
ICIC Express Letters
Part B: Applications ICIC International c⃝2021 ISSN 2185-2766
Volume 12, Number 6, June 2021 pp. 577–586

RELIABILITY OF MULTI-AGENT BASED INFECTION SIMULATOR
WITH PARAMETERS OF ISOLATION WARDS

Yuto Omae1, Yohei Kakimoto1, Jun Toyotani1, Kazuyuki Hara1

Yasuhiro Gon2 and Hirotaka Takahashi3

1College of Industrial Technology
Nihon University

1-2-1 Izumi, Narashino, Chiba 275-8575, Japan
oomae.yuuto@nihon-u.ac.jp

2Nihon University School of Medicine
30-1 Kami, Ooyaguchi, Itabashi, Tokyo 173-8610, Japan

3Research Center for Space Science
Advanced Research Laboratories

Tokyo City University
8-15-1 Todoroki, Setagaya, Tokyo 158-0082, Japan

hirotaka@tcu.ac.jp

Received November 2020; accepted January 2021

Abstract. In the spread of virus disease, capacity limitation of isolation wards for
admitting infectors of virus to the hospital is important to decrease the number of persons
who die and/or total infectors. Therefore, we developed multi agent-based virus spread
simulator that has parameter of capacity limitation of isolation wards and reported the
effectiveness of it in the previous research. However, the reliability evaluation of this
simulator was insufficient. One of the traditional virus spread simulations is the ordinary
differential equation-based approach. It is desirable that the output value of the number
of total infectors of our multi agent-based simulator is similar to the traditional ordinary
differential equation-based simulator. Therefore, in this paper, we discuss this point. As
a result, we confirmed the similarity between our simulator and traditional simulator. In
conclusion, our simulator has the reliability in this view point.
Keywords: Infection simulator, Multi-agent simulation, Isolation wards

1. Introduction. Virus diseases spread often occurred in the world (e.g., Severe Acute
Respiratory Syndrome (SARS) in 2002 [1], and COVID-19 in 2019 [2]). To understand
the spread features of viruses, it is important to develop the simulators of spreading virus
disease. For example, Hou et al. [3] reported COVID-19 spread simulation in Wuhan in
China. Chatterjee et al. [4] reported COVID-19 spread simulation in India and the effec-
tiveness of city lockdown on decreasing infectors. As the other simulations for COVID-19,
there are some case studies (e.g., “Hubei Province, China [5, 6]”, “Netherlands [7]” and
“Korea, Italy, France [8]”). Moreover, Niwa et al. [9] reported the effectiveness of airplane
passengers’ quarantine in the airports. As the other studies, there are also researches for
developing new simulation methods (e.g., [10, 11]) for COVID-19 spread simulation. By
their researches, we might understand the features of virus spread, quantitatively.

The infectors of communicable diseases, such as influenza, SARS, and COVID-19, can-
not be hospitalized in the ordinary wards because there is possibility that they infect other
persons. Therefore, the capacity limitation of isolation wards for admitting infectors of
communicable diseases to the hospital is important. If they are in isolation wards, they
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will not infect other persons in the societies and their fatality rate will decrease by being
given the adaptive treatment.
Therefore, virus spread simulator that can represent the capacity limitation of isolation

wards is important. However, the researches including this point of view are insufficient.
Because of the reason, as the previous research, we developed the multi agent-based virus
spread simulator (MAS) that has the parameter to represent the capacity limitation of
isolation wards [12]. Moreover, we reported the presence of effectiveness on decreasing
the total infectors and dead persons of isolation wards.
However, the reliability evaluation of this simulator [12] was insufficient. To evalu-

ate reliability of this simulator, it is required to compare the estimation results with
other simulation methods. One of the traditional virus spread simulations is the ordi-
nary differential equation-based approach (ODE). As ODE-based simulators, there is an
SEIR model. The ODE-based SEIR model was used to simulate spreading infection (e.g.,
[13, 14, 15]). The SEIR model for vaccination control is also discussed in [16]. Moreover,
there are many researches of COVID-19 spreading simulations by the ODE-based SEIR
model (e.g., [10, 11]). Therefore, we consider the ODE-based SEIR model has a high
reliability. In this view point, it is desirable that the output value of the number of total
infectors of our MAS-based simulator is similar to the traditional ODE-based simulator.
In this paper, we briefly report our MAS-based simulator that can represent capac-

