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Abstract. An intelligent sensing system is mainly in assistive technology for supporting
the elderly and people with disparities. A smart optical tactile sensor plays an important
role in robot’s sense of touch. As processing system, an embedded system has fixed re-
source budget and is unsuitable for modern convolutional neural networks. However, the
performances of convolutional neural networks have improved as their structure has be-
come more complicated. This means that they incur higher computational costs and be-
come slower. We proposed a smart optical tactile sensor, called “tactile object recognition
system” in previous work. This paper extends the previous work by improving learning
ability, reducing save storage and analyzing to improve compression rate of save stor-
age. The proposed method consists of three steps: (i) shrinking CNN architecture, (ii)
knowledge transfer by knowledge distillation, and (iii) weight sharing by quantization and
K-means clustering algorithm. The performance of this method compares with shrinking,
knowledge distillation, quantization technique and soft filter pruning. The result shows
that the proposed method is able to improve the compression rate of save storage, and it
outperforms the other compression network techniques.
Keywords: Image classification, Convolutional neural network, Network compression,
Embedded systems, Tactile object recognition

1. Introduction. Nowadays, much effort has gone into developing assistive technology
for supporting the elderly and people with disabilities in their lives, such as necessity, fa-
cilitation and safety. An intelligent sensing system plays an important role in the assistive
technology to understand the surrounding environment. One of the intelligent sensing sys-
tems is a smart optical tactile sensor having its perception and manipulation. The smart
optical tactile sensor is used in robot hand as sense of touch, and it can fulfill people
without hands or replace people in dangerous jobs. The smart optical tactile sensor con-
sists of two parts: (i) optical tactile sensor and (ii) processing system. Firstly, the optical
tactile sensor makes tactile image sensors using camera and the most popular type is a
marker displacement-based sensor [1], such as a random-dot optical tactile sensor [2], full-
resolution optical tactile sensor [3] and soft optical tactile sensors [4]. The optical tactile
sensors are used to recognize shape, texture and force. Secondly, the processing system is
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the smart optical tactile sensor’s brain. As an embedded system is small and budget, it is
the most popular processing system. The embedded system has a fixed resource budget
being low memory and small processors, while modern recognition system becomes ex-
pensive computational cost. As deep learning has become a powerful tool for recognition,
one of the modern recognition systems is convolutional neural network (CNN). A high
performant CNN usually becomes complicated architecture, including a wider, deeper,
and a larger number of residual connection than a low performant one. For this reason,
they encounter higher computational cost and become slower.
As mentioned above, accurate CNN is unsuitable for the embedded system. Network

compression (NC) overcomes the need for high computational cost [5-13]. The well-known
NC includes low-rank factorization, quantization, pruning and knowledge distillation.
Each method compresses a network in different ways. Methods based on low-rank fac-
torization [5] can reduce save storage of network using matrix decomposition to reduce a
number of parameters. The well-known low-rank factorization is singular value decompo-
sition (SVD) which can significantly compress fully connected layers, while modern CNN
replaces fully connected layers with global average pooling layer. The result of SVD has
lower correctness than the original network. Convolutional layers can be compressed by
adaptive mixture [6], and it solves the accuracy drop problem but gets higher multiplier-
accumulators (Madds) than original one. Quantization-based methods [7,8] decrease the
number of bits associated with each weight to increase memory bandwidth. This method
accelerates the speed but offers lower accuracy. Binary, eight-bit and sixteen-bit quan-
tization affect the accuracy and speed, i.e., (i) more bit CNN becomes, more accuracy
CNN gets and (ii) more bit CNN becomes, slower CNN becomes. Pruning-based method
takes advantage of the narrow network to reduce the number of parameters based re-
dundant parameters or structures removal. Parameter pruning [9] relies on the support
of hardware and a computing library; however, structure pruning [10] resolves the un-
friendly hardware and Basic Linear Algebra Subprograms (BLAS library). The accuracy
drop is commonly encountered in both pruning methods. Methods based on knowledge
distillation [11,12] transfer knowledge from a teacher CNN (a pre-trained network) to a
student CNN (a smaller network). The methods based on knowledge distillation employ
narrow and shallow network with knowledge transfer, but require domain knowledge to
create a high performant student network. When the student network is unsuitable, the
performance of student network is worse than that of accuracy. As mentioned above, al-
most methods had a good compression rate although it could hurt in accuracy of the
result network and a compact method hinder use. To solve these problems, we proposed
a smart optical tactile sensor, called “tactile object recognition system”, to bridge the
gap between trade-off accuracy and the inference time (latency). We searched for the best
ration of compound multipliers to achieve the best network performance.
Inspired by weight sharing, the present paper extends our previous work [2] by improv-

