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Abstract. In this study, we propose a simultaneous multi-point estimation method for
the estimation of the depths of water using the principle of distortion of measurement
in a depth image taken by a time-of-flight camera. Generally, a float or an ultrasonic
sensor is used to measure water depth, but these are not suitable for simultaneous mea-
surement at multiple points. The proposed method realizes simultaneous estimation of
the depths of water at multiple points in real time by image processing. Thus, there is
no physical interference with floats and no need to install multiple ultrasonic sensors at
each measurement target point. In this study, the effectiveness of the proposed method is
demonstrated by the results of water depth estimation experiment. The experimental re-
sults show that the proposed method can estimate almost accurate water depths at several
points simultaneously when the water depth falls within a certain range. Furthermore, we
demonstrate an actual application of the proposed method, seeing how sound and images
change when an interactive artwork is observed through water kept in the buckets on a
tabletop as a medium.
Keywords: Time-of-flight (ToF) camera, Depth image, Water depth estimation, Simul-
taneous multi-point estimation, Interactive art

1. Introduction. In recent years, many studies, based on image processing for surface
shape estimation of transparent objects such as solids and fluids and shape estimation
of objects in transparent fluids, have been actively conducted using various approaches
[1, 2, 3, 4]. Tanaka et al. [1] proposed a method for restoring the shape of a transparent
static object using the measurement distortion of a time-of-flight (ToF) camera [5]. Asano
et al. [2] realized the shape estimation of underwater objects based on Beer-Lambert’s
law by using infrared images captured at two wavelengths. Qian et al. [3] proposed a
method for estimating the surface shape of a fluid, which involved capturing images of
geometric patterns observed in the fluid using multiple cameras and performing stereo
matching. Ye et al. [4] showed that by adding an ultrasonic sensor to the ToF sensor, 3D
shapes can be obtained even in images containing transparent objects. With technological
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advances in image processing for transparent objects, further development of human-
computer interactions using the object as a medium is expected.
For example, in the field of interactive art, the method of using a transparent liquid

such as water as a medium for the viewer to touch the work is attracting attention. Koga
and Matsuo [6] proposed a work that performs adaptive image projection according to the
changing shape of puddles on a tabletop caused by the viewers’ touch. FairLift [7] is a work
that applies an optical system to displaying an aerial image underwater and on water. In
this study, the position of the projected image is adjusted after measuring the water depth
using an ultrasonic sensor. An ultrasonic sensor is a device typically used for measuring
the water level and the water depth, which is easy to operate and inexpensive. However,
when water depths are simultaneously measured at multiple points, the sensors must
be arranged at each measurement point, which complicates the configuration. Although
using floats is one of the solutions, it cannot solve the problems of physical interference
and appearance.
In this study, we propose a multi-point simultaneous measurement method of water

depths using depth images, which overcomes the aforementioned problems, and apply
it to an interactive artwork using water as a medium. For multi-point simultaneous
measurement of water depths, a ToF camera is used to obtain the depth information
of a transparent object and the resulting measurement distortion. This distortion is
caused by the difference between the refractive indices of the transparent object and
that of air. Because this measurement distortion is observed even when water is the
measurement target, the proposed method models the information of the measurement
distortion according to the water depth information obtained in advance, and performs
the simultaneous multi-point estimation of the water depth using this model. In this
study, the effectiveness of the proposed method is verified using a series of water depth
estimation experiments. Besides, we describe an application of the proposed method to an
interactive artwork that uses water in the buckets on a tabletop as a medium for changing
sounds and images.

2. Proposed Method. The system configuration for the multi-point simultaneous mea-
surement of water depth and the interactive artwork used in this study is shown in Figure
1(a). The depth information of the water in the buckets is obtained by the ToF camer-
a (Microsoft Kinect V2), which is installed facing the floor surface, as shown in Figure
1(b). Considering the Kinect V2’s sensing capability, the installation height was set to
1,000 mm from the floor. The acquired depth information is input to the workstation,

(a) (b)

Figure 1. (a) System configuration; (b) state of the measurement experiment
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which extracts the target points for measurement and estimates the water depth. Images
and sounds generated based on the estimation results are output from the projector and
speakers. In this section, a detailed explanation of the depth estimation is described.