ity limitation of isolation wards and ODE-based simulator. Moreover, we describe the
reliability evaluation result of MAS-based simulator by comparison with the number of
infectors outputted from ODE-based simulator.
The remainder of this paper is organized as follows. In Sections 2 and 3, we provide

an overview of the proposed MAS model and traditional ODE model, respectively. In
Section 4, we explain how to verify the reliability of MAS model. In Section 5, we show
the results of MAS-based model and traditional ODE-based model, and then discuss the
reliability of MAS model. Section 6 concludes the research.

2. Proposed MAS Model. We describe the MAS-based infection simulator that can
represent capacity limitation of isolation wards developed by Omae et al. [12]. Because
the previous research [12] is written in Japanese, we briefly explain the method here.

2.1. Infection transition. The SEIR model is one of the models to simulate the spread
of the virus disease [17]. In the model, there are five states: S, E, I, R and D. The person
of state S has a possibility of being an infector by having contact with other infectors. The
person of state E means an infector who does not appear symptoms (incubation periods).
The person of state I means an infector that appears symptoms (infection periods). The
person of state R means the recovered person from the virus disease. The person of state
D means the person who was dead.
The infection transition model is shown in Figure 1. The arrows mean that there are

the possibilities of the states’ transition. To describe the states’ transition, we define the
transition probability as

P
(
Xtstep+1|Xtstep , C, T,H

)
, (1)

where C means the variable for having the contact with the persons of state I or E,
i.e., C = 0 means not-contact and C = 1 means contact. T means the number of days
elapsed from changing to other states. H means the variable for expressing whether
being in hospitalization or not of agents of state I (H = 0: nonhospitalization; H = 1:
hospitalization). tstep means the elapsed time units of MAS (In the case of our simulator,
1 step sets 10 minutes). Xtstep and Xtstep+1 mean the states of an agent at step tstep and
tstep + 1, respectively, and they are defined by

Xtstep , Xtstep+1 ∈ {S,E, I,R,D}. (2)
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Figure 1. Transition model of infection states

The transition probability from the state S to the state S is defined as

P
(
Xtstep+1 = S|Xtstep = S, C

)
=

{
1 (C = 0)

1− αMAS (C = 1)
, (3)

where αMAS means an infection probability of 10 minutes that is minimum time unit of
MAS environment. If C = 0, the persons of state S keep the same state. In contrast, if
C = 1, the probability keeping state S decreases.

The transition probability from the state S to the state E is defined as

P
(
Xtstep+1 = E|Xtstep = S, C

)
=

{
0 (C = 0)

αMAS (C = 1)
. (4)

If the agent has contact with infectors (State E or I; C = 1), the transition probability
from state S to state E is αMAS. This is because the state S only changes to state S or E,

P
(
Xtstep+1 = S|Xtstep = S

)
+ P (Xt+1 = E|Xt = S) = 1 (5)

is satisfied.
The transition probability from the state E to the state E is defined as

P
(
Xtstep+1 = E|Xtstep = E, T

)
=

{
0

(
T = TMAS

E→I

)
1

(
T ̸= TMAS

E→I

) , (6)

and the transition probability from state E to state I is defined as

P
(
Xtstep+1 = I|Xtstep = E, T

)
=

{
0

(
T ̸= TMAS

E→I

)
1

(
T = TMAS

E→I

) , (7)

where TMAS
E→I means the period of required transition time [day] (incubation period). If T

becomes TMAS
E→I , the state of the agents necessarily changes from state E to state I. If T

does not reach TMAS
E→I , state E is keeping. Because state E only changes to state E or I,

P
(
Xtstep+1 = E|Xtstep = E

)
+ P

(
Xtstep+1 = I|Xtstep = E

)
= 1 (8)

is satisfied.
The transition probability from the state I to the state I is defined as