ing learning ability, reducing save storage and analysis. The improvement of the shrinking
approach leads to a more-efficient save storage without accuracy drop. This approach
consists of three steps: namely (i) network compression by shrinking CNN architecture,
(ii) learning ability improvement by knowledge distillation, and (iii) weight sharing using
quantization and K-means clustering algorithm.
The paper is organized as follows. The proposed method is described in Section 2.

In Section 3, we evaluate the performance of this method and compare it with those of
shrinking, knowledge distillation, quantization technique and soft filter pruning. Finally,
Section 4 concludes.

2. Improvement of Shrinking CNN Architecture Using Weight Sharing and
Knowledge Distillation Method. The method consists of four aspects, namely, (i)
problem formulation for a trade-off between accuracy and latency, (ii) shrinking CNN
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architecture, (iii) learning ability improvement by knowledge distillation, and (iv) weight
sharing by quantization and K-means clustering algorithm.

2.1. Problem formulation for trade-off between accuracy and latency. In order
to adapt to embedded systems, the final network is expected to be accurate and timely as
called accuracy-latency trade-off task. This paper evaluates the performance of student
networks with a trade-off between accuracy and latency. The latency is the inference time
of the child network on NVIDIA Jetson TXII. Similar to [2], our objective function deals
with two factors, namely (i) accuracy and (ii) latency on the NVIDIA Jetson TXII. Thus,
a multi-objective function is defined as below:

maximizemACC(m)×
[
LAT (m)

TAR

]w
(1)

where m is the student network, ACC(m) is the accuracy of each student network on
the target task, LAT (m) is the latency on the target embedded system, TAR = 16 ms is
target latency, and w = −0.09 is a hyper-parameter that controls the trade-off between
accuracy and latency. In the experiments, the higher the objective score, the better the
student network.

2.2. Shrinking CNN architecture. According to [2,14], the shrinking CNN architec-
ture approach is a network-structure compression technique to compromise between ac-
curacy and latency. The shrinking approach can reduce the number of parameters, the
network size, and the computational cost to work on embedded systems, because it has
effect on three dimensions (e.g., the width, resolution, and depth) of the networks where
the redundant architecture is removed. Figure 1 shows the baseline network (a large
network) and the shrunk network (a small network). With the shrinking technique, the
computational cost of CNN at each block is described by

cost = (βDK)
2(βDF )

2
(
α2N

)
(M + (γL− 1)(N)) (2)

where α is the width multiplier, β is the resolution multiplier, γ is the depth multiplier,
DK is the kernel size, M is the number of inputs, N is the number of outputs, L is
the number of layers, and DF is the feature-map size. With balanced multipliers and a

Figure 1. Flowchart of improvement of shrinking CNN architecture using
weight sharing and knowledge distillation approach
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shallow network, shrunk networks provide timely performance with lossless. For example,
the reduced computational cost of VGG16’s third block is 8 times less computational cost
than the original one as described below:

5.76× 109

4.62× 1010
= 1.25× 10−1

The shrinking multipliers are α = 0.75, β = 0.75, and γ = 0.75. The parameters on the
CNN areDK = 3,M = 128, N = 256, L = 3, andDF = 56. In case of Inverted Bottleneck
Conv network [15], its architecture is more complex than CNN and the computational
cost is described by

cost = αE(βDF )
2
(
M

(
αM + αN + βD2

K

)
+ (γL− 1)

(
N
(
2αN + βD2

K

)))
(3)

For example, the reduced computational cost of Inverted Bottleneck Conv is 38 times less
computational cost than the original one as described below:

3.77× 106

1.45× 109
= 2.60× 10−2

where E is the expansion ratio. The shrinking multipliers are α = 0.5, β = 0.5, and
γ = 0.5, and the parameters on the Inverted Bottleneck Conv are E = 6, DK = 3,
M = 40, N = 64, L = 4, and DF = 28.