2.1. Measurement distortion of ToF camera. The depth information sensed by the
Kinect V2 ToF camera is obtained as a depth image with a depth value for each pixel. In
the proposed method, simultaneous multi-point measurement of water depths is performed
by accounting for the measurement distortion that occurs when the depth information
of a transparent object is obtained using a ToF camera. Measurement distortion is a
phenomenon in which when a depth image is obtained using a ToF camera, a distance
longer than the actual distance to the object is measured in a region where the transparent
object exists. This is caused by the slowing down of the speed of light traveling inside the
transparent object due to the difference between the refractive indices of the transparent
object and that of air [1].

For example, in the depth image obtained under the conditions shown in Figure 1, the
area where water exists causes measurement distortion that has a depth value of 1,000
mm or more. Because the amount of distortion changes according to the water depth,
this phenomenon can be used to detect the water area and estimate the water depth.
Figure 2(a) shows a depth image of water at a depth of 20 mm in six buckets captured
with a Kinect V2 ToF camera installed at a height of 1,000 mm from the floor. It can be
seen from Figure 2(a) that the depth value measured is larger than the installation height
of 1,000 mm from 130px to 350px, which denote the coordinates where the buckets were

(a) (b)

Figure 2. Illustration of measurement distortion. In (a) and (b), the
upper parts depict the depth images and the lower graphs show the depth
value in a cross-section of each depth image. The measurement distortion
refers to the measured depth value exceeding the physically maximum depth
value (1,000 mm in this case).
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placed. Moreover, it can be confirmed that the measurement distortion is larger when the
water depth is 170 mm than when it is 20 mm as shown in Figure 2(b).
In this study, the amount of measurement distortion obtained according to the water

depth is modeled in advance, and this model is used to detect water areas in an arbitrary
input depth image and to estimate their depths.

2.2. Construction of depth estimation model. Figure 3 shows the procedure of
model construction. First, to model the amount of measurement distortion observed
according to the water depth in advance, the water depth in the buckets was changed to
0 mm, 50 mm, 100 mm, 150 mm, and 200 mm, and then 100 frames of depth images
were acquired at each water depth. The images were captured while moving the bucket
so that the bucket would appear in the entire depth image. After that, by synthesizing
each depth image, the depth images were generated as shown in Figure 3(1).

Figure 3. Procedure for creating a model for water depth estimation

The size of a depth image captured by Kinect V2 is 512 × 424 [pixels]. The 30 pixels
around the image were cropped, as shown in Figure 3(2), so that they would not be
included in the modeling data because the depth image tends to contain big random
noise. In addition, because the captured depth image contains many outliers due to
noise, these were removed using the following procedure. In the proposed method, the
depth image was divided into 8 × 8 [pixels] of windows. Then, the top 15% pixels were
trimmed in each window as outliers. From the depth values excluding outliers, the largest
value was set to be the representative value of the window. By applying this process
to all the windows in the depth image, 3,392 representative values were obtained, as
shown in Figure 3(3). Subsequently, the values that exceed a threshold were extracted
from the 3,392 representative values. The threshold value was set to 1,020 mm, which
is the installation height of Kinect V2 from the floor of 1,000 mm plus an offset of 20
mm to account for the noise captured in the depth image. The mean image of the 100
representative images was used as modeling data, as shown in Figure 3(4). In this regard,
the modeling data were acquired for each of the above-mentioned water depths.
Finally, a function-based approximation was performed for the modeling data obtained,

and estimation models were generated for each water depth, as shown in Figure 3(5). In
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this case, a quadratic function was used for the approximation. This is because it was
observed the detected depth value tends to be larger toward the center of the depth image
and smaller toward the edges. Specifically, the coefficients a and b, which minimize the
following function, were calculated for each of the five actual depth cases:

f =
X∑

x=0

Y∑
y=0

{
d(x, y)−

(
−ax2 − by2 + c

)}2
, (1)

where x and y are pixel coordinates, d(x, y) is a sensor depth value, and c is the maximum
value of depth in the modeling data.

