19}$
$-0.008 X_{20}-0.010 X_{21}+0.004 X_{22}+0.011 X_{23}+0.007 X_{24}+0.009 X_{25}$
$+0.011 X_{26}+0.006 X_{27}-0.003 X_{28}-0.010 X_{29}-0.013 X_{30}-0.015 X_{31}$
$-0.016 X_{32}-0.020 X_{33}-0.022 X_{34}-0.024 X_{35}$
$F A C_{5}=0.404 X_{1}+0.017 X_{2}-0.105 X_{3}-0.027 X_{4}-0.246 X_{5}-0.134 X_{6}-0.001 X_{7}$
$+0.364 X_{8}+0.128 X_{9}-0.025 X_{10}+0.134 X_{11}+0.204 X_{12}-0.196 X_{13}$
$-0.086 X_{14}+0.036 X_{15}+0.027 X_{16}-0.045 X_{17}-0.067 X_{18}+0.088 X_{19}$
$+0.058 X_{20}-0.019 X_{21}+0.036 X_{22}-0.001 X_{23}+0.004 X_{24}+0.002 X_{25}$
$+0.008 X_{26}+0.019 X_{27}+0.026 X_{28}+0.025 X_{29}+0.023 X_{30}+0.025 X_{31}$
$+0.028 X_{32}+0.028 X_{33}+0.020 X_{34}+0.015 X_{35}$
$F A C_{6}=0.150 X_{1}+0.026 X_{2}+0.082 X_{3}+0.011 X_{4}-0.023 X_{5}+0.118 X_{6}+0.264 X_{7}$
$-0.108 X_{8}+0.060 X_{9}+0.598 X_{10}+0.238 X_{11}+0.161 X_{12}+0.182 X_{13}$
$-0.237 X_{14}-0.107 X_{15}+0.024 X_{16}+0.101 X_{17}-0.088 X_{18}+0.022 X_{19}$
$+0.026 X_{20}+0.014 X_{21}-0.025 X_{22}-0.050 X_{23}-0.052 X_{24}-0.046 X_{25}$

$$
\begin{align*}
& -0.027 X_{26}-0.010 X_{27}-0.011 X_{28}-0.021 X_{29}-0.028 X_{30}-0.030 X_{31} \\
& -0.029 X_{32}-0.033 X_{33}-0.044 X_{34}-0.042 X_{35} \tag{12}\\
F A C_{7}= & 0.036 X_{1}+0.131 X_{2}-0.170 X_{3}-0.585 X_{4}-0.281 X_{5}-0.017 X_{6}+0.002 X_{7} \\
& +0.026 X_{8}+0.035 X_{9}-0.017 X_{10}+0.235 X_{11}+0.200 X_{12}+0.271 X_{13} \\
& +0.231 X_{14}+0.085 X_{15}+0.068 X_{16}-0.072 X_{17}-0.038 X_{18}+0.059 X_{19} \\
& +0.054 X_{20}-0.095 X_{21}+0.064 X_{22}+0.029 X_{23}+0.011 X_{24}+0.008 X_{25} \\
& +0.018 X_{26}+0.034 X_{27}+0.033 X_{28}+0.017 X_{29}+0.003 X_{30}-0.002 X_{31} \\
& -0.004 X_{32}-0.010 X_{33}-0.029 X_{34}-0.050 X_{35} \tag{13}
\end{align*}
$$