P
(
Xtstep+1 = I|Xtstep = I, T

)
=

{
1

(
T ̸= TMAS

I→RD

)
0

(
T = TMAS

I→RD

) , (9)

and the transition probability from the state I to the state R is defined as

P
(
Xtstep+1 = R|Xtstep = I, T,H

)
=


0

(
T ̸= TMAS

I→RD ∧H = 0
)

1− δMAS
0

(
T = TMAS

I→RD ∧H = 0
)

0
(
T ̸= TMAS

I→RD ∧H = 1
)

1− δMAS
1

(
T = TMAS

I→RD ∧H = 1
) . (10)
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Moreover, the transition probability from the state I to the state D is defined as

P
(
Xtstep+1 = D|Xtstep = I, T,H

)
=


0

(
T ̸= TMAS

I→RD ∧H = 0
)

δMAS
0

(
T = TMAS

I→RD ∧H = 0
)

0
(
T ̸= TMAS

I→RD ∧H = 1
)

δMAS
1

(
T = TMAS

I→RD ∧H = 1
) , (11)

where TMAS
I→RD means the period of the required transition time [day] (the infection period).

If T that is the elapsed day from changing to the state I becomes TMAS
I→RD, the state of the

agents translates from the state I to the state R or D. δMAS
0 and δMAS

1 mean the fatality
rates in the case of nonhospitalization (H = 0) and hospitalization (H = 1), respectively.
In other words, the fatality rate depends on whether the hospitalization of agents or not
(In general, we recommend δMAS

0 > δMAS
1 ). Because the state I only changes to the state

I, R, or D, ∑
x∈{I,R,D}

P
(
Xtstep+1 = x|Xtstep = I

)
= 1 (12)

is satisfied.
The state R means that the agents acquired immunity and the state D means death.

Therefore,
P
(
Xtstep+1 = R|Xtstep = R

)
= 1 (13)

and
P
(
Xtstep+1 = D|Xtstep = D

)
= 1 (14)

are satisfied, respectively.
More details of the infection transition model considering the effectiveness of hospital-

ization can be found in Omae et al. [12].

2.2. Simulation flow. We explain the artificial society in MAS-based simulator shown
in Figure 2. The agents live in a 2-dimensional space (x-y axes) with the minimum and
maximum values 0 and 1000. The parameters of simulator are shown in the 1st row of
Table 1 (The values of the 2nd row mean the case study described in Section 5. We
can set other values.). “Max simulation period” is the maximum simulation term. “The
number of houses” is the number of houses which agents live in. The three persons (an
office worker, homemaker, and student, respectively) live in a house. In other words, the
total population of the agents in artificial society is 3 times of “the number of houses”.
“The number of initial infectors” means the number of infected persons (state I) of initial
timing of simulation. They infect other persons with virus disease.
In the 2-dimensional space, there are the agents’ houses and destination facility loca-

tions (company, shop, or school, respectively) in the form of (x, y) coordinates. A house
means the location that agents live daily. Moreover, an office worker, homemaker or
students go to a company, shop, or school, respectively. There are numerous companies,

Figure 2. MAS-based simulator
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Table 1. Simulation conditions of MAS/basic parameters

Parameters Values

Max simulation period 30 [day]

The number of houses → shown in Table 2

The number of initial infectors 10 [ppl.]

Facility locations (companies) 10 places

Facility locations (shops) 10 places

Facility locations (schools) 10 places

Basic going out probability (office worker) 99.0 ∼ 100.0[%]

Basic going out probability (homemaker) 50.0 ∼ 100.0[%]

Basic going out probability (student) 99.0 ∼ 100.0[%]

Going out time (office worker) 8:30 ± 1:30

Going out time (homemaker) 10:30 ± 1:30

Going out time (student) 8:30 ± 1:30

Stay time of facility (office worker) 6:00 ∼ 8:00

Stay time of facility (homemaker) 0:10 ∼ 0:30

Stay time of facility (student) 5:00 ∼ 6:00

Probability of going to a hospital 60.0[%]

Capacity limitation of isolation wards → shown in Table 2

Infection probability: αMAS → shown in Table 2

Incubation periods (from E to I): TMAS
E→I 3, 5, 7 [day]

Infection periods (from I to R, D): TMAS
I→RD 8, 10, 12 [day]

Fatality rate (nonhospitalization): δMAS
0 10.0[%]

Fatality rate (hospitalization): δMAS
1 1.0[%]

a ∼ b: a uniform random number from a to b.

a± b: a Gaussian random number applied mean a and std. b.

shops, and schools. Destination facility location to choose is decided by a uniform ran-
dom probability at the simulation start timing. The destination facility location is one
per agent and after the decision, they do not change.