2.3. Estimation of water depth. Using the constructed model, the water depth is
estimated for the area that exceeds the threshold (i.e., the water area) in the input depth
image. Let us consider fn(x, y) to be the n-th estimation model. Here, n is 0, 1, 2, 3,
or 4, which corresponds to a water depth of w0 = 0 mm, w1 = 50 mm, w2 = 100 mm,
w3 = 150 mm, and w4 = 200 mm. If dr(x, y) denotes a sensor depth value at (x, y), two
models f ∗

n(x, y) and f ∗
n+1(x, y) are found, which satisfy f ∗

n(x, y) < dr(x, y) < f ∗
n+1(x, y).

Using these n-th and (n + 1)-th models, corresponding depth values wn and wn+1 are
given. The final estimate value ŵ(x, y) is calculated as follows:

ŵ(x, y) =
dr(x, y)− f ∗

n(x, y)

f ∗
n+1(x, y)− f ∗

n(x, y)
× (wn+1 − wn) + wn. (2)

This procedure is applied to all the points to be estimated where water exists.

3. Experiment and Evaluation. To verify the accuracy of the proposed method for
estimating the water depth, specific results of model building and estimation under the
conditions described in Subsections 2.2 and 2.3 with the equipment installed under the
conditions described in Figure 1 and Section 2 are shown below. The results of water depth
estimation are shown in Figures 4-7. The shades of the pixels in the figures indicate the
estimated water depth values. The brighter the pixel value, the deeper the estimated
water depth. To observe the effect of change in the position in the field of view (FOV)
and the actual water depth on the estimation accuracy, we conducted the experiments
shown in the following subsections.

In the evaluation, the areas of the buckets were specified for the depth image as shown
in Figures 4-7. The mean and standard deviation of the estimated water depth were
calculated for the pixels whose depth exceeded 0 in the specified areas. This calculation
was performed for all the areas of the buckets. Specifically, the evaluation was conducted
for the following three situations.

3.1. Depth estimation at the side ends of the field of view. Figures 4(a) and 4(b)
show the estimation results when the buckets were placed on the left and right sides of
the FOV, respectively. When the buckets were placed on the left side of the FOV, the
estimation results demonstrated that the means of the estimated water depths of the
buckets No. 1 to No. 3 placed at the end were significantly different from the actual water
depth of 200 mm. By contrast, the means of the estimated water depths in the buckets
No. 4 to No. 6 placed on the center side were found to be closer to the actual water depth.
A similar tendency was observed in the estimation results when the buckets were placed
on the right side of the FOV. From these results, it was confirmed that the estimation
accuracy of the proposed method is significantly reduced at the side ends of the FOV.
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No. Mean [mm] SD [mm]

1 414.5 91.8
2 364.0 78.6
3 369.8 83.3
4 201.1 41.0
5 215.0 44.7
6 203.7 40.7

(a)

No. Mean [mm] SD [mm]

1 192.6 38.4
2 202.2 40.3
3 201.7 41.2
4 321.6 75.6
5 295.6 66.9
6 348.5 86.5

(b)

Figure 4. Depth estimation results in the left and right halves of the field
of view (Actual depth: 200 mm)

No. Mean [mm] SD [mm]

1 182.1 31.6
2 188.2 34.7
3 178.0 32.0
4 171.1 28.7
5 176.9 29.7
6 178.6 30.4

(a)

No. Mean [mm] SD [mm]

1 143.0 22.8
2 146.6 28.1
3 139.1 21.7
4 129.2 18.5
5 134.4 26.3
6 135.9 20.3

(b)

Figure 5. Depth estimation results in the center of field of view: (a) actual
depth: 170 mm; (b) actual depth: 130 mm

3.2. Water depth estimation in the center of the field of view. Following the
estimation at the side ends of the FOV, the water depth estimation results when the
buckets were placed in the center of the FOV were evaluated as follows. The evaluation
areas at water depths of 170, 130, 80, and 20 mm are shown in Figures 5(a), 5(b), 6(a),
and 6(b), respectively. It was confirmed that at water depths of 170, 130, and 80 mm,
the estimated mean values were within an error of ±35 mm from the actual water depth.
However, it was also observed that the estimation accuracy was significantly lower when
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No. Mean [mm] SD [mm]