For the next step, GLM is used to find regression equation for each disease model using new components that we got from PCA before. As the assumptions, multicollinearity and autocorrelation are checked while we omit the normality, linearity, and heteroskedasticity assumptions due to GLM's properties [18]. Based on the results and analysis, regression equation for stroke, hypertension, and diabetes model can be written respectively in Figures 3-8. As the first step, the component $F A C_{4}$ in stroke model having p-value of 0.5646 which is larger than 0.05 (using significance level of 95%). Thus, $F A C_{4}$ does not significantly affect the regression model for stroke and needs to be removed. Then GLM is conducted again and all components are significantly affecting the regression model in Figure 3 by having p-value less than 0.05 . Multicollinearity test is then conducted in Figure 6, and since all components have scores of VIF less than 5, it can be concluded that there are no multicollinearity and thus the regression model for stroke is valid. For the accuracy of the model, we calculate the Root Mean Square Error (RMSE) for the predicted value of the model with the initial data. The RMSE for the stroke regression model is 0.0067. The same procedure is also applied for the hypertension and diabetes model. For hypertension model, $F A C_{3}$ will be removed since its p-value is $0.3404(p>0.05)$. GLM is then conducted and all components are significantly affecting the regression model in Figure 4. Multicollinearity test is then conducted and shown in Figure 7. From

```
> summary(model_stroke_pca)
Ca11:
g7m(formula = Y1 ~ FAC1 + FAC2 + FAC3 + FAC5 + FAC6 + FAC7, family = quasibinomial,
    data = data_komponen)
Deviance Residuals:
\begin{tabular}{rrrrr} 
Min & 1Q & Median & 3Q & Max \\
-0.070688 & -0.012867 & 0.000108 & 0.011614 & 0.064688
\end{tabular}
Coefficients:
\begin{tabular}{lrrrrr} 
& \multicolumn{2}{c}{ Estimate } & Std. Error & t value \(\operatorname{Pr}(>|\mathrm{t}|)\) & \\
(Intercept) & -4.931874 & 0.011018 & -447.604 & \(<2 \mathrm{e}-16\) & *** \\
FAC1 & 0.050122 & 0.009689 & 5.173 & \(3.46 \mathrm{e}-07\) & ** \\
FAC2 & 0.304211 & 0.010266 & 29.633 & \(<2 \mathrm{e}-16\) & ** \\
FAC3 & 0.067529 & 0.010971 & 6.155 & \(1.65 \mathrm{e}-09\) & ** \\
FAC5 & -0.106823 & 0.011828 & -9.031 & \(<2 \mathrm{e}-16\) & ** \\
FAC6 & 0.064957 & 0.010584 & 6.137 & \(1.83 \mathrm{e}-09\) ** \\
FAC7 & 0.034289 & 0.010332 & 3.319 & 0.000977 ***
\end{tabular}
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for quasibinomial family taken to be 0.0003787214)
    Nu11 deviance: 0.58603 on 461 degrees of freedom
Residual deviance: 0.17359 on 455 degrees of freedom
AIC: NA
Number of Fisher Scoring iterations: 8
```

Figure 3. Stroke PCA model
> summary(model_hipertensi_pca)
Cal1:
g 7 m (formula $=\mathrm{Y} 2 \sim \mathrm{FAC1}+\mathrm{FAC} 2+\mathrm{FAC} 4+\mathrm{FAC} 5+\mathrm{FAC} 6+\mathrm{FAC} 7$, family = quasibinomial, data $=$ data_komponen)

Deviance Residuals:

Min	1Q	Median	3Q	Max
-0.18307	-0.05588	-0.01071	0.04221	0.16951

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|\mathrm{t}|)$
(Intercept) -2.42061 0.01168-207.221 < 2e-16 **
FAC1 $0.02373 \quad 0.01115 \quad 2.128 \quad 0.0339$ *
FAC2 $0.07508 \quad 0.01157 \quad 6.489$ 2.26e-10 ***
FAC4 $\quad-0.06944 \quad 0.01174 \quad-5.914 \quad 6.58 \mathrm{e}-09$ ***
FAC5 -0.05973 $0.01232-4.8471 .72 \mathrm{e}-06$ ***

FAC6	0.09679	0.01211	7.993	$1.09 \mathrm{e}-14$ ***

FAC7 $0.02912 \quad 0.01159 \quad 2.512 \quad 0.0124$ *

Signif. codes: 0 '***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for quasibinomial family taken to be 0.004674951)
Nu11 deviance: 2.9103 on 461 degrees of freedom Residual deviance: 2.0959 on 455 degrees of freedom AIC: NA

Number of Fisher Scoring iterations: 5

Figure 4. Hypertension PCA model

```
> summary(model_diabetes_pca)
Ca11:
g7m(formula = Y3 ~ FAC1 + FAC2 + FAC4 + FAC5 + FAC7, family = quasibinomial,
        data = data_komponen)
Deviance Residuals:
\begin{tabular}{rrrrr} 
Min & 1Q & Median & 3Q & Max \\
-0.072180 & -0.021659 & -0.003326 & 0.016140 & 0.075148
\end{tabular}
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.31979 0.01220 -354.029 < 2e-16 ***
FAC1 0.06862 0.01027 6.680 6.98e-11 ***
FAC2 0.39995 0.01150 34.777 < 2e-16 ***
FAC4 -0.08736 0.01195 -7.310 1.20e-12 ***
FAC5 -0.04095 0.01194 -3.428 0.000663 ***
FAC7 -0.02649 0.01118 -2.370 0.018210*
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'0.1 ' '1
```

(Dispersion parameter for quasibinomial family taken to be 0.0008248907)
Nu11 deviance: 1.45447 on 461 degrees of freedom
Residual deviance: 0.37001 on 456 degrees of freedom
AIC: NA
Number of Fisher Scoring iterations: 7