“Basic going out probability” means the probability of going to destination facility
locations. At the start timing of each day, whether the agent goes to destination facility
location or not is decided based on “basic going out probability”. “Going out time”
means the timing that agents go out. They go there in the shortest Euclidian distance
from house to facility location in the 2-dimensional space. After arriving at the location,
the agents stay there. The stay time is defined as “stay time of facility”. Afterward, they
go back to their houses.

Then, the agents of the state I go to the hospital based on “probability of going to a
hospital”. They are isolated there (it means they are hospitalized). In this case, “basic
going out probability” becomes zero. If they who could be hospitalized become state R,
they leave the hospital and live as usual. However, if the capacity limitation of isolation
wards is exceeded, even if the agents are the state I, they cannot be hospitalized. In this
case, they can go the outside even if they are state I.

Other parameters in Table 1 (e.g., infection probability αMAS, incubation periods TMAS
E→I ,

infection periods TMAS
I→RD and fatality rate δMAS

{0,1}) are used in the infection transition de-
scribed in Section 2.1. In this MAS, the minimum unit of time is 10 minutes. Therefore,
1 day of simulation consists of 144 steps (24 hours). After completing their steps, the
next day is started. More details of explanation of the simulation flow are shown in [17].
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2.3. Representation of spreading infection disease. To understand spreading in-
fection disease, we define the number of agents of states S, E, I, R and D of day tday
as

ZMAS(tday) = Observed value, where

ZMAS(tday) ∈
{
SMAS(tday), E

MAS(tday), I
MAS(tday), R

MAS(tday), D
MAS(tday)

}
, (15)

and

tday =
1

144
tstep. (16)

Note that because 1 step is 10 minutes, 144 steps is 1 day. ZMAS(tday) is not calculated
by any mathematical functions but it is observed from MAS simulator.

3. Traditional ODE Model. We describe one of the traditional infection spread simu-
lation models by ODE-based SEIR model (e.g., [13, 14, 15]). In their models, the number
of persons who is each infection state is represented by the instantaneous rate of the
change. Therefore, we can know infection spread dynamics with small computational
cost.
The forms of ODE-based SEIR model are expressed by

dSODE(tday)

dtday
= −α(tday)S

ODE(tday)
{
IODE(tday) + EODE(tday)

}
, (17)

dEODE(tday)

dtday
= α(tday)S

ODE(tday)
{
IODE(tday) + EODE(tday)

}
− βEODE(tday), (18)

dIODE(tday)

dtday
= βEODE(tday)− γIODE(tday), (19)

dRODE(tday)

dtday
= {1− δ(tday)} γIODE(tday), (20)

dDODE(tday)

dtday
= δ(tday)γI

ODE(tday), (21)

ZODE(tday) =

∫ tday

0

dZODE(tday)

dtday
dtday + ZODE(0), where ZODE(0) = const.,

ZODE(tday) ∈
{
SODE(tday), E

ODE(tday), I
ODE(tday), R

ODE(tday), D
ODE(tday)

}
, (22)

where SODE(tday), E
ODE(tday), I

ODE(tday), R
ODE(tday), D

ODE(tday) mean the number of
day tday’s persons of states S, E, I, R and D calculated by ODE-based simulator, respec-
tively. In MAS-base simulator, the agents of state S translate from state S to E by the
contact with the agents of state E or I by shown in Equation (4). Therefore, the sum of
the states I and E multiplied by the state S appears in Equations (17) and (18). α(tday)
is the day tday’s infection rate.
Because the agents of the state E translate from the state E to I depending on the day