1 93.4 10.0
2 98.7 19.4
3 94.0 10.0
4 85.2 7.8
5 93.2 17.5
6 88.6 9.3

(a)

No. Mean [mm] SD [mm]

1 78.6 2.8
2 80.5 4.2
3 78.5 1.8
4 101.3 21.8
5 84.7 20.7
6 108.4 28.5

(b)

Figure 6. Depth estimation results in the center of field of view: (a) actual
depth: 80 mm; (b) actual depth: 20 mm

No. Actual depth [mm] Mean [mm] SD [mm]

1 110 115.2 20.1
2 30 101.7 22.9
3 180 190.3 33.3

Figure 7. Results of simultaneous estimation of different water depths

the water depth was low, such as 20 mm. The reason for this is believed to be that the
amount of measurement distortion obtained from the depth image becomes less due to
the lower water depth.

3.3. Simultaneous estimation of different water depths. Figure 7 shows the esti-
mation results for three buckets with different water depths in the input frame. It can
be seen that the mean of the estimated values in each area increases in proportion to the
water depth even when the buckets with different water depths are placed. Moreover, it
was observed that the estimation was almost accurate in the areas where the buckets with
depths of 180 mm and 110 mm were placed. However, in the area where the bucket with a
water depth of 30 mm was placed, accurate estimation of the water depth was possible at
very few points. It can be assumed that many points did not exceed the threshold value
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when selecting the measurement target points because the water depth was too shallow
at those points, as we observed during the estimation at a water depth of 20 mm.
The results of the experiment established that the estimation can be performed effec-

tively when the water depth is in the range of 80 mm and 200 mm in the center of FOV.
The standard deviation tended to increase with the increase of the actual water depth.
On the other hand, the accuracy decreased when the water depth was less than 80 mm
or in the area at the side ends of the FOV.

4. Application to Interactive Art. In this study, we performed the prototyping of an
interactive art system that changes sound and video using water as a medium, as shown in
Figure 1(a). The coordinates of the buckets in the x and y directions, the estimation result
of the water depth, and the state of the fluctuation of the water surface are transmitted
to the projection image generation unit and the acoustic data generation unit, shown in
Figure 1(a) using Open Sound Control (OSC). The projected image generator generates
an image by processing the projected content, which varies according to the depth of
the area where the water is detected, as shown in Figure 8. In this system, the ToF
camera and the projector are calibrated in advance to project the generated images to
the corresponding water areas. Meanwhile, the acoustic data generation unit uses the
visual programming environment, Pure Data (Pd), to associate the data obtained from
the varying water conditions with various effects such as pitch, volume, effect, and noise,
and generates an interactive sound.

Figure 8. Screenshots of real-time water depth estimation software and
an illustration of the projected image that changes according to the states
of water (i.e., positions and depths)

After building the system, we confirmed that the viewer was able to enjoy the changes
in the video and sound in real time by changing the water condition, as shown in Figure
9.

5. Conclusions. In this study, we proposed a multi-point simultaneous estimation meth-
od of water depth using the measurement distortion of the depth image obtained by a ToF
camera and evaluated its estimation accuracy. A series of experiments were performed to
establish that the proposed method can simultaneously estimate accurate water depths
at multiple points, when the depth falls within a certain range of values. Moreover, as an
application of the proposed method, we performed art prototyping that allowed viewers
to interactively enjoy real-time variations in video and sound by changing the state of
water.
In future, we will improve the estimation accuracy and depth range by resolving the

errors that are observed at the side ends of the FOV and when the water depth is shallow.
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(a) (b)

Figure 9. Interactive art named Aqua Synthesizer created by employing
the proposed method. (a) The projected image and the generated sound
change according to the depth of the water in the buckets placed on the
table. When the viewer moves the buckets, the projected image follows,
and the sound changes. (b) By increasing the water depth in the buckets,
it is possible to change the projected image and the sound in real time.
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