Figure 5. Diabetes PCA model

```
> vif(mode1_stroke_pca)
            FAC1 FAC2 FAC3 FAC5 FAC6 FAC7
1.001745 1.009276 1.017574 1.024917 1.013393 1.008200
```

Figure 6. Multicollinearity test for stroke PCA model

```
> vif(model_hipertensi_pca)
    FAC1 FAC2 FAC4 FAC5 FAC6 FAC7
1.000527 1.000805 1.001402 1.002646 1.000711 1.001263
```

Figure 7. Multicollinearity test for hypertension PCA model

```
> vif(mode1_diabetes_pca)
    FAC1 FAC2 FAC4 FAC5 FAC7
1.001446 1.018158 1.016200 1.002703 1.003239
```

Figure 8. Multicollinearity test for diabetes PCA model
Figure 7, it can be concluded that there are no multicollinearity and thus the regression model for hypertension is valid. The RMSE of the hypertension regression model is 0.02205 . For diabetes model, the components $F A C_{3}$ and $F A C_{6}$ will be removed since its p-value(s) are 0.2089 and 0.4062 which are larger than 0.05 and GLM is conducted again. Figure 5 shows that the remaining components significantly affect the regression model. Multicollinearity test is then conducted, shown in Figure 8 and it can be concluded that there is no multicollinearity and thus the regression model for diabetes is valid. The RMSE of diabetes regression model is 0.0076 . From Equations (14)-(16), we can say that $F A C_{2}$ affects the stroke and diabetes model the most with coefficient of 0.3042 and 0.4000 , respectively. While for hypertension model, $F A C_{6}$ gives the most effect with a coefficient of 0.0968 . For the stroke model, $F A C_{4}$ does not significantly affect the regression equation and thus it was discarded. The variables X_{5}, X_{9}, X_{15} took the dominant role in $F A C_{4}$ with coefficients of $0.386,0.317$, and 0.343 , respectively. This means that the proportion of sweet food consumption, food that contains animal protein consumption, and inactive physical activity does not significantly affect stroke. This result is a little bit different from the article that was written by Johnson et al., which states that physical inactivity and unhealthy diet are the risk factors of stroke [5]. There are two factors that may be the cause of this difference. First, in this research, the variable of food consumption (both sweet food and food that contains animal protein) only considers the frequency but not the amount. Second, this research is specifically based on the data of Indonesian lifestyle as it may differ from the global perspective. For the hypertension model, $F A C_{3}$ does not significantly affect the regression equation and thus it was discarded. The variables X_{21} and X_{22} have taken the dominant role in $F A C_{3}$ with coefficients of -0.427 , and 0.435 , respectively. This means that there is no significant difference about the hypertension prevalence by gender. This result is in accordance with the report from WHO which states that behavior and social determinants of health (income) are the risk factors of hypertension [19]. For the diabetes model, $F A C_{3}$ and $F A C_{6}$ do not significantly affect the regression equation and thus they were discarded. The variables X_{21} and X_{22} have taken the dominant role in $F A C_{3}$ with coefficients of -0.427 , and 0.435 respectively and the variable X_{10} has taken the dominant role in $F A C_{6}$ with coefficient of -0.598 . This means that gender and proportion of consumption of food that contains preservatives do not significantly affect diabetes. This result agrees with the global reports from WHO that states healthy diet and regular physical activities are the associated risk factors of diabetes [20]. Income level also plays a major part as the associated risk factor of diabetes.

$$
\begin{gather*}
Y_{1}=\frac{e^{\left(-4.9318+0.0501 F A C_{1}+0.3042 F A C_{2}+0.0675 F A C_{3}-0.1068 F A C_{5}+0.0650 F A C_{6}+0.0343 F A C_{7}\right)}}{1+e^{\left(-4.9318+0.0501 F A C_{1}+0.3042 F A C_{2}+0.0675 F A C_{3}-0.1068 F A C_{5}+0.0650 F A C_{6}+0.0343 F A C_{7}\right)}} \tag{14}\\
Y_{2}=\frac{e^{\left(-2.4207+0.0240 F A C_{1}+0.0751 F A C_{2}-0.0694 F A C_{4}-0.0597 F A C_{5}+0.0968 F A C_{6}+0.0291 F A C_{7}\right)}}{1+e^{\left(-2.4207+0.0240 F A C_{1}+0.0751 F A C_{2}-0.0694 F A C_{4}-0.0597 F A C_{5}+0.0968 F A C_{6}+0.0291 F A C_{7}\right)}} \tag{15}\\
Y_{3}=\frac{e^{\left(-4.3198+0.0686 F A C_{1}+0.4000 F A C_{2}-0.0874 F A C_{4}-0.0410 F A C_{5}-0.0265 F A C_{7}\right)}}{1+e^{\left(-4.3198+0.0686 A C_{1}+0.4000 F A C_{2}-0.0874 F A C_{4}-0.0410 F A C_{5}-0.0265 F A C_{7}\right)}} \tag{16}
\end{gather*}
$$