elapsed, the number of state E appears in Equations (18) and (19). β is inverse value of
the incubation periods. Likewise, because the agents of the state I translate from the state
I to R or D depending on the day elapsed, the number of state I appears in Equations
(19), (20) and (21). γ is inverse value of the infection periods and δ(tday) is the day tday’s
fatality rate.
Equations (17), (18), (19), (20) and (21) are the derivative coefficients of the number of

infection states. Therefore, we get the total number by calculating integral value of them
shown in Equation (22). α(tday), β, γ and δ(tday) are the ODE parameters and we have
to decide specific values to perform infection spread simulation.
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4. How to Verify Reliability of MAS Model. To evaluate the reliability of the MAS-
based simulator, it is desirable to the output similarity values by comparison with the
ODE-based simulator. MAS-based simulator has many parameters shown in Table 1. On
the other hand, ODE-based simulator has simple four parameters of α(tday), β, γ and
δ(tday). Therefore, it is required fitting ODE parameters to MAS.

In the ODE parameters, β is inverse value of the incubation periods and γ is inverse
value of the infection periods. Moreover, MAS-based simulator has the incubation and
infection periods and they are TMAS

E→I and TMAS
I→RD. Therefore, we use

β∗ =
1

mean
[
TMAS
E→I

] , γ∗ =
1

mean
[
TMAS
I→RD

] , (23)

as the ODE parameters β, γ, where mean[·] is a mean operator to transform into the scalar
value from the multiple values. Because we can set the multiple values as the incubation
and infection periods in the case of MAS as shown in Table 1, the mean values are used
as the ODE parameters. In other words, mean

[
TMAS
E→I

]
= 5, mean

[
TMAS
I→RD

]
= 10 in the

case of Table 1.
Moreover, we consider the ODE parameters α(tday) and δ(tday). α(tday) expresses a

day tday’s degree of virus spread and δ(tday) expresses a day tday’s fatality rate. In MAS,
the infection probability αMAS exists. However, it is the infection probability in the case
of contact with infector during 10 minutes. Moreover, in MAS, the fatality rate δMAS

{0,1}
exists. However, the value is different by whether hospitalization or not. In other words,
the ODE parameters α(tday) and δ(tday) are similar to the MAS parameters αMAS, δMAS

{0,1},
but different. Therefore, by making fit ODE and MAS outputs, we decide the ODE
parameters. Because the ODE parameter α(tday) affects the number of states S and E, we
adopt α(tday) leading to be minimum difference between the number of states S and E of
ODE and MAS. Likewise, because ODE parameter δ(tday) affects the number of states R
and D, we adopt δ(tday) leading to be minimum difference between the number of states
R and D of ODE and MAS. In other words, we set

α∗(tday) = argmin
α(tday)

[∣∣SODE(tday + 1)− SMAS(tday + 1)
∣∣

+
∣∣EODE(tday + 1)− EMAS(tday + 1)

∣∣] , (24)

δ∗(tday) = argmin
δ(tday)

[∣∣RODE(tday + 1)−RMAS(tday + 1)
∣∣

+
∣∣DODE(tday + 1)−DMAS(tday + 1)

∣∣] , (25)

as the ODE parameters α(tday) and δ(tday). We evaluate the reliability of MAS by com-
paring the outputs of ODE adopting α∗(tday), β

∗, γ∗ and δ∗(tday) as ODE parameters
α(tday), β, γ and δ(tday) with outputs of MAS.

5. Experiment for the Reliability Verification of MAS Model.

5.1. Simulations condition. We verify the reliability of MAS-based simulator [12] by
comparing with traditional ODE-based simulator. We set the MAS parameters shown in
Tables 1 and 2, which are based on Omae et al. [17]. As shown in Table 2, we considered
the eight cases that consist of 2 pattern populations, infection probabilities and capacity
limitation of isolation wards. The ODE parameters α∗(tday), β

∗, γ∗ and δ∗(tday) are solved
by Equations (23), (24) and (25).