2.3. Learning ability improvement by knowledge distillation. Knowledge distil-
lation [11] transfers the knowledge of a large and computationally expensive network (a
teacher network) to a computationally efficient network (a student network). In this pa-
per, the teacher and student networks are a baseline and a shrunk network, respectively.
By joint training with the teacher network, the student network is guided by the trans-
ferred knowledge, called a logit distribution. For this reason, knowledge distillation can
improve the learning ability of the student network, such as no accuracy drop and short
training time. In the training of the student network, softmax is used to generate the
classification probability [16] qi of the i-th category, as described by (4)

qi =
exp(zi/T )∑K
j=1 exp(zj/T )

(4)

where i represents the i-th category, zi is the output of the logits layer of the network,∑K
j=1 exp(zj/T ) is the normalization term, K is number of categories in the multi-class

classifier, and T = 5 is introduced to produce a softer probability distribution over classes
[11]. Loss function (L) is described as follows:

L = αCE (QS, y) + (1− α)KL
(
Qt

S, Q
t
T

)
(5)

where α = 0.9 is a hyperparameter controlling the compromise between the two losses,
CE is the cross-entropy loss, KL is Kullback-Leibler (KL) divergence loss, Qt

S and Qt
T are

the soft target of the student and teacher network, QS is the predicted output, and y is
the actual label.

2.4. Weight sharing. Embedded systems have a limited resource budget, which is a
fixed capability. Weight sharing reduces the requirement for weight storage of the final
network to be suitable for the embedded systems. Similar to [9], K-means clustering algo-
rithm is used to realize the weight value clustering, and adopt the centroids as quantization
points for a cluster. Compression rate is described by (6)

r =
nb

n log2(k) + kb
≈ b

log2(k)
(6)
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where k is the number of weight clusters and it needs log2(k) bits to encode the index.
n is network-connection (n ≫ k) and each connection is represented by b bits. The
quantization points are 4 times lighter than the original weights when 8 bits are applied.

3. Experimental Result. We used the tactile image dataset [2] to experiment and were
training on four NVIDIA GTX 1080Ti GPUs. A tactile image was captured while the sur-
face of the experimental object was in contact with the opaque layer of the random-dot
sensor. Displacing the opaque layer changed the positions of the dots in the transpar-
ent layer. Examples of dataset were shown as Figure 2. Random seed was fixed as 42.
Training and testing parts were randomly separated by holdout technique with a ra-
tio of 60 : 40. The training part includes training and validating datasets, which were
randomly separated by three-folds cross-validation. The batch size was 128 images and
was shuffled every epoch. The initial weights of the experimental networks were set by
Kaiming technique [17]. The latency measures on NVIDIA Jetson TXII with GPU. We
compare the performance of the networks using the objective function, mentioned in Sec-
tion 2.1 and a higher score means better performance. For a fair comparison, we selected
VGG16 and MobileNetV2, the CNN employed in the previous version of this paper,
as a pre-trained network. The learning rate is set to 1 × 10−3 for VGG16 [18] and to
2.56 × 10−2 for MobileNetV2 [15]. The shrinking multipliers, referring to [2], are set to
0.25 : 0.75 : 0.5 (width : resolution : depth multipliers) for VGG16 and to 0.5 : 0.5 : 0.25
(width : resolution : depth multipliers) for MobileNetV2. Hyperparameters are described
as follows: image size = 224 × 224, number of epochs = 50, optimizer = Adam, loss
function = cross-entropy, bits = {8, 32} and distillation = {True, False}.