5. Conclusions. In general, it can be concluded that lifestyle behavior, economic situation, and geographical location can predict stroke, hypertension, and diabetes. Specifically, through GLM from the dimension reduction to these diseases, it is implied that the proportion of sweet food consumption, food that contains animal protein consumption, and inactive physical activity does not significantly affect stroke; there is no significant difference about the hypertension prevalence by gender; the proportion of consumption of food that contains preservatives does not significantly affect diabetes. Furthermore, methods and factors for predicting health conditions can be modified to find an alternative and hopefully better solution in future research.

Acknowledgement. The authors are grateful to the READI (Risk Management, Economic Sustainability and Actuarial Science Development in Indonesia) Project and Universitas Pelita Harapan for fully funding this research.

REFERENCES

[1] World Health Organization, Noncommunicable Diseases Country Profiles 2018, Geneva, Licence: CC BY-NC-SA 3.0 IGO, http://www.who.int/nmh/publications/ncd-profiles-2018/en/, accessed on 19 November 2020.
[2] Y. J. Kim and H. Park, Improving prediction of high-cost health care users with medical check-up data, Big Data, vol.7, no.3, DOI: 10.1089/big.2018.0096, 2019.
[3] G. Gan and E. A. Valdez, Actiarial Statistics with R: Theory and Case Studies, ACTEX Learning, New Hartford, 2018.
[4] I. B. K. Manuaba, I. Sutedja and R. Bahana, The evaluation of supervised classifier models to develop a machine learning API for predicting cardiovascular disease risk, ICIC Express Letters, vol.14, no.3, pp.219-226, 2020.
[5] W. Johnson, O. Onuma, M. Owolabi and S. Sachdev, Stroke: A global response is needed, Bulletin of the World Health Organization, vol.94, DOI: http://dx.doi.org/10.2471/BLT.16.181636, 2016.
[6] Z. Brokesova, T. Ondruska and E. Pastorakova, Economic and demographic determinants of life insurance industry development, European Financial System, pp.61-65, 2015.
[7] D. Minos, I. Butzlaff, K. M. Demmler and R. Rischke, Economic growth, climate change, and obesity, Curr. Obes. Rep., 2016.
[8] M. Masood and D. D. Reidpath, Effect of national wealth on BMI: An analysis of 206266 individuals in 70 low-, middle-, and high-income countries, PloS One, vol.12, no.6, 2017.
[9] H. Margaretha, M. Susanto, E. O. Lionel and F. V. Ferdinand, An actuarial model of stroke long term care insurance with obesity as a risk factor, AIP Conference Proceedings, 2019.
[10] W. Fan, Epidemiology in diabetes mellitus and cardiovascular disease, Cardiovascular Endocrinology, vol.6, no.1, pp.8-16, 2017.
[11] D. Glovaci, W. Fan and N. D. Wong, Epidemiology of diabetes mellitus and cardiovascular disease, Current Cardiology Reports, vol.21, no.4, 2019.
[12] X. Su and D. Peng, Emerging functions of adipokines in linking the development of obesity and cardiovascular diseases, Molecular Biology Reports, vol.47, pp.7991-8006, 2020.
[13] A. Hannah and S. Johan, Obesity, income and gender: The changing global relationship, Global Food Security, vol.23, pp.267-281, 2019.
[14] C. Brooks, Introductory Econometrics for Finance, Cambridge University Press, 2019.
[15] R. H. Myers, Generalized Linear Models: With Applications in Engineering and the Sciences, WileyBlackwell, Oxford, 2010.
[16] A. H. Studenmund and B. K. Johnson, Using Econometrics a Practical Guide, Pearson, Boston, 2016.
[17] S. Kolenikov and G. Angeles, The use of discrete data in PCA: Theory, simulations, and applications to socioeconomic indices, Carolina Population Center MEASURE Evaluation, University of North Carolina at Chapel Hill, Chapel Hill, NC, 2004.
[18] P. McCullagh and J. Nelder, Generalized Linear Models, Springer US, Chicago, 1983.
[19] WHO, A Global Brief on Hypertension, MEO Design - Communication - Web, Switzerland, 2013.
[20] WHO, Global Report on Diabetes, MEO Design \& Communication, France, 2016.

[^0]: DOI: 10.24507/icicelb.12.08.723