5.2. Results and discussions. The infection spread dynamics are shown in Figure 3.
The left side, center and right side figures mean MAS outputs, ODE outputs and optimal
parameters of ODE-based simulator calculated by Equations (24) and (25), respectively.
We can verify the high similarity between MAS and ODE outputs. Moreover, virus spread
speed in the presence of isolation wards is more delayed than the cases in the absence
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Table 2. Simulation conditions of MAS/variables parameters

Case ID Case 0 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

The number of houses [units] 1000 1000 1000 1000 1500 1500 1500 1500

The number of agents* [ppl.] 3000 3000 3000 3000 4500 4500 4500 4500

Infection probability αMAS[%] 0.06 0.06 0.09 0.09 0.06 0.06 0.09 0.09

Cap. limit. of isolation wards [beds] 0 15 0 15 0 15 0 15

*: The number of agents is 3 times of number of houses (office worker, homemaker and student).

Figure 3. The outputs of infection spread dynamics (left: MAS, center:
ODE, right: ODE’s optimal parameters)
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of isolation wards (note that the cases 0, 2, 4, and 6 mean the absence of isolation
wards and the cases 1, 3, 5, 7 mean the presence of them). α∗(tday) and δ∗(tday) in the
presence of isolation wards are lower than α∗(tday) and δ∗(tday) in the absence of them.
Because α∗(tday) is the ODE’s infection probability and δ∗(tday) is the ODE’s fatality rate,
isolation wards have the effectiveness of decreasing infection spread and the number of
dead persons. Their results are similar to the results obtained by Omae et al. [12].

To quantitively evaluate MAS-based simulator, we calculated the coefficient of deter-
mination r2 between the MAS and ODE outputs. The definition of r2 is

r2 = 1−
∑Tmax−1

tday=0

(
ZMAS(tday)− ZODE(tday)

)2∑Tmax−1
tday=0 (ZMAS(tday)−mean [ZMAS])2

,

mean
[
ZMAS

]
=

1

Tmax

Tmax−1∑
tday=0

ZMAS(tday), (26)

where Tmax is the maximum simulation period (30 days). If r2 is similar to 1, MAS outputs
are similar to ODE outputs. They are shown in Table 3. On most cases except some of
State R (e.g, r2 = 0.671 at case 3), the values of r2 are high. We also show the outputs of
MAS and ODE at the last day in the seven to eight rows of Table 3. Likewise r2, the last
day’s MAS outputs are similar to ODE outputs on most cases (except case 7). Therefore,
we consider that MAS-based simulator that can represent isolation wards is reliable.

Table 3. Reliability verification of MAS based on comparison with ODE

Case 0 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

Coef. of determination

r2 of state S
0.999 0.998 0.998 0.999 1.000 0.998 0.999 0.993

Coef. of determination

r2 of state E
0.957 0.970 0.945 0.955 0.959 0.967 0.935 0.963

Coef. of determination

r2 of state I
0.990 0.912 0.981 0.981 0.994 0.933 0.968 0.715

Coef. of determination

r2 of state R
0.922 0.811 0.827 0.671 0.925 0.853 0.781 0.711

Coef. of determination

r2 of state D
1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.935

The number of total

infectors/MAS
2565.00 1358.00 2872.00 2796.00 3765.89 2696.00 4333.00 3298.00

The number of total

infectors/ODE
2535.52 1439.09 2754.71 2694.70 3759.73 2699.37 4212.74 4144.30

6. Conclusion. In this paper, we evaluated MAS-based infection simulator that can
represent isolation wards and its capacity limitation developed by Omae et al. [12]. The
evaluation method is the comparison of MAS-based simulator’s outputs with tradition-
al ODE-based approach. As the results shown in Figure 3 and Table 3, MAS-based
simulator’s outputs were similar to ODE-based simulator. Therefore, we consider that
MAS-based simulator is reliable.

In future work, we will consider how many capacity limitation of isolation wards will be
required to decrease dead people by COVID-19 infection disease by using the MAS-based
simulator.



586 Y. OMAE, Y. KAKIMOTO, J. TOYOTANI ET AL.

Acknowledgment. This work was supported in part by the Telecommunications Ad-
vancement Foundation (Y. Omae, No. 20203002) and JSPS Grant-in-Aid for Scientific
Research (C) [J. Toyotani, 21K04535].