Figure 2. Examples of augmented tactile images: (from left to right)
default, circle, triangle, square, pentagon, hexagon

3.1. Performance of learning ability. Figure 3 illustrates the effectiveness of knowl-
edge distillation of 8-bit shrunk MobileNetV2 compared with normal training (no distil-
lation). The accuracy curves of 8-bits shrunk MobileNetV2 with two kinds of training
methods describe that knowledge distillation method is able to reach 4.65% in accuracy
from normal training as shown zoomed in on Figure 3. This means that the distillation
is able to prevent accuracy drop although bits are reduced. This article shows the accu-
racy of 8-bit shrunk MobileNetV2 is 95.70%, while 32-bit shrunk MobileNetV2 without
distillation has 95.69% as shown in Table 1.

3.2. Weight sharing sensitivity analysis of shrunk networks. Table 1 shows that
the weight sharing effects on the accuracy of the network, i.e., the higher number of clusters
the weight sharing is set, the higher accuracy the network gets. For example, 8-bit shrunk
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Figure 3. Accuracy comparison of 8-bits shrunk MobileNetV2 with dis-
tillation and normal training. Solid line shows accuracy curves of normal
training. Dash-dot line shows accuracy curves of distillation. Cross marker
shows the highest accuracy of each training.

Table 1. Compression performance of different methods (S: Shrinking,
WS: Sharing weights, KD: Distillation, Q: Quantization, SFP: Soft filter
pruning, +: Strategy combination)

Model Method
Params. Madds. Network Acc. Latency

Score
(M) (M) size (M) (%) (ms)

VGG16

Baseline 134 15,500 512 85.76 106.04 72.32
Q [7] 134 15,500 128 82.84 64.57 73.06

SFP [10] 134 7,653 512 84.50 86.21 72.52
KD [11] 43 645 164 84.79 41.95 77.74

WS + KD [12] 43 645 41 83.72 41.95 76.76
S [2] 43 378 164 93.51 16.16 93.43

S + WS 43 378 41 89.33 16.16 89.25
S + WS + KD 43 378 41 93.54 16.16 93.46

MobileNetV2

Baseline 2.24 300 8.51 94.13 26.48 89.96
Q [7] 2.24 300 2.13 85.65 12.63 87.49

SFP [10] 2.24 147 8.51 92.89 21.62 90.41
KD [11] 0.30 44 1.15 93.82 12.92 95.64

WS + KD [12] 0.30 44 0.29 91.74 12.92 93.52
S [2] 0.30 12 1.15 95.69 12.07 98.15

S + WS 0.30 12 0.29 91.04 12.07 93.38
S + WS + KD 0.30 12 0.29 95.70 12.07 98.16

MobileNetV2 has accuracy approximately 91.04%, which is 4.65% less accurate than 32-
bit one (shrinking method). On the other hand, the save storage of network reduces when
the weight sharing is set as the low number of clusters. 8-bit shrunk MobileNetV2 has
save storage approximately 0.29 M, being 3.98× smaller than 32-bit one.

3.3. Overall performance analysis. Table 1 shows the performance of the overall ex-
perimental result in this paper with different strategies. The highest score is performed by
the shrunk MobileNetV2 with weight sharing and knowledge transfer; i.e., it has 95.70%
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accuracy with 0.29 M network size, and it is 0.01-1.39% more accurate and 3.97-29.34×
smaller than those in the baseline and shrunk network. Moreover, Table 1 shows a perfor-
mance comparison between the proposed method and other network compression meth-
ods. The proposed method shows the highest score and smallest network size and it
outperforms the other network compression techniques.

4. Conclusions. This paper proposed the improvement of shrinking CNN architecture
using weights sharing and knowledge transfer by knowledge distillation. The main mo-
tivation behind the proposed method was the need to develop the assistive technology
for the elderly and people with disabilities. The result shows that the save storage of
network decreases and trade-off between accuracy and latency is improved by combined
techniques; e.g., shrinking CNN architecture, weight sharing and knowledge transfer by
knowledge distillation. The proposed method outperforms when compared with those
of other network compression techniques. We established that the improvement of the
shrinking approach is able to reduce save storage without performance drop. In future
work, the performance of this method should be improved.
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