REFERENCES

[1] W. K. Lam, N. S. Zhong and W. C. Tan, Overview on SARS in Asia and the world, Respirology,
vol.8, pp.S2-S5, 2003.

[2] T. P. Velavan and C. G. Meyer, The COVID-19 epidemic, Tropical Medicine & International Health,
vol.25, no.3, 2020.

[3] C. Hou, J. Chen, Y. Zhou, L. Hua, J. Yuan, S. He and J. Zhang, The effectiveness of quarantine of
Wuhan City against the corona virus disease 2019 (COVID-19): A well-mixed SEIR model analysis,
Journal of Medical Virology, vol.92, pp.841-848, 2020.

[4] K. Chatterjee, K. Chatterjee, A. Kumar and S. Shankar, Healthcare impact of COVID-19 epidemic in
India: A stochastic mathematical model, Medical Journal Armed Forces India, vol.76, no.2, pp.147-
155, 2020.

[5] B. Prasse, M. A. Achterberg, L. Ma and P. V. Mieghem, Network-inference-based prediction of the
COVID-19 epidemic outbreak in the Chinese Province Hubei, Applied Network Science, vol.5, 2020.

[6] Q. Yang, C. Yi, A. Vajdi, L. W. Cohnstaedt, H. Wu, X. Guo and C. M. Scoglio, Short-term forecasts
and long-term mitigation evaluations for the COVID-19 epidemic in Hubei Province, China, medRxiv,
2020.

[7] M. A. Achterberg, B. Prasse, L. Ma, S. Trajanovski, M. Kitsak and P. V. Mieghem, Comparing
the accuracy of several network-based COVID-19 prediction algorithms, International Journal of
Forecasting, 2020.

[8] Z. Liu, P. Magal and G. Webb, Predicting the number of reported and unreported cases for the
COVID-19 epidemics in China, South Korea, Italy, France, Germany and United Kingdom, Journal
of Theoretical Biology, vol.509, 2020.

[9] M. Niwa, Y. Hara, S. Sengoku and K. Kodama, Effectiveness of social measures against COVID-19
outbreaks in Japanese several regions analyzed by system dynamic modeling, International Journal
of Environmental Research and Public Health, vol.17, DOI: 10.3390/ijerph17176238, 2020.

[10] Z. Yang et al., Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under
public health interventions, Journal of Thoracic Disease, vol.12, no.3, pp.165-174, 2020.

[11] S. He, Y. Peng and K. Sun, SEIR modeling of the COVID-19 and its dynamics, Nonlinear Dynamics,
pp.1-14, 2020.

[12] Y. Omae, J. Toyotani, K. Hara and H. Takahashi, A prediction method for viral disease outbreak
using a multi-agent simulation including capacity limitation for isolation wards and stay-at-home
orders, Journal of Japan Society for Fuzzy Theory and Intelligent Informatics, vol.32, no.6, pp.501-
510, 2020.

[13] H. F. Huo, Q. Yang and H. Xiang, Dynamics of an edge-based SEIR model for sexually transmitted
diseases, Mathematical Biosciences and Engineering, vol.17, no.1, pp.669-699, 2020.

[14] A. Smirnova, L. deCamp and G. Chowell, Forecasting epidemics through nonparametric estimation
of time-dependent transmission rates using the SEIR model, Bulletin of Mathematical Biology, vol.81,
no.11, pp.4343-4365, 2019.

[15] Y. A. Kuznetsov and C. Piccardi, Bifurcation analysis of periodic SEIR and SIR epidemic models,
Journal of Mathematical Biology, vol.32, no.2, pp.109-121, 1994.

[16] M. De la Sen, A. Ibeas, S. Alonso-Quesada and R. Nistal, On the time-optimal vaccination control
for an SEIR epidemic model with eventual modelling errors, International Journal of Innovative
Computing, Information and Control, vol.15, no.1, pp.163-187, 2019.

[17] Y. Omae, J. Toyotani, K. Hara, Y. Gon and H. Takahashi, Effectiveness of the COVID-19
contact-confirming application (COCOA) based on a multi agent simulation, arXiv Preprint, arXiv:
2008.13166, 2020